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Abstract
Background: Using suitable error models for gene expression measurements is essential in the
statistical analysis of microarray data. However, the true probabilistic model underlying gene
expression intensity readings is generally not known. Instead, in currently used approaches some
simple parametric model is assumed (usually a transformed normal distribution) or the empirical
distribution is estimated. However, both these strategies may not be optimal for gene expression
data, as the non-parametric approach ignores known structural information whereas the fully
parametric models run the risk of misspecification. A further related problem is the choice of a
suitable scale for the model (e.g. observed vs. log-scale).

Results: Here a simple semi-parametric model for gene expression measurement error is
presented. In this approach inference is based an approximate likelihood function (the extended
quasi-likelihood). Only partial knowledge about the unknown true distribution is required to
construct this function. In case of gene expression this information is available in the form of the
postulated (e.g. quadratic) variance structure of the data.

As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of
calibration and variance parameters, and it is also straightforward to obtain corresponding
approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any
preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also
be employed in regression approaches to model systematic (e.g. array or dye) effects.

Conclusions: The quasi-likelihood framework provides a simple and versatile approach to analyze
gene expression data that does not make any strong distributional assumptions about the
underlying error model. For several simulated as well as real data sets it provides a better fit to the
data than competing models. In an example it also improved the power of tests to identify
differential expression.

Background
An analysis of gene expression data typically includes the
application of some multivariate statistical techniques
such as clustering, classification, PCA etc. These high-level
procedures all require the assumption of a low-level error

model for the data. In practice, this model is often only
specified implicitly rather than explicitely. Nevertheless,
its choice has a great impact on subsequent statistical
considerations.
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In the case of array data, the error model characterizes the
variability of gene expression intensity measurements [1].
It is essential, e.g., to get a measure of precision of an esti-
mated expression level, to statistically evaluate the differ-
ence between treatment and control samples, to calibrate
and normalize data sets using regression techniques, to in-
crease prediction accuracy in classification, and to assess
confidence in high-level analysis (e.g. clustering). Some of
these applications may be robust against a misspecified
low-level model but most will not. Thus, a careful choice
of a suitable error model is warranted.

The observed intensity IP at a microarray probe may be de-
composed into

IP = IT + IS + error,  (1)

where IT denotes the true signal (foreground, due to the
transcript) and IS is the stray signal (background, not due
to the transcript) [2]. On this original scale IT is approxi-
mately linearly proportional to the true transcript concen-
tration [2–4]. Distributional assumptions for the error
term in Equation 1 used in the literature include

• a normal foreground and background (e.g. [5]),

• a Gamma foreground with unspecified background [6],

• a log-normal foreground and normal background, [1]

• a log-normal foreground and background [7], and

• an asinh-normal model [8,9].

At present, as there currently is no generally accepted
mechanistic or empirical model for gene expression meas-
urements, there is no agreement which of these suggested
error models comes closest to the truth (except perhaps
that a normal model on the observed scale can be ruled
out). Moreover, all of the models are fairly difficult to dis-
tinguish statistically for the small sample size present in
microarray data.

Because of this difficulty to choose among simple paramet-
ric error models for the observed probe intensities two
other alternative ways to describe the error term in Equa-
tion 1 have been explored in the literature. First, it some-
times is possible to obtain a fully non-parametric estimate
of the underlying error distribution (e.g. [10]). However,
the drawback of completely empirical error models is that
they generally require quite a lot of data, i.e. many meas-
urements per gene and condition, and more than are usu-
ally available. In addition, non-parametric approaches are
prone to overfitting and ignore known prior structural in-
formation on the data.

A second widely pursued alternative is to try to find a
transformation of the data to a different scale where the er-
ror term follows a normal distribution and where the var-
iance is constant and intensity independent. For gene
expression data, this can often be achieved, at least ap-
proximately, using the log-transform or some other relat-
ed function [8,9,11–13]. Thus, in this perspective the
problem of finding a suitable error model is equivalent to
the problem of choosing an appropriate transformation.
Note, however, that an ideal scale combines ease of inter-
pretation, constancy of variance variance, normal errors,
and additivity of systematic effects. Unfortunately, these
properties cannot in general be achieved simultaneously
[14]. In particular, if a non-linear transformation such as
the log-function is applied to the data, the expectation of
the transformed intensity is not anymore a linear measure
of the transcript concentration.

Approximate Error Models
In this paper, the use of approximate semi-parametric error
models, rather than parametric or or nonparametric mod-
els, is advocated for gene expression data. In particular,
the quasi-likelihood framework is considered that allows
statistical analysis even when the knowledge of the under-
lying error distribution is incomplete. Applied to gene ex-
pression analysis, this approach allows to model the data
while at the same time avoiding strong assumptions
about the underlying distribution and the optimal scale.

In the next sections the utility of these approximate error
models for gene expression data is explored. First, the gen-
eral quasi-likelihood theory is introduced. Subsequently,
a suitable quasi-likelihood function for gene expression
data is derived. Then simulated and real data are analyzed.
Finally, some conclusions concerning low-level models
and transformations for gene expression data are drawn.

Results and Discussion
Quasi-Likelihood Framework
Quasi-likelihood (QL) is a framework for statistical mod-
eling that employs an approximate likelihood function
rather using than a fully specified likelihood. The advan-
tage of this approach is that no probability structure has
to be specified, as the estimating function is constructed
from the first two moments only. This is a useful strategy
for dealing with non-normal multivariate data (e.g. [15],
chap. 14). Note that microarray data are non-normal and
multivariate.

The original quasi-likelihood idea goes back to Wedder-
burn [16] who employed it in a regression setting. He
introduced
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as the quasi-log-likelihood function for independent ob-
servations yi with expectations E(yi) = µi and variances
var(yi) = V(µi) where V is some known function. In a re-
gression problem µi usually depends on a linear predictor
xB via a link function g by µi = g-1 (xB). Wedderburn
showed that with respect to µi and the regression coeffi-
cients B the function Q(µi;yi) has properties similar to
those of the log-likelihood [16].

However, the original quasi-likelihood as in Equation 2
cannot be used to infer free parameters θ contained in a
variance function Vθ(u). To fix this, Nelder and Pregibon
[17] suggested to use the extended quasi-log-likelihood
function

Mean parameters that maximize the original QL function
also maximize Q+(µi,θ;yi) but variance parameters θ, as
well as parameters in the link function g, can now also be
estimated by maximizing the extended version.

QL and extended QL estimators have desirable finite sam-
ple and asymptotic statistical properties [18–21]. They are
closely related to saddlepoint approximations from expo-
nential families [22,23]. As a result, maximum quasi-like-
lihood estimates coincide frequently with inferences from
an exact likelihood. For example, for V(µ) = σ2 the extend-
ed quasi-log-likelihood Q+(µi,σ2;yi) is exactly the normal
log-likelihood (see Table 1).

Gene Expression Variance Structure and Quasi-Likelihood 
Function
A model in the quasi-likelihood framework requires only
knowledge of the relationship between the mean and the
variance, i.e. the function V in Equation 3.

Despite the uncertainty with regard to the exact form of
the error distribution for gene expression measurements
there is some agreement about the variance structure V. In
the two-component model for the measured intensity (see
Equation 1) let the expectations be E(IP) = E(IT) + E(IS) or
µ = E(IT) + β. If the variance of the stray signal is assumed
to be constant (var(IS) = ρ2) and the true signal assumed
to exhibit a constant coefficient of variation σ (so that
var(IT) = E(IT)2σ2), then the total overall variance struc-
ture is

var(IP) = (µ - β)2σ2 + ρ2 := V(µ; β, σ, ρ).  (4)

Such a quadratic variance-mean relationship is observed
in a lot of microarray data (e.g. [1,8,9,12,13]) and refer-
ences therein), and therefore also assumed in the follow-
ing. However, any other appropriate variance function
could be used equally well in the quasi-likelihood
framework.

From the variance function Equation 4 the extended qua-
si-log-likelihood function can be computed using Equa-
tion 3, resulting in

This function constitutes the approximate error model
used in this paper. Note again that it is derived solely from
the putative variance structure of gene expression data
(Equation 4) with no further assumptions. Point esti-
mates of the mean and variance parameters (µ, β, σ, ρ) are
obtained by maximizing this function.

Ideally one would like to estimate one set of these param-
eters for each gene and condition separately. However,
this is feasable only if there are a lot of replications, other-
wise a parameter reduction is advised. Typically, the esti-
mate of the coefficient of variation σ can be shared across
all genes and conditions [24]. Similar parameter reduc-
tion may be applied to the estimates of ρ and β.

The quasi-likelihood approach also allows the estimation
of approximate confidence intervals for the estimated pa-
rameters (for example θ). One way is to employ the pro-

file quasi-likelihood Q+(θ) = Q+( i, θ; yi), where i is

optimized for fixed θ, to construct the interval

{θ, 2Q+ ( ) - 2Q+ (θ) ≤ d}.

The estimate  maximizes Q+(θ) and the threshold d may

be chosen as some percentage point of a χ2 distribution
(for a one-parameter approximate 95% confidence inter-
val d = 3.84). Alternatively, a variety of standard bootstrap
procedures are applicable to construct confidence inter-
vals for the quasi-likelihood point estimates [17]. Howev-
er, the bootstrap intervals tend to be more conservative
(i.e. wider) than the above likelihood-based interval.

Effect of Calibration
Prior to any analysis the raw microarray data generally
need to be calibrated (or normalized). This also affects the
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error model. If linear location-scale transformation y' = a
+ by is assumed for each chip, see e.g. [25–27], then the
transformed variance structure is

E(I'P) = E(a + bIP) = a + bµ = µ'

var(I'P) = (µ' - a - bβ)2σ2 + (bρ)2

Thus, for uncalibrated data the background parameter β is
confounded with the shift and scale parameters a and b,
while the background error ρ is confounded with scale pa-
rameter b. The coefficient of variation a is not affected by
the transformation.

It may be desired to estimate calibration parameters a and
b in addition to the error model itself. In this case, howev-
er, it is necessary to assume that β and ρ are shared param-
eters across all chips or channels. It is unclear, however,
whether this is a realistic assumption for real data. Note,
however, that this is the basis for estimating a and b in the
transformation-based approach by Huber et al. [8].

Simulation Study
To explore the adequacy of the quasi-likelihood approxi-
mate error model for gene expression data a simulation
study was performed.

Data were generated according to three different schemes.
First, as true error model a convolution of normal and log-

normal distribution was assumed [1]. As a second model
an asinh-normal (ANL) distribution was assumed [8,9].
Note that in these two cases the approximate error model
provided by quasi-likelihood is misspecified as both dis-
tributions are not part of the exponential family. As third
true error model a Gamma distribution was considered
[6].

The simulated whole-chip data consisted of 7000 genes,
with the coefficient of variation set to σ = 0.25, the back-
ground parameters set to β = 25000 and ρ = 5000. The
7000 true expression levels µi - β were drawn randomly
from a log-normal distribution (with log-mean 8 and
standard deviation 2). These values were chosen to match
the molecular data analyzed in [1]. Data y from the con-
volution model and the Gamma model were generated di-
rectly on the observed scale. To generate data y from the
asinh-normal distribution, data x were drawn from a nor-
mal distribution N(u, s2) and subsequently transformed
to the observed scale via y = asinh(a + bx). Note that this
is possible because there exists a one-to-one mapping of
the parameters on the normal scale (u, s2, a, b) and those
of the transformed scale (µ, σ, β, ρ), see Table 2. For each
variant 4, 10 and 20 replicates per gene were drawn. Fig-
ure 1 shows the observed mean-variance relationship of
an example with 10 replicates per gene.

Subsequently, the extended quasi-likelihood (EQL) mod-
el (Equation 5) and the ANL model were fitted to the sim-

Table 1: Examples for extended quasi-log-likelihood functions
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ulated data by maximizing the extended quasi-likelihood
function and the likelihood function derived from the as-
inh-normal distribution, respectively. The results are
shown in Table 3 for the convolution model as the under-
lying true distribution, in Table 4 for the asinh-normal

distribution, and in Table 5 for the Gamma distribution as
the true error model.

Figure 1
Variance-mean relationship for simulated data: true value (red), maximum-likelihood estimate β (green), maximum-quasi-likeli-
hood estimate (blue)
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The colored lines in Figure 1 indicate the true variance-
mean relationships and the maximum-likelihood and
maximum quasi-likelihood estimates, respectively.

If the true error model was the asinh-normal distribution
(Table 4) or the similar convolution model (Table 3) then
– as expected – the fit of the correctly specified model
(ANL) was always better than that of the EQL model,
though in terms of the log-likelihood only by a small
amount. Parameter estimation using this correct probabil-
ity model was more efficient than with EQL. In both cases
parameters µi were well estimated. Variance parameters β,
σ and ρ were underestimated by the approximate error

model. The sample size (4, 10, 20 replicates per gene) did
not greatly impact EQL estimates.

On the other hand, if the true model followed a Gamma
distribution (Table 5) the EQL model fitted the data con-
sistently better than the ANL model. However, the
difference in log-likelihood between the two candidate
models was again comparatively small. As the Gamma
model does not contain background signal the true values
for β and ρ are zero. In this case the parameter estimates
based on the ANL model are highly biased upwards,
whereas estimates from the EQL approach were almost
unbiased.

Table 2: Parameter mapping in the simulation study

observed scale y normal scale x

µ = ( /2sinh(u) - a)/b

σ2 =  - 1
s2 = log(1 + σ2)

E(y)= µ E(x) = u
var(y) = (µ - β)2σ2 + ρ2 var(x) = s2

y = asinh(a + by) x ~ N(u, s2)

Table 3: Parameter estimates (true model: convolution of normal and log-normal distribution)

EQL ANL true value

Replicates 4 10 20 4 10 20

err( i)
0.0008 0.0007 0.0006 0.0010 0.0014 0.0009 0

20605 20012 19332 22979 24178 25161 25000

0.1906 0.2035 0.2032 0.2340 0.2395 0.2427 0.25

4150.1 4559.8 4669.6 4995.4 5053.6 5082.3 5000

-log L 280822 708618 1420480 280205 708308 1419534

err( i) = avg(( i - µi)/µi) EQL: all parameters estimated via EQL ANL: all parameters estimated using asinh-normal assumption

es2

u = +
+

−( )asinh(
/

/ )
σ σ

σ
µ β ρ

2 4

2
2

1

es2

β = − a
b a = − +β

ρ
σ σ2 4 2/

ρ = −e

b

s2

2

2
1

2
b = +1

22 4

ρ
σ σ /

µ̂

β̂

σ̂

ρ̂

µ̂ µ̂
Page 6 of 10
(page number not for citation purposes)



BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/10
Thus, while the EQL model was based only on the postu-
lated variance structure with no additional information
on higher distributional moments, it nevertheless provid-
ed a reasonable fit to the ANL and convolution generated
data and a very good fit to the Gamma-generated data.

Leukemia Data
Next, the EQL and ANL model was fitted to the Leukemia
data from Golub et al. [28]. After preprocessing and filter-
ing as in [28] 3051 genes and 38 samples remained. The
estimation results based on the EQL and ANL error mod-
els are shown in Table 6. The data available from the Gol-
ub et al. website were already calibrated and background-
corrected, hence the parameter β was set close to zero both
for the approximate error model EQL as well as the ANL
model. For this data set, the fit of the approximate error
model EQL is better than of the parametric ANL model,
i.e. the EQL models achieves a much higher (quasi) log-
likelihood. The estimated EQL and ANL parameter values
are similar, with EQL estimates being slightly smaller than
the corresponding ANL parameter values.

The Leukemia data set contains subsets of samples from
two tumor classes, AML and ALL [28]. A statistical test can
then be employed to reveal which genes are differentially
expressed between the two groups. One approach that ex-
plicitely takes account of the underlying error model is
based on the likelihood ratio test [29]. For normal errors
this approach is (asymptotically) equivalent to the
standard t-test, but unlike the t-test it can also be applied
for any other assumed error model. To determine p-values
the test distribution for the likelihood ratio was assumed
to be χ2 (a more accurate distribution may be obtained,
e.g., using a bootstrap approach). Figure 2 shows the
number of differentially expressed genes given a nominal
α value (type I error) for the individual pairwise tests, es-
timated using the approximate error model (open trian-
gles) and the ANL model (filled triangles). In the data set
there are a large number of differentially expressed genes.
As the type I error is controlled by α the percentage of sta-
tistically significant differentially expressed genes shows
the power of the test in dependence of the chosen error
model. The approximate error model EQL fits the data
better than the parametric model ANL, and Figure 2

Table 4: Parameter estimates (true model: ANL)

EQL ANL true value

Replicates 4 10 20 4 10 20

err( i)
0.0013 0.0007 0.0003 0.0013 0.0007 0.0003 0

20646 20686 19102 24848 25206 24999 25000

0.1907 0.2073 0.2065 0.2176 0.2376 0.2427 0.25

4132.2 4539.3 4591.8 4293.4 4727.8 4876.3 5000

-log L 280546 708608 1419646 280362 707998 1418279

See Table 3 for abbreviations.

Table 5: Parameter estimates (true model: Gamma distribution)

EQL ANL true value

Replicates 4 10 20 4 10 20

err( i)
0.0001 0.0006 0.0001 0.0001 0.0006 0.0001 0

-647.63 973.56 988.59 7616.7 5663.5 4821.5 0

0.2142 0.2458 0.2538 0.2308 0.2479 0.2519 0.25

34.713 7.7921 5.3068 3991.5 3846.1 3818.3 0

-log L 289207 728069 1462227 289469 728668 1463451

See Table 3 for abbreviations.
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shows that this leads to a subsequent improved power to
select differentially expressed genes.

Conclusions
Error models play an important though often implicit part
in the analysis of gene expression data. There are a lot of
possibilities to model the error of intensity measure-
ments, and these are mirrored by the wide choice of para-

Figure 2
Number of differentially expressed genes in dependence of the nominal α value (type I error), computed using the approxi-
mate error model (open triangles) and the ANL model (filled triangles).
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metric models and corresponding data transformations.
As non-parametric approaches are not always applicable
due to lack of sufficient replicate data, in this paper the use
of approximate error models based on quasi-likelihood is
suggested as a further alternative.

Quasi-likelihood is a versatile and simple framework for
semi-parametric modeling that requires only a partial
specification of the underlying probability structure. This
is ideal for microarray data where there is agreement on
the variance versus mean relationship of the measured in-
tensities but no suitable mechanistic model available to
guide the search for the true underlying error distribution.
A further advantage of quasi-likelihood is also that it is
scale-neutral, i.e. it can be used to analyze data on any pre-
ferred scale. Thus, using an approximate error model
within the quasi-likelihood framework allows to analyze
data on the original observed scale, where the expected in-
tensity corresponds directly to transcript concentration,
without the need for a complicated transformation. Third,
quasi-likelihood can be viewed as a compromise between
traditional parametric and non-parametric approaches.

In this paper both for simulated and molecular data the
approximate error model fitted the data as good or better
than a competing parametric model derived from an
transformation-based approach. Moreover, in a model-
based test for differential expression the approximate er-
ror model had more power on the same level of type I er-
ror than the parametric model. It is expected that the
favorable properties of quasi-likelihood also hold for oth-
er data sets.

Employing an approximate error model in a statistical
analysis comprises a tradeoff between the a priori availa-
ble information on the true model and the efficacy of an
inference from the data. If the true underlying model is
fully known, using an approximate model such as quasi-
likelihood inevitably entails loss of efficiency and leads to
bias in parameter estimation. However, if a suitable error
model is not readily available and if multiple unknown
sources of error have to be taken into account, then the
quasi-likelihood approach is advantageous as it provides
an optimal estimating equation under very general condi-

tions, and may thus outperform other ad-hoc parametric
models.

While in this paper quasi-likelihood was used for mode-
ling and inference purposes, it is generally applicable also
in a regression setting [14]. This points towards further
possible applications of the quasi-likelihood framework
in gene expression analysis. For instance, normalization
procedures may benefit from using an approximate error
model (e.g. [30]). Systematic effects in the data such as
those due to different arrays, dyes, etc. can also be inferred
by regression and ANOVA techniques [27,31] and hence
are amenable to analysis by quasi-likelihood, too. In a re-
lated line, the affinity of probes on a chips may thus also
be estimated by using quasi-likelihood, rather than as-
suming a normal error as in [5]. Finally, high-level analy-
sis such as classification can incorporate quasi-likelihood
models.

In summary, approximate error models such as provided
by the quasi-likelihood framework enable the analysis of
gene expression data despite our ignorance of the true un-
derlying low-level processes generating the observed data.
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