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Abstract
Background: DNA microarrays are used to produce large sets of expression measurements from
which specific biological information is sought. Their analysis requires efficient and reliable
algorithms for dimensional reduction, classification and annotation.

Results: We study networks of co-expressed genes obtained from DNA microarray experiments.
The mathematical concept of curvature on graphs is used to group genes or samples into clusters
to which relevant gene or sample annotations are automatically assigned. Application to publicly
available yeast and human lymphoma data demonstrates the reliability of the method in spite of its
simplicity, especially with respect to the small number of parameters involved.

Conclusions: We provide a method for automatically determining relevant gene clusters among
the many genes monitored with microarrays. The automatic annotations and the graphical interface
improve the readability of the data. A C++ implementation, called Trixy, is available from http://
tagc.univ-mrs.fr/bioinformatics/trixy.html.

Background
Measurements of gene expression levels by microarray ex-
periments create a high-throughput of data, the interpre-
tation of which increasingly requires novel and efficient
dimensionality reduction strategies. Many clustering
methods have been proposed (see for example [1–5] and
the more comprehensive reviews [6,7]) and are widely
used. These algorithms group genes and/or samples into
clusters of similar expression profiles, in order to suggest
possible functional relationships between them. The im-
portance of graphical representations and of automatic
cluster annotations stands out from many recent publica-
tions [1,8–12] devoted to gene functions prediction, prog-
nosis or diagnosis of cancer subtypes for instance.

Similar problems arise in the analysis of large interaction
networks [13–18] where one tries to extract sub-networks
satisfying some significance criteria. The problem of find-

ing web pages dedicated to the same topic is an example
that will appeal to the experience of every reader (in this
case the network's nodes are the URLs, with HTML links).

We propose a new method which combines one of these
network analysis techniques with the classical correlation-
based clustering for studying DNA microarray data. It pro-
vides a novel graphical representation, a cluster forming
rationale and cluster annotations through correlation
with gene or sample keywords. The algorithm relies on
only two user-controlled parameters, therefore sensitivity
of the results to a particular choice of parameters can be
checked effectively.

The algorithm is based on the notion of curvature intro-
duced in [13] (this is the same as the clustering coefficient
of [19]), which we apply to the network of co-expressed
genes where nodes are genes (or samples) and links
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symbolize co-expression. We define clusters as connected
regions of the graph with high curvature, which is the lo-
cal density of triangular relations. The gene or sample
clusters are the densest regions of the corresponding cor-
relation graph, which we will show has biological rele-
vance as intuitively expected. We must emphasize that
curvature is typically extremely low in random graphs that
have small average degree compared to the number of
nodes (which is usually the case in biological networks
[14,20]). Clusters of high curvature are thus highly non-
random structures.

We have implemented these concepts in the freely availa-
ble program Trixy. It is a graphical interface for visualising
the graph, the clusters and the automatic annotations pro-
viding a straightforward tool for exploring microarray da-
ta. The C++ source code and sample Perl parsers are freely
available from http://tagc.univ-mrs.fr/bioinformatics/
trixy.html. We also provide the data files adapted from the
original yeast [1] and lymphoma [21] sets as examples.
We have compiled and used the program on both Linux
and Windows platforms. Compiling on other platforms
has not been attempted but is theoretically possible.

On the performance side, clustering and display with Trixy
requires CPU time and memory size comparable to hier-
archical clustering as performed in [1].

Algorithm
Curvature on Graphs
The discussion below focuses on the problem of cluster-
ing genes. The symmetric question of clustering samples
can be treated similarly.

A DNA microarray data set consists of expression levels of
N genes in M different experimental conditions (M differ-
ent RNA samples). This is organised in an N × M matrix
Xi,j, i = 1,...,N; j = 1,...,M each row of which contains the
expression profile of a given gene across all samples. We
are interested in patterns of co-expression, namely groups
of genes with parallel or anti-parallel profiles. We measure
co-expression of genes gk and g� by the (Pearson) correla-
tion cor(k, �) between their profiles:

where µi and σi denote the mean and the standard devia-
tion of row i. This creates a correlation matrix which is an
N × N symmetric matrix (because cor(k, �) = cor(�, k)).

We construct a correlation graph as follows. We first make
a node n for each gene. We then choose a threshold Tcor ∈

[0,1] and draw a link between genes gk and g� if cor(k, �)
≥ Tcor. This can be understood as follows: a graph with N
nodes is defined by its adjacency matrix A (the N × N ma-
trix such that Ai,j = 1 if i and j are joined, 0 otherwise [22]).
We obtain A from the correlation matrix by binarisation:
we replace cor(k, �) by 0 if it lies between -Tcor and Tcor
and by 1 otherwise.

We next introduce the concept of curvature (or clustering
coefficient) on a graph [13,19]. Each node n has a curva-
ture which is a function of the number v of neighbours
(nodes to which it is linked) and the number t of triangles
(pairs of adjacent neighbours, see Figure 1), given by the
formula

Remark that v(v - 1)/2 is the maximum number of trian-
gles that can be drawn on v neighbours hence curv(n) lies
between 0 and 1 if v > 1 and is undefined otherwise (see
Figure 1 for examples of graphs and curvature).

There is a natural notion of distance between nodes in a
graph [22]: it is the number of links in the shortest path
connecting them (distance is infinite if there is no such
path). Let dn(i, j) be the distance between the ith and jth
neighbours of n: either dn(i, j) = 1 (these two neighbours
are linked) or dn(i, j) = 2 (they are not, the shortest path
goes through n). A simple computation shows that
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Figure 1
Top: the node n has v = 5 neighbours and t = 5 triangles, thus 
curvature curv(n) = 1/2, see Eq. (2). Bottom left: a complete 
graph, each node has curvature 1. Center: a tree, each node 
has curvature 0 or undefined. Right: the central node is a hub 
with curvature ≈ 1/v
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where <dn> is the average distance between pairs of neigh-
bours of n. Hence one can picture high curvature as high
local density (low average distances).

Given a curvature threshold Tcurv ∈ [0; 1] we select a sub-
graph by deleting all nodes with a curvature below Tcurv as
well as their links. This splits the graph into several con-
nected components. Each such connected component will
be interpreted as a coherent cluster of co-expressed genes
(see Figure 2). Varying Tcurv adds or removes nodes and
links and thus modifies the clusters displayed (possibly
merging or splitting some of the clusters). The reader can
think of the graph as a sea bed, curvature being height.
The curvature threshold Tcurv is the sea level and the clus-
ters are the emerging islands. Changing the correlation
threshold Tcor changes the landscape while changing the
curvature threshold Tcurv only moves the sea level up and
down.

Consider the Internet analogy of a University web site: the
index page has many links to all department's web pages.
It is unlikely that, for instance, the biology department's
page provides a link to the literature department's page.
Therefore, the index page will surely have a small curva-
ture (few of its neighbours have links between them).
However, the home page of the biology department has
external links to biology departments in other universities
with which it has common interests. These other pages
will certainly also have external links to many of the same
pages, again because they share similar interests. There-
fore, a cluster of high curvature will emerge, comprising
all the biology departments web pages. This reasoning ap-
plies to virtually any communication network and we
demonstrate below that it can also be usefully applied to
correlation graphs of gene expression profiles.

The program Trixy implements the algorithm described
above in a user-friendly graphical interface. It is written in
C++ using the free Qt graphical library. It uses embedded
Perl for parsing data inputs, which has the advantage that
loading data saved under a new format only requires re-
writing a Perl script which can be picked at run time. We
have mostly used Trixy for clustering genes, but sample
clustering can also be performed simply by using a modi-
fied parser which rotates the matrix. Similarly, an appro-
priate Perl script could simply fetch gene annotations
from web servers such as http://www.geneontology.org/
rather than read them from a local file.

Normalisation and Parameters
A few simple data processing tools are provided in Trixy:
log transform, samples centering (by subtracting the mean
or the median) and samples reduction (division by the
standard deviation). After these operations have been per-
formed, the correlation matrix is computed and the
curvature of each node is deduced from it. At this point,
the user can view (using the "Eisengram" standard colour
representation of the matrix, such as Figure 4) or save the
resulting data set as a flat file. The graph is then built and
displayed (as in Figure 2). Although the correlation
threshold Tcor is set before loading the data, the curvature
threshold Tcurv can be varied as the graph is displayed.
Starting from an initially high value of Tcurv and lowering
it progressively unveils new nodes and new clusters. It in-
creases the size of existing clusters, sometimes merging
several of them (Figure 2). This gives a feeling for the ro-
bustness of the clustering and for the closeness of clusters.

Our advice for the choice of Tcor is to set it to a value which
retains only links significantly stronger than expected by
pure chance (this depends on the particular data set and
can be determined by bootstrapping, see e.g. [5]). The pa-
rameter Tcurv is different. We have observed that the best
value is often cluster-dependent. We have a more dynamic
view on this parameter: the way clusters change as Tcurv
moves is informative. A good way of picking the best
threshold is by maximising the annotation scores (see
below).

Automatic Annotation
Trixy allows the user to provide annotation files for sam-
ple and genes. They consist of a list of keywords associated
with each of the gene and/or sample names.

On the one hand, a cluster of genes can be associated with
an over-represented gene keyword by giving a score to
each annotation equal to its frequency in the cluster.

On the other hand, for sample annotations, a correlation
score is computed. Suppose a cluster consists of genes
g1,..., gK. For each sample keyword W, we create a discrim-
inating vector g0 which takes the value 1 on each sample
associated with W and -1 otherwise. The annotation score
is the average absolute correlation with keyword

.

Both scores yield numbers between 0 and 1, the closer to
1 the more significant the annotation. We discard annota-
tions that were not present for at least 10% of the samples
and 2 of the genes in each cluster.
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Figure 2
Screenshots of the main window of Trixy displaying a part of the yeast gene expression graph with Tcor = 0.85. Top: Tcurv = 
0.80, bottom: Tcurv = 0.70. Grey boxes display automatic annotations with sample keyword on the first line and gene keyword 
on the second
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Visualisation
The graph is displayed with a different colour code for
links representing positive or negative correlations (in Fig-
ure 2, negative correlations are shown in green, see also
Figure 7).

Each cluster can be selected and the corresponding data
subset viewed (as a colour-coded table such as Figure 4).
If annotations were provided, those with the highest
scores are listed and the cluster can be saved as a data file,
gene list or colour picture.

Results
Yeast Gene Expression Data
We have applied our algorithm to the data set of gene ex-
pression of the budding yeast Saccharomyces cerevisiae
available from the website http://rana.lbl.gov/EisenDa-
ta.htm and described in [1]. We have used Gene Ontology
gene annotations from the Saccharomyces Genome Data-
base (SGD) [23]. The sample keywords were extracted
from the original expression data file and in this case do
not yield interpretable annotations (see the lymphoma
section below for a more convincing example of the use-
fulness of sample annotations).

Even with threshold values as high as Tcor = 0.90 and Tcurv
= 0.70, we get clearly delineated clusters (see Figure 3).
Note that only 263 out of a total of 6221 genes have pos-
itive curvature at this value of the correlation threshold,
yielding 2075 links.

Most of the clusters obtained appear biologically coher-
ent. For example the chromatin assembly cluster contains all
the 9 histone genes for Tcor = 0.80 and Tcurv = 0.64 (Figure
3, cluster A: it only shows 7 of the genes at this level of cor-
relation). It is disconnected from the rest of the graph and
extremely robust with respect to changes in the
parameters. The ubiquitin dependent protein catabolism (Fig-
ure 4) cluster appears at a much lower curvature but is ex-
tremely coherent with 17 out of 17 proteolysis genes. For
the sake of comparison, a proteasome cluster of similar
size obtained using hierarchical clustering contains 3
genes unrelated to proteolysis.

Much larger clusters are also visible, such as the protein bi-
osynthesis cluster (Figure 3, cluster B and Figure 2). How-
ever, it is very sensitive to variations of the thresholds and
can include over 900 genes.

Figure 3
The full graph based on Saccharomyces cerevisiae 6221 gene expression profiles across 80 experiments with thresholds Tcurv = 
0.70 at Tcor = 0.90
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B-cell Lymphoma
We have also used the data set of the lymphoma study
available from the website http://llmpp.nih.gov/lympho-
ma/ and published in [21]. Sample and gene annotations
were extracted from the names included in the data file.
We were in particular interested in the classification of the
tumor subtypes called chronic lymphocytic leukaemia
(CLL) and diffuse large B-cell lymphoma (DLCL).

Using a threshold Tcor = 0.80 we obtain nicely discrimi-
nating clusters, for example Figure 5 which separates the
CLL tumors and Figure 6 which sorts the DLCL tumors.
The latter cluster eventually merges with a cluster of Inter-
feron-induced genes (data not shown) as the curvature

threshold decreases: they are like two hills on the same
island.

We also have a good example of a property that is often
observed with our graphical representation: negative cor-
relations are much rarer than positive ones and are carried
by just a few nodes, which are almost certainly represser
genes. Figure 7 shows a small part of the graph where 7
nodes are mostly anti-correlated with the rest of a cluster
of 307 genes. However, let us emphasize that the graphs
shown here do not represent gene interaction networks
per se, they are merely a means of clustering genes co-ex-
pressed within the selected samples.

Figure 4
The ubiquitin dependent protein catabolism cluster of yeast gene expression at Tcor = 0.80 and Tcurv = 0.18

Figure 5
A cluster of genes under-expressed in the CLL tumors obtained from the lymphoma data with Tcor = 0.80 and Tcurv = 0.40
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This data set provides a good test bed for sample cluster-
ing. In this case, the graph's nodes are the samples and
links denote a correlation between samples (columns of
the expression level matrix X). As shown in Figure 8, the
result is clear cut: all clusters are associated with a single
sample subtype, be it B-cells, T-cells, FL (follicular lympho-
ma) or CLL.

Statistical Validation
As stated earlier, mathematical theory shows that random
graphs have a very low number of triangles [14,20]. We
can check this statement numerically by using random
permutations of a real data set. We have randomly reor-
dered the yeast data, gene by gene (a random permutation
in each line), computed the curvature of each node, and
repeated this operation 1000 times. At Tcor = 0.6 we de-
duced a probability of positive curvature of 5 × 10-5, the
probability of having a degree larger than 1 was 2 × 10-4

(maximum degree observed: 6). At Tcor = 0.7 the probabil-
ity of positive curvature was 10-6. The comparison with
the curvature distribution of the real biological data is dis-
played in Figure 9.

Statistical validation of an annotation by a particular key-
word can be performed with similar methods. For exam-
ple in the case of the clusters shown in Figure 5,6, we have
performed 10,000 random permutations of the sample

keywords. We have obtained a maximum annotation
score of 0.315 for the CLL cluster and the mean score plus
two standard deviations was equal to 0.177, whilst the an-
notation score of the original cluster was 0.510. Similarly
for the DLCL cluster, the maximum score after 10, 000
permutations was 0.367, the mean score plus two stand-
ard deviations 0.172, whilst the original score was 0.729.

Permutations of gene keywords can be computed explic-
itely. For example 66 of the 6221 yeast genes have the GO
annotation ubiquitin dependent protein catabolism. The
probability of having 17 of them in the same cluster of
size 17 (see Figure 4) is of the order of 10-35.

Discussion and Conclusions
We have described an algorithm for visualising and ana-
lysing large microarray data sets. It combines traditional
correlation distances and new graph-theoretical ideas. We
have implemented this algorithm in a convenient graphi-
cal interface and evaluated its performance on well estab-
lished data sets.

Curvature thresholds split the graph into clusters which
appear to be biologically meaningful. An automatic anno-
tation procedure associates keywords with clusters, which
are consistent with previous publications [1,21].

Figure 6
A cluster of genes over-expressed in the DLCL tumors obtained from the lymphoma data with Tcor = 0.80 and Tcurv = 0.24
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Our approach uses a local analysis of the correlation
graph as opposed to global properties such as small-world
[19] or scale-free properties [24]. Hubs [25] are not seen
as relevant in our approach since they usually make little
contribution to the information carried by the graph (like
index pages in the worldwide web). The closest approach
to ours is that of [14,15] in the sense that triangles are net-
work motifs, but again, we only draw conclusions from
their local density not their frequency at the level of the
whole graph. This also emphasizes the difference between

our method and the more commonly used hierarchical
clustering [1]: because we focus on triangular relations
(rare motif in graphs) rather than simple links (very com-
mon motif), we obtain a drastic dimensional reduction
(see Figure 3) whereas hierarchical clustering retains all
the data and does not in itself delineate clusters. Further-
more the stronger constraint offered by triangular links as
opposed to single link methods ensure more coherent
clusters.

Figure 7
A small part of the lymphoma graph showing putative repressor genes (green links are negative correlations). Threshold values 
are Tcor = 0.70 and Tcurv = 0.45
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Further Developments
Future development should include finer statistical analy-
sis tools to validate the automatic annotations. In particu-
lar a bootstrap validation of a discriminant score [9]
would be more accurate that the correlation score ex-
plained in the methods, which detects consistency with
the annotation rather than actual discrimination. Also,
more sophisticated methods for determining optimal an-
notations exist in the literature and could be applied to
our clusters (see e.g. [11]).

A method for determining a natural correlation threshold
Tcor would be most welcome (such methods have been
discussed in [26,27]). It would leave only one free param-
eter, the curvature threshold Tcurv Again a bootstrap
calculation could provide an estimate of a significant de-
viation from average random correlation. It was also sug-
gested to use a hierarchical construction of the graph: first
use the strongest links (largest correlations) to build small

clusters, then link clusters with weaker links and continue
until all nodes belong to the same cluster. Varying Tcurv
would subsequently split this unique cluster into signifi-
cant parts. Memory and speed limitations may hamper
these developments.
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Figure 8
Clustering of the lymphoma samples with Tcor = 0.60 and Tcurv = 0.30. Each cluster is associated with a cell type indicated in the 
grey boxes
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Figure 9
Distribution of curvatures in the yeast (top) and randomised yeast (bottom) data with Tcor = 0.6. Top: the mean curvature is 
0.387 and 85% of nodes have positive curvature, bottom: cumulative distribution of curvatures after 1000 permutations in each 
of the 6221 genes. The proportion of nodes with non-zero curvature is 5 × 10-5
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