
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
An automated method for finding molecular complexes in large 
protein interaction networks
Gary D Bader1,2 and Christopher WV Hogue*1

Address: 1Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto ON Canada M5G 1X5, Dept. of Biochemistry, University of Toronto, 
Toronto ON Canada M5S 1A8 and 2Current address: Memorial Sloan-Kettering Cancer Center 1275 York Avenue, Box 460, New York, NY, 10021, 
USA

Email: Gary D Bader - gary.bader@utoronto.ca; Christopher WV Hogue* - hogue@mshri.on.ca

* Corresponding author    

Abstract
Background: Recent advances in proteomics technologies such as two-hybrid, phage display and
mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks.
Initial mapping efforts have already produced a wealth of data. As the size of the interaction set
increases, databases and computational methods will be required to store, visualize and analyze the
information in order to effectively aid in knowledge discovery.

Results: This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex
Detection" (MCODE), that detects densely connected regions in large protein-protein interaction
networks that may represent molecular complexes. The method is based on vertex weighting by
local neighborhood density and outward traversal from a locally dense seed protein to isolate the
dense regions according to given parameters. The algorithm has the advantage over other graph
clustering methods of having a directed mode that allows fine-tuning of clusters of interest without
considering the rest of the network and allows examination of cluster interconnectivity, which is
relevant for protein networks. Protein interaction and complex information from the yeast
Saccharomyces cerevisiae was used for evaluation.

Conclusion: Dense regions of protein interaction networks can be found, based solely on
connectivity data, many of which correspond to known protein complexes. The algorithm is not
affected by a known high rate of false positives in data from high-throughput interaction techniques.
The program is available from ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE.

Background
Recent papers published in Science and Nature among oth-
ers describe large-scale proteomics experiments that have
generated large data sets of protein-protein interactions
and molecular complexes [1–7]. Protein structure [8] and
gene expression data [9] is also accumulating at a rapid
rate. Bioinformatics systems for storage, management, vis-
ualization and analysis of this new wealth of data must
keep pace. We previously published a simple graph theory

method that identified a functional protein complex
around the yeast protein Las17 that is involved in actin cy-
toskeleton rearrangement [10]. Here we extend the meth-
od to better apply it to the accumulating information in
protein networks.

Currently, most proteomics data is available for the model
organism Saccharomyces cerevisiae, by virtue of the availa-
bility of a defined and relatively stable proteome, full
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genome clone libraries [11], established molecular biolo-
gy experimental techniques and an assortment of well de-
signed genomics databases [12–14]. Using the
Biomolecular Interaction Network Database (BIND – ht-
tp://www.bind.ca) [15] as an integration platform, we
have collected 15,143 yeast protein-protein interactions
among 4,825 proteins (about 75% of the yeast pro-
teome). Much larger data sets than this will eventually be
available for other well studied model organisms as well
as for the human proteome. These complex data sets
present a formidable challenge for computational biology
to develop automated data mining analyses for knowl-
edge discovery.

Here we present the first report that uses a clustering algo-
rithm to identify molecular complexes in a large protein
interaction network derived from heterogeneous experi-
mental sources. Based on our previous observation that
highly interconnected, or dense, regions of the network
may represent complexes [10], the "Molecular Complex
Detection" (MCODE) algorithm has been implemented
and evaluated on our yeast protein interaction compila-
tion using known molecular complex data from a recent
systematic mass spectrometry study of the proteome [7]
and from the MIPS database [13].

Predicting molecular complexes from protein interaction
data is important because it provides another level of
functional annotation above other guilt-by-association
methods. Since sub-units of a molecular complex general-
ly function towards the same biological goal, prediction
of an unknown protein as part of a complex also allows
increased confidence in the annotation of that protein.

MCODE also makes the visualization of large networks
manageable by extracting the dense regions around a pro-
tein of interest. This is important, as it is now obvious that
the current visualization tools present on many interac-
tion databases [15], originally based on the Sun Microsys-
tems embedded spring graph layout Java applet do not
scale well to large networks (http://java.sun.com/applets/
jdk/1.1/demo/GraphLayout/example1.html).

Algorithm
The MCODE algorithm operates in three stages, vertex
weighting, complex prediction and optionally post-
processing to filter or add proteins in the resulting com-
plexes by certain connectivity criteria.

A network of interacting molecules can be intuitively
modeled as a graph, where vertices are molecules and edg-
es are molecular interactions. If temporal pathway or cell
signalling information is known, it is possible to create a
directed graph with arcs representing direction of chemi-
cal action or direction of information flow, otherwise an

undirected graph is used. Using this graph representation
of a biological system allows graph theoretic methods to
be applied to aid in analysis and solve biological prob-
lems. This graph theory approach has been used by other
biomolecular interaction database projects such as DIP
[16], CSNDB [17], TRANSPATH [18], EcoCyc [19] and
WIT [20] and is discussed by Wagner and Fell [21].

Algorithms for finding clusters, or locally dense regions,
of a graph are an ongoing research topic in computer sci-
ence and are often based on network flow/minimum cut
theory [22,23] or more recently, spectral clustering [24].
To find locally dense regions of a graph, MCODE instead
uses a vertex-weighting scheme based on the clustering co-
efficient, Ci, which measures 'cliquishness' of the neigh-
borhood of a vertex [25]. Ci = 2n/ki(ki-1) where ki is the
vertex size of the neighborhood of vertex i and n is the
number of edges in the neighborhood (the immediate
neighborhood density of v not including v). A clique is de-
fined as a maximally connected graph. There is no stand-
ard graph theory definition of density, but definitions are
normally based on the connectivity level of a graph. Den-
sity of a graph, G = (V,E), with number of vertices, |V|, and
number of edges, |E|, is defined here as |E|; divided by the
theoretical maximum number of edges possible for the
graph, |E|max. For a graph with loops (an edge connecting
back to its originating vertex), |E|max = |V| (|V|+1)/2 and
for a graph with no loops, |E|max = |V| (|V|-1)/2. So, den-
sity of G, DG = |E|/|E|max and is thus a real number rang-
ing from 0.0 to 1.0.

The first stage of MCODE, vertex weighting, weights all
vertices based on their local network density using the
highest k-core of the vertex neighborhood. A k-core is a
graph of minimal degree k (graph G, for all v in G, deg(v)
>= k). The highest k-core of a graph is the central most
densely connected subgraph. We define here the term
core-clustering coefficient of a vertex, v, to be the density
of the highest k-core of the immediate neighborhood of v
(vertices connected directly to v) including v (note that Ci
does not include v). The core-clustering coefficient is used
here instead of the clustering coefficient because it ampli-
fies the weighting of heavily interconnected graph regions
while removing the many less connected vertices that are
usually part of a biomolecular interaction network,
known to be scale-free [6,21,26–29]. A scale-free network
has a vertex connectivity distribution that follows a power
law, with relatively few highly connected vertices (high
degree) and many vertices having a low degree. A given
highly connected vertex, v, in a dense region of a graph
may be connected to many vertices of degree one (singly
linked vertex). These low degree vertices do not intercon-
nect within the neighborhood of v and thus would reduce
the clustering coefficient, but not the core-clustering coef-
ficient. The final weight given to a vertex is the product of
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the vertex core-clustering coefficient and the highest k-
core level, kmax, of the immediate neighborhood of the
vertex. This weighting scheme further boosts the weight of
densely connected vertices. This specific weighting func-
tion is based on local network density. Many other func-
tions are possible and some may have better performance
for this algorithm but these are not evaluated here.

The second stage, molecular complex prediction, takes as
input the vertex weighted graph, seeds a complex with the
highest weighted vertex and recursively moves outward
from the seed vertex, including vertices in the complex
whose weight is above a given threshold, which is a given
percentage away from the weight of the seed vertex. This is
the vertex weight percentage (VWP) parameter. If a vertex
is included, its neighbours are recursively checked in the
same manner to see if they are part of the complex. A ver-
tex is not checked more than once, since complexes can-
not overlap in this stage of the algorithm (see below for a
possible overlap condition). This process stops once no
more vertices can be added to the complex based on the
given threshold and is repeated for the next highest un-
seen weighted vertex in the network. In this way, the dens-
est regions of the network are identified. The vertex weight
threshold parameter defines the density of the resulting
complex. A threshold that is closer to the weight of the
seed vertex identifies a smaller, denser network region
around the seed vertex.

The third stage is post-processing. Complexes are filtered
if they do not contain at least a 2-core (graph of minimum
degree 2). The algorithm may be run with the 'fluff' op-
tion, which increases the size of the complex according to
a given 'fluff' parameter between 0.0 and 1.0. For every
vertex in the complex, v, its neighbors are added to the
complex if they have not yet been seen and if the neigh-
borhood density (including v) is higher than the given
fluff parameter. Vertices that are added by the fluff param-
eter are not marked as seen, so there can be overlap among
predicted complexes with the fluff parameter set. If the al-
gorithm is run using the 'haircut' option, the resulting
complexes are 2-cored, thereby removing the vertices that
are singly connected to the core complex. If both options
are specified, fluff is run first, then haircut.

Resulting complexes from the algorithm are scored and
ranked. The complex score is defined as the product of the
complex subgraph, C = (V,E), density and the number of
vertices in the complex subgraph (DC × |V|). This ranks
larger more dense complexes higher in the results. Other
scoring schemes are possible, but are not evaluated here.

MCODE may also be run in a directed mode where a seed
vertex is specified as a parameter. In this mode, MCODE
only runs once to predict the single complex that the spec-

ified seed is a part of. Typically, when analyzing complex-
es in a given network, one would find all complexes
present (undirected mode) and then switch to the directed
mode for the complexes of interest. The directed mode al-
lows one to experiment with MCODE parameters to fine
tune the size of the resulting complex according to exist-
ing biological knowledge of the system. In directed mode,
MCODE will first pre-process the input network to ignore
all vertices with higher vertex weight than the seed vertex.
If this were not done, MCODE would preferentially
branch out to denser regions of the graph, if they exist,
which could belong to separate, but denser complexes.
Thus, a seed vertex for directed mode should always be the
highest density vertex among the suspected complex.
There is an option to turn this pre-processing step off,
which will allow seeded complexes to branch out into
denser regions of the graph, if desired.

The time complexity of the entire algorithm is polynomial
O(nmh3) where n is the number of vertices, m is the
number of edges and h is the vertex size of the average ver-
tex neighbourhood in the input graph, G. This comes
from the vertex-weighting step. Finding a k-core in a graph
proceeds by progressively removing vertices of degree < k
until all remaining vertices are connected to each other by
degree k or more, and is thus O(n2). The highest k-core is
found by trying to find k-cores from one up until all verti-
ces have been found and cannot go beyond a number of
steps equal to the highest degree in the graph. Thus, the
highest k-core step is O(n3). Since this k-core step operates
only on the neighbourhood of a vertex, the n in this case
is the number of vertices in the average neighbourhood of
a vertex, h. The inner loop of the algorithm only operates
twice for every edge in the input graph, thus is O(2mh3).
The outer loop operates once on all vertices in the input
graph, thus the entire time complexity of the weighting
stage is O(n2mh3) = O(nmh3). The complex prediction
stage is O(n) and the optional post-processing step can be
up to O(cs2), where c is the number of complexes that
were found in the previous step and s is the number of ver-
tices in the largest complex - O(cs2) to find the 2-core once
for each complex.

Even though the fastest min-cut graph clustering algo-
rithms are faster, at O(n2logn) [30], MCODE has a
number of advantages. Since weighting is done once and
comprises most of the time complexity, many algorithm
parameters can be tried, in O(n), once weighting is com-
plete. This is useful when evaluating many different pa-
rameters. MCODE is relatively easy to implement and
since it is local density based, has the advantage of a di-
rected mode and a complex connectivity mode. These two
modes are generally not useful in typical clustering appli-
cations, but are useful for examining molecular interac-
tion networks. Additionally, only those proteins above a
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given local density threshold are assigned to complexes.
This is in contrast to many clustering applications that
force all data points to be part of clusters, whether they
truly should be part of a cluster or not.

Pseudocode
Stage 1: Vertex Weighting
procedure MCODE-VERTEX-WEIGHTING

input: graph: G = (V,E)

for all v in G do

N = find neighbors of v to depth 1

K = Get highest k-core graph from N

k = Get highest k-core number from N

d = Get density of K

Set weight of v = k × d

end for

end procedure

Stage 2: Molecular Complex Prediction
procedure MCODE-FIND-COMPLEX

input: graph: G = (V,E); vertex weights: W;

vertex weight percentage: d; seed vertex: s

if s already seen then return

for all v neighbors of s do

if weight of v > (weight of s)(1 - d) then add v to com-
plex C

call: MCODE-FIND-COMPLEX (G, W, d, v)

end for

end procedure

procedure MCODE-FIND-COMPLEXES

input: graph: G = (V,E); vertex weights: W;

vertex weight percentage: d

for all v in G do

if not already seen v then call: MCODE-FIND-COM-
PLEX(G, W, d, v)

end for

end procedure

Stage 3: Post-Processing (optional)
procedure MCODE-FLUFF-COMPLEX

input: graph: G = (V,E); vertex weights: W;

fluff density threshold: d; complex graph: C = (U,F)

for all u in C do

if weight of u >d then add u to complex C

end for

end procedure

procedure MCODE-POST-PROCESS

input: graph: G = (V,E); vertex weights: W; haircut flag:
h; fluff flag: f;

fluff density threshold: t; set of predicted complex
graphs: C

for all c in C do

if c not 2-core then filter

if h is TRUE then 2-core complex

if f is TRUE then call: MCODE-FLUFF-COMPLEX(G,
W, t, c)

end for

end procedure

Overall Process
procedure MCODE

input: graph: G = (V,E); vertex weight percentage: d;

haircut flag: h; fluff flag: f; fluff density threshold: t;

set of predicted complex graphs: C

call: W = MCODE-VERTEX-WEIGHTING (G)

call: C = MCODE-FIND-COMPLEXES (G, W, d)
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call: MCODE-POST-PROCESS (G, W, h, f, t, C)

end procedure

Implementation
MCODE has been implemented in ANSI C using the
cross-platform NCBI Toolkit; http://www.nc-
bi.nlm.nih.gov/IEB and the BIND graph library in the
SLRI Toolkit; http://sourceforge.net/projects/slritools.
Both of these source code libraries are freely available. The
actual MCODE source code is not yet freely available. The
MCODE program has been compiled and tested on UNIX,
Mac OS X and Windows. Because a yeast gene name dic-
tionary is used to recognize input and generate output, the
MCODE executable currently only works for yeast pro-
teins in a user friendly manner. The algorithm, however is
completely general, via the graph theory abstraction, to
any graph and thus to any biomolecular interaction net-
work. MCODE binaries are available from ftp://
ftp.mshri.on.ca/pub/BIND/Tools/MCODE.

Results
Evaluation of MCODE
The evaluation of MCODE requires a set of experimentally
determined biomolecular interactions and a set of associ-
ated experimentally determined molecular complexes.
Currently, the largest source for such data is for proteins
from the budding yeast, Saccharomyces cerevisiae. Recently,
a large-scale mass spectrometry study by Gavin et al [7]
provided a large data set of protein interactions with man-
ually annotated molecular complexes. Also available are
the protein interaction and complex tables of MIPS [13]
and YPD [14]. MCODE was used to automatically predict
protein complexes in our collected protein-protein inter-
action data sets. Resulting complexes were then matched
to known molecular complexes from Gavin et al. (the
Gavin benchmark) and the MIPS benchmark using an
overlap score. Parameter optimization was then used to
maximize the biological relevance of predicted complexes
according to the given benchmarks. YPD was not used as
a current version could not be acquired.

To ensure that MCODE is not unduly affected by the ex-
pected high false-positive rate in large-scale interaction
data sets, large-scale and literature derived MCODE pre-
dictions were compared. MCODE was then used to pre-
dict complexes in the entire set of machine readable
protein-protein interactions that we could collect for
yeast. Complexes of interest were then further examined
using the directed mode and complex connectivity mode
of MCODE.

Evaluation of MCODE using the Gavin data set of protein 
interactions and complexes
In this study, we wanted to use all forms of protein inter-
action data available, which requires mixing of different
types of experiments, such as yeast two-hybrid and co-im-
munoprecipitation. Two-hybrid results are inherently
pairwise, whereas copurification results are sets of one or
more identified proteins. For a copurification result, only
a set of size 2 can be directly considered a pairwise inter-
action, otherwise it must be modeled as a set of hypothet-
ical interactions. Biochemical copurifications can be
thought of as populations of complexes with some under-
lying pairwise protein interaction topology that is un-
known from the experiment. In the general case of the
purification used by Gavin et al., one affinity tagged pro-
tein was used as bait to pull associated proteins out of a
yeast cell lysate. The two extreme cases for the topology
underlying the population of complexes from a single pu-
rification experiment are a minimally connected 'spoke'
model, where the data are modeled as direct bait-associat-
ed protein pairwise interactions, and a maximally con-
nected 'matrix' model, where the data are modeled as all
proteins connected to all others in the set. The real topol-
ogy of the set of proteins must lie somewhere between
these two extremes.

Population of complexes: C = {b, c, d, e} (b = bait)

Spoke model hypothetical interactions: iS = {b-c, b-d, b-e}

Matrix model hypothetical interactions; iM = {b-b, b-c, b-d,
b-e, c-c, c-d, c-e, d-d, d-e, e-e}

Advantages of the spoke model are that it is biologically
intuitive, biologists often represent their copurification re-
sults in this manner, and is about 3 times more accurate
than the matrix model [31]. Disadvantages are that it
could misrepresent interactions. The matrix model, alter-
natively, cannot misrepresent interactions, as all possible
interactions are generated, but this is at the cost of gener-
ating a large number of false interactions. Matrix topolo-
gies are also physically implausible for larger complexes
because of increased possibility of steric clash if all subu-
nits are interacting with all others. Ultimately, the spoke
model should be reasonable for use in evaluating
MCODE.

Gavin et al. raw data from 588 biochemical purifications
were represented using the spoke model, described above,
to get 3,225 hypothetical protein-protein interactions
among 1,363 proteins for input to MCODE. A list of 232
manually annotated protein complexes based on the orig-
inal purification data reported by Gavin et al. was filtered
to remove five reported 'complexes' each composed of a
single protein and six complexes of two or three proteins
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that were already in the data set as part of a larger com-
plex. This yielded a filtered set of 221 complexes that were
used to evaluate MCODE, although some of these com-
plexes have significant overlap to other complexes in the
set.

To evaluate which parameter choice would allow auto-
matic prediction of protein complexes from the spoke
modeled Gavin et al. interaction set that best matched the
manually annotated complexes, MCODE was run using
all four possible combinations of the two Boolean param-
eters (haircut: true/false, fluff: true/false) over a full range
of 20 vertex weight percentage (VWP) and fluff parameters
(0 to 0.95 in 0.05 increments). During this parameter op-
timization process, MCODE was limited to find complex-
es of size two or higher.

A scoring scheme was developed to determine how effec-
tively an MCODE predicted complex matched a complex
from the benchmark set of complexes. In this case, the
benchmark complex set was the Gavin et al. hand-anno-
tated complex set. The overlap score was defined as ω = i2/
a*b, where i is the size of the intersection set of a predicted
complex with a known complex, a is the size of the pre-
dicted complex and b is the size of the known complex. A
protein is part of the intersection set only if it is present in
both predicted and known complexes. Thus, a predicted
complex that has no proteins in a known complex has ω
= 0 and a predicted complex that perfectly matches a
known complex has ω = 1. Also, predicted complexes that
fully overlap, but are much larger or much smaller than
any known complexes will get a low ω. The overlap score
of a predicted complex vs. a benchmark complex is then a
measure of biological significance of the prediction, as-
suming that the benchmark set of complexes is biological-
ly relevant. The best parameter choice for MCODE on this
protein interaction data set is one that predicts the largest
set of complexes that match the largest number of bench-
mark complexes above a threshold ω. Since there is over-
lap in the Gavin benchmark complex database, a
predicted complex may match more than one known
complex with a high ω.

To choose an overlap score that maximizes biological rel-
evance of the predicted complexes without filtering away
too many predictions, each of the 840 parameter combi-
nations tested during the parameter optimization stage.
The number of MCODE predicted complexes was plotted
against the number of matched known complexes over a
range of ω thresholds from 'no threshold' to 0.1 to 0.9 (in
0.1 increments). If no ω threshold is used, a predicted
complex only needs at least one protein in common with
a known complex to be considered a match. If predicted
and known complexes are only counted as a match when
their ω is above a specific threshold, the number of

matched complexes declines with increasing ω threshold,
as shown in Figure 1. Interestingly, the average and maxi-
mum number of matched known complexes drops more
quickly from zero until a ω threshold of 0.2 than from 0.2
to 0.9 indicating that many predicted complexes only
have one or a few proteins that overlap with known com-
plexes. A ω threshold of 0.2 to 0.3 thus seems to filter out
most predicted complexes that have insignificant overlap
with known complexes.

Figure 2 shows the range of number of complexes predict-
ed and number of known complexes matched for the 0.2
ω threshold over all tried MCODE parameters. A y = x line
is also plotted to show that data points tend to be skewed
towards a higher number of matched known complexes
than predicted complexes because of the redundancy in
the Gavin complex benchmark. Data points closest to the
upper right portion of the graph maximize both number
of matched known complexes and number of predicted
complexes. MCODE parameter combinations that result
in these data points therefore optimize MCODE on this
data set (according to the overlap score threshold). This
result shows that the number of predicted complexes
should be similar to the number of matched known com-
plexes for a parameter choice to be reasonable, although
the number of matched known complexes may be larger,
again, because of some commonality among complexes
in the benchmark set. The parameter combination corre-
sponding to the best data point (63,88) at an overlap
score threshold of 0.2 is haircut = FALSE, fluff = TRUE,
VWP = 0.05 and a fluff density threshold between 0 and
0.1. These parameter optimization results for MCODE
over this data set were stable over a range of ω thresholds
up to 0.5. Above 0.5, the result was not stable as there
were generally too few predicted complexes with high
overlap scores (Figure 1).

A specificity versus sensitivity analysis [32] was also per-
formed. Defining the number of true positives (TP) as the
number of MCODE predicted complexes with ω over a
threshold value and the number of false positives (FP) as
the total number of predicted MCODE complexes minus
TP. The number of false negatives (FN) equals the number
of known benchmark complexes not matched by predict-
ed complexes. Sensitivity was defined as [TP/(TP+FN)]
and specificity was defined as [TP/(TP+FP)]. The MCODE
parameter choice that optimizes both specificity and sen-
sitivity is the same as from the above analysis. The optimal
sensitivity of this analysis was ~0.31 and the correspond-
ing specificity was ~0.79.

The 63 MCODE predicted complexes only matched 88 of
the 221 complexes in the known data set indicating that
MCODE could not recapitulate the majority of the Gavin
complex benchmark solely using protein connectivity
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information. As mentioned above, there are more
matched complexes than predicted because of some re-
dundancy in the benchmark. This low sensitivity is not
surprising, since many of the hand-annotated complexes
were created directly from single co-immunoprecipitation
results, which are not highly interconnected in the spoke

model. For example, Cdc3 was used as a bait to co-immu-
noprecipitate Cdc10, Cdc11, Cdc12 and Ydl225w. A com-
plex was annotated as containing these five proteins, but
only Cdc3 was used as bait. If more elements of a complex
are used as baits, the proteins become more interconnect-
ed and more readily predicted by MCODE. A good exam-

Figure 1
Effect of Overlap Score Threshold on Number of Predicted and Matched Known Complexes for the Gavin 
Evaluation Figure legend: Average and maximum number of predicted and matched known complexes seen during MCODE 
parameter optimization (840 parameter combinations) plotted as a function of overlap score threshold. As the stringency for 
the closeness that a predicted complex must match a known complex is increased (increase in overlap score), fewer predicted 
complexes match known complexes. Note that these curves do not correspond to the best parameter set, but rather are an 
average of results from all tried parameter combinations.
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ple of this is the Arp2/3 complex, which is highly
conserved in eukaryotes and is involved in actin cytoskel-
eton rearrangement. The structure of this complex is
known by X-ray crystallography [33] thus actual protein-
protein interactions from the structure can be matched up
to the co-immunoprecipitation results. MCODE predicted
all seven components of the Arp2/3 complex crystal struc-
ture and five extra proteins using the optimized parame-
ters. Six out of the seven Arp2/3 subunits were used as

baits by Gavin et al. and the resulting benchmark complex
included the five extra proteins that MCODE also predict-
ed (Nog2, Pfk1, Prt1, Cct8 and Cct5) that are not in the
crystal structure. Cct5 and Cct8 are known to be involved
in actin assembly, but Nog2, Pfk1 and Prt1 are not. These
extra proteins likely represent non-specific binding in the
experimental approach. These two cases are shown dia-
grammatically in Figure 3. Interestingly, using the haircut
parameter would remove all five extra proteins that are

Figure 2
Number of Predicted and Matched Known Complexes at Overlap Score Threshold of 0.2 Figure legend: Number 
of known complexes matched to MCODE predicted complexes plotted against number of MCODE predicted complexes, both 
with an overlap score above 0.2.
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not in the crystal structure, leaving only the seven that are
present. This shows that while the parameter optimiza-
tion allows maximum matching of the hand-annotated
known complexes, these complexes may not all be physi-
ologically relevant and thus another parameter set may
better predict 'real' complexes.

To explore the effect of certain MCODE parameters on re-
sulting predicted complexes, various features of these
complexes were examined while changing specific param-
eters and keeping all else constant. Linearly increasing the
VWP parameter increased the size of the predicted com-
plexes exponentially while reducing the number of com-
plexes predicted in a linear fashion. Figure 4 shows this
effect with both fluff and haircut parameters turned off. At
high VWP values, very large complexes were predicted and
these encompassed most of the data set, thus were not
very useful.

Because using haircut = TRUE would have led MCODE to
predict the Arp2/3 complex perfectly (according to the
crystal structure as discussed above), we examined if the
haircut parameter has any general effect on the number of
matched predicted complexes. Setting haircut = TRUE had
no significant effect on the number of complexes predict-

ed at high ω thresholds, but generally reduced the number
of matched known complexes at low ω thresholds (0 to
0.1) compared to haircut = FALSE. Since the haircut =
TRUE option removes less-connected proteins on the
fringe of a predicted complex and this reduces the number
of predicted complexes with low overlap scores, these
fringe proteins likely contribute to low-level overlap (<0.2
ω) of the known complexes.

We also investigated the effect of changing the fluff densi-
ty threshold when setting fluff = TRUE on the number of
matched benchmark complexes. Linearly increasing the
fluff density threshold in the MCODE post-processing
step linearly decreased the number of matched complexes
above an overlap score of 0.2.

Evaluation of MCODE using MIPS data set of protein in-
teractions and complexes
Since the Gavin et al. data set was developed by only one
group using a single experimental method, it may not ac-
curately represent protein complex knowledge for yeast.
The MIPS protein complex catalogue http://mips.gsf.de/
proj/yeast/catalogues/complexes/ is a curated set of 260
protein complexes for yeast that was compiled from the
literature and is thus a more realistic data set comprised of

Figure 3
Examples of Gavin Benchmark Complexes Missed and Hit by MCODE Figure legend: Protein complexes are repre-
sented as graphs using the spoke model. Vertices represent proteins and edges represent experimentally determined interac-
tions. Blue vertices are baits in the Gavin et al. study. A) A Cdc3 complex hand-annotated by Gavin et al. that was missed by 
MCODE because of a lack of connectivity information among sub-components. This complex annotation was the result of a 
single co-immunoprecipitation experiment. B) The Arp2/3 complex as annotated by Gavin et al. and as found by MCODE with 
parameters optimized to the data set. Note the five extra proteins that have minimal connectivity to main cluster. C) The pro-
tein connection map seen from the crystal structure of the Arp2/3 complex. The crystal structure is from Bos taurus (cow), but 
is assumed to be very similar to yeast based on very high similarity between cow and yeast Arp2/3 subunits.
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varied experiments from many labs using different tech-
niques. After filtering away 50 'complexes' each composed
of a single protein and 2 highly similar complexes, we
were left with 208 complexes for the MIPS known set. This
set did not include information from the recent large-scale
mass spectrometry studies [6,7]. While the MIPS complex
catalogue may be incomplete, it is currently the best avail-

able public resource for yeast protein complexes that we
are aware of.

MCODE was run again with a full combination of param-
eters, this time over a set of 9088 protein-protein interac-
tions among 4379 proteins which did not include the
recent large-scale mass spectrometry studies but included

Figure 4
Effect of Vertex Weight Percentage Parameter on Predicted Complex Size Figure legend: As the vertex weight 
percentage (VWP) parameter of MCODE is increased, the number of predicted complexes steadily decreases and the average 
and largest size of predicted complexes increases exponentially. The y-axis follows a logarithmic scale. For reference, the aver-
age and maximum size of the MIPS benchmark complexes are 6 and 81, respectively and of the Gavin benchmark complexes 
are 11.8 and 88, respectively.
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all interactions from the MIPS, YPD and PreBIND
databases as well as from the majority of large-scale yeast
two-hybrid experiments to date [2–4,10,34]. This interac-
tion set is termed 'Pre HTMS'. All of the interactions in this
set were published before the last update specified on the
MIPS protein complex catalogue and many are included
in the MIPS protein interaction table, thus we assumed
that the MIPS complex catalogue took into account the in-
formation in the known interaction table. Protein com-
plexes found by MCODE in this set were compared to the
MIPS protein complex catalogue to evaluate how well
MCODE performed at locating protein complexes ab
initio.

The same evaluation of MCODE that was done using the
Gavin et al. data set was performed with the MIPS data set.
From this analysis, including specificity versus sensitivity
plots (optimized sensitivity = ~0.27 and specificity =
~0.31), the MIPS complex benchmark optimized parame-
ters were haircut = TRUE, fluff = TRUE, VWP = 0.1 and a
fluff density threshold of 0.2. This result was stable up to
a ω threshold of 0.6 after which it was difficult to evaluate
the results, as there were generally too few predicted com-
plexes above the high ω thresholds. This parameter com-
bination led MCODE to predict 166 complexes of which
52 matched 64 MIPS complexes with a ω of at least 0.2.
Examining the ω distribution for this parameter set reveals
that, even though this prediction is optimized, most of the
predicted complexes don't show overlap to those in the
known MIPS set (Figure 5). The complexes predicted here
are also different from those predicted from the Gavin in-
teraction data. Nine complexes have an overlap score
above 0.2 between these two sets, with the highest overlap
score being 0.43 and all the rest being below 0.27. This
might signify that either the MIPS complex catalogue is
not complete, that there is not enough data in the dataset
that MCODE was run on, or a human annotated defini-
tion of a complex does not perfectly match with a graph
density based definition.

The effect of the VWP parameter on complex size and of
the haircut and fluff parameters on number of matched
complexes was very similar to that seen when evaluating
MCODE on the Gavin complex benchmark.

Effect of data set properties on MCODE
Since many large-scale protein interaction data sets from
yeast are known to contain a high level of false positives
[35], we examined the effect these might have on MCODE
predictions. Sensitivity vs. specificity was plotted for
MCODE predictions, with parameters chosen to maxi-
mize these values at ω threshold of 0.2 against the MIPS
and Gavin complex benchmarks for the various data sets
(Figure 6).

MCODE predictions on the high-throughput data sets,
termed 'Gavin Spoke', 'Y2H' and 'HTP only' (see Meth-
ods), are about as specific as the literature derived interac-
tion data set, but not as sensitive (Figure 6A). MCODE
predictions on interaction data sets containing the litera-
ture derived benchmark, labelled 'Benchmark', 'Pre
HTMS' and 'AllYeast', are generally more sensitive and
specific than those containing just the large-scale interac-
tion sets. Since the specificity drops from Benchmark to
Pre HTMS to AllYeast, with increasing amounts of large-
scale data, it could be argued that addition of this data
negatively affects MCODE. However, large-scale data is
known to contain a high number of false positives, so it
should be expected that these false-positives would not
randomly contribute to the formation of dense regions,
which are highly unlikely to occur by chance (see below).
More complexes should be predicted with the addition of
the large-scale data, assuming this data explores previous-
ly unseen regions of the interactome, but the high number
of false-positives should limit the amount of new com-
plexes compared to the amount of added interactions. The
MIPS complex benchmark used here is not expected to
contain complexes newly found in large-scale studies, ex-
plaining the decrease in specificity. This is exactly what oc-
curs in our analysis. In an effort to further test the effect of
large-scale data on MCODE prediction performance, the
Benchmark interaction data set was augmented with the
addition of interactions from large-scale experiments that
only connect proteins in the Benchmark set with each oth-
er. Over 3100 interactions were added to the Benchmark
data set to create a set of over 6400 interactions. MIPS
complex benchmark optimised MCODE predicted 52
complexes matching 66 MIPS benchmark complexes, al-
most exactly the same number of complexes found using
the Benchmark set by itself (Table 1). These analyses
strongly suggest the addition of large-scale experimentally
derived interactions does not unduly affect the prediction
of complexes by MCODE.

It can be seen from Figure 6B that the Gavin complex
benchmark set is biased towards the Gavin et al. spoke
modeled interaction data. This is expected and is the main
reason why the less biased MIPS complex set is used
throughout this work as a benchmark instead of the Gavin
set.

Since the result of a co-immunoprecipitation experiment
is a set of proteins, which we model as binary interactions
using the spoke method, we wished to evaluate whether
this affects complex prediction compared to an experi-
mental system that generates purely binary interaction re-
sults, such as yeast two-hybrid. As can be seen in Table 1,
MCODE does find known complexes in the 'Y2H' set of
only yeast two-hybrid results, thus this set does contain
dense regions that are known protein complexes. This
Page 11 of 27
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Figure 5
Overlap Score Distributions of Pre HTMS and AllYeast interaction sets with MIPS Complex Benchmark Opti-
mized MCODE Parameter Sets Figure legend: The number of MCODE predicted complexes in the pre-large scale mass 
spectrometry (Pre HTMS) and AllYeast protein-protein interaction sets with a given overlap score threshold compared to the 
MIPS benchmark complex set is shown. The majority of predicted complexes have an overlap score of zero meaning that they 
had no overlap with the catalogue of known MIPS protein complexes.
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Figure 6
Sensitivity vs. Specificity Plots of MCODE Results Among Various Data Sets Figure legend: Specificity is plotted ver-
sus sensitivity of the best MCODE results at an overlap score above 0.2 against both the MIPS (Panel A) and Gavin (Panel B) 
complex benchmarks. Panel A shows that there are no large inherent differences among interaction data sets resulting from 
significantly different experimental methods (data set: sensitivity, specificity; Y2H:0.10,0.27; Benchmark:0.29,0.36; HTP 
Only:0.14;0.24; Pre HTMS:0.27,0.31; AllYeast:0.27,0.26; Gavin Spoke:0.10,0.38). Panel B shows that the Gavin benchmark is 
expectedly biased towards the Gavin interaction data set and thus should not be used as a general benchmark (data set: sensi-
tivity, specificity; Y2H:0.03,0.10; Benchmark:0.11,0.16; HTP Only:0.24;0.33; Pre HTMS:0.10,0.13; AllYeast:0.27,0.26; Gavin 
Spoke:0.31,0.79).
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being said, the Y2H set is the least dense of all data sets ex-
amined here so is expected to have less dense regions of
the network and thus less MCODE predictable complexes
per protein present in the set. MCODE predicts a similar
amount of complexes as well as finding a similar amount
of known complexes in the Y2H and Gavin Spoke data
sets indicating that these data sets are not significantly dif-
ferent from each other in the amount of dense network re-
gions that they contain, even though they are different
sizes. Taken together, the latter results and those in Figure
6B show that the spoke model is a reasonable representa-
tion of the Gavin et al. tandem affinity purification data.

Predicting complexes in the Yeast interactome
Given that MCODE performed reasonably well on test da-
ta, we decided to predict complexes in a much larger
network. All machine-readable protein-protein interac-
tion data from various data sets [2–7,10,13,14]. were col-
lected and integrated to form a non-redundant set of
15,143 experimentally determined yeast protein interac-
tions encompassing 4,825 proteins, or approximately
three quarters of the proteome. This set was termed 'AllY-
east'. MCODE was parameter optimized, as above, using
the MIPS benchmark. The best resulting parameter set was
haircut = TRUE, fluff = TRUE, VWP = 0 and a fluff density
threshold of 0.1. With these parameters, MCODE
predicted 209 complexes, of which 54 matched 63 MIPS
benchmark complexes above an overlap score of 0.2 (see
Additional file 1). Complexes found in this manner

should be further studied using MCODE in directed mode
by specifying a seed vertex and trying different parameters
to examine how large a complex can get before seemingly
biologically irrelevant proteins are added (see below).

Figure 5 shows that even when a large set of interactions
is used as input to MCODE, most of the MCODE predict-
ed complexes do not match well with known complexes
in MIPS. The complex size distribution of MCODE pre-
dicted complexes matches the shape of the MIPS set, but
the MCODE complexes are on average larger (Average
MIPS size = 6.0, Average MCODE Predicted size = 9.7).
The average number of YPD and GO functional annota-
tion terms per protein in an MCODE predicted complex is
similar to that of MIPS complexes (Table 2). This seems to
indicate that MCODE is predicting complexes that are
functionally relevant. Also, closer examination of the top,
middle and bottom five scoring MCODE complexes
shows that MCODE can predict biologically relevant com-
plexes (Table 3).

Many of the 209 predicted complexes are of size 2 (9 pre-
dicted complexes) or 3 (54 predicted complexes). Com-
plexes of this size may not be significant since it is easy to
create high density subgraphs of size 2 or 3, but becomes
combinatorially more difficult to randomly create high
density subgraphs as the size of the subgraph increases. To
examine the relevance of these small predicted complexes
of size 2 or 3, we calculated the sensitivity and specificity

Table 1: Summary of MCODE Results with Best Parameters on Various Data Sets. 

Data Set Number of 
Proteins

Number of 
Interact-ions

Number of Predicted 
Complexes

MCODE Com-
plexes Pre-

dicted Above ω 
= 0.2

Matched 
Benchmark 
Complexes

Complex 
Benchmark

Best MCODE 
Parameters

Gavin Spoke 1363 3225 82 63 88 Gavin hFfT\0.05\0.05
Gavin Spoke 1363 3225 53 20 20 MIPS hTfT\0.1\0.35
Pre HTMS 4379 9088 158 21 28 Gavin hTfT\0\0.2\
Pre HTMS 4379 9088 166 52 64 MIPS hTfT\0.1\0.2
AllYeast 4825 15143 209 52 76 Gavin hFfT\0\0.1
AllYeast 4825 15143 209 54 63 MIPS hTfT\0\0.1
AllYeast 4825 15143 203 80 150 MIPS+Gavin hTfT\0\0.15\

Benchmark 1762 3310 141 23 30 Gavin hTfT\0\0.3
Benchmark 1762 3310 163 58 67 MIPS hTfT\0.1\0.05
HTP Only 4557 12249 138 46 77 Gavin hTfT\0.05\0.1
HTP Only 4557 12249 122 29 35 MIPS hTfT\0.05\0.15

Y2H 3847 6133 73 7 7 Gavin hTfT\0.2\0.1
Y2H 3847 6133 78 21 26 MIPS hTfT\0\0.1

Statistics and a summary of results are shown for the various data sets used to evaluate MCODE. 'Gavin Spoke' is the Gavin et al. data set repre-
sented as binary interactions using the spoke model; 'Pre HTMS' is the set of all yeast interaction not including the recent high-throughput mass 
spectrometry studies [6,7].; 'AllYeast' is the set of all yeast interactions that we could collect; 'Benchmark' is a set of interactions found in the liter-
ature from YPD, MIPS and PreBIND; 'HTP Only' is the combination of all large-scale and high-throughput yeast two-hybrid and mass spectrometry 
data sets; 'Y2H' is the set of all yeast two-hybrid results from large-scale and literature sources. See Methods for full explanation of data sets. The 
'Best MCODE Parameters' are formatted as haircut True of False, fluff True or False\VWP\Fluff Density Threshold Parameter.
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of the optimized MCODE predictions against the MIPS
complex benchmark while disregarding the small com-
plexes. First, complexes of size 2, then of size 3, were re-
moved from the optimized MCODE predicted complex
set. Removing each of these sets independently resulted in
only small sensitivity and specificity changes. Because
both sets overlap the MIPS benchmark, small complexes
have been reported as predictions. Also, because MCODE
found these small complexes in regions of high local den-
sity, they may be good cores for further examination with
MCODE in directed mode, especially since the haircut op-
tion was turned on here to produce them.

Complexes that are larger and denser are ranked higher by
MCODE and these generally correspond to known com-
plexes (see below). Interestingly, some MCODE
complexes contain unknown proteins that are highly con-
nected to known complex subunits. For example, the sec-
ond highest ranked MCODE complex is involved in RNA
processing/modification and contains the known polya-
denylation factor I complex (Cft1, Cft2, Fip1, Pap1, Pfs2,
Pta1, Ysh1, Yth1 and Ykl059c). Seven other proteins in-
volved in mainly RNA processing/modification (Fir1,
Hca4, Pcf11, Pti1, Ref2, Rna14, Ssu72) and protein degra-
dation (Uba2 and Ufd1) are highly connected within this
predicted complex. Two unknown proteins Pti1 and
Yor179c are highly connected to RNA processing/modifi-
cation proteins and are therefore likely involved in the
same process (Figure 7). Pti1 may be an unknown compo-
nent of the polyadenylation factor I complex. The 23rd

highest ranked predicted complex is interesting in that it
is involved in cell polarity and cytokinesis and contains
two proteins of unknown function, Yhr033w and
Yal027w. Yal027w interacts with two kinases, Gin4 and
Kcc4, which in turn interact with the components of the
Septin complex (Cdc3, Cdc10, Cdc11 and Cdc12) (Figure
8).

Significance of MCODE predictions
Naïvely, the chance of randomly picking a known protein
complex from a protein interaction network depends on
the size of the complex and the network. It is easier to pick
out a smaller known complex by chance from a smaller
network. For instance, in our network of 15,143 interac-
tions among 4,825 proteins, the chance of picking a spe-
cific known complex of size three is about one in 1.9 ×
1010 (4,825 choose 3). A more realistic model would as-
sume that the proteins are connected and thus would only
consider complex choices of size three where all three
proteins are connected. The number of choices now de-
pends on the topology of the network. In our large net-
work, there are 6,799 fully connected subnetworks of size
three and 313,057 subnetworks of size three with only
two interactions (from the triadic census feature of Pajek).
Thus now our chance of picking a more realistic complex
is one out of 319,856 (1/(6,799 + 313,057) = 3.1 × 10-6).
As the size of the complex increases, the number of possi-
ble complex topologies increases exponentially and, in a
connected network of some reasonable density, so does
the number of possible subgraphs that could represent a
complex. The density of our large protein interaction net-
work is 0.0013 and is mostly connected (4,689 proteins
are in one connected component). Thus, it is expected
that if a complex is found in a network with MCODE that
matches a known complex, that the result would be highly
significant. To understand the significance of complex
prediction further, the topology of the protein interaction
network would have to be understood in general, in order
to build a null model to compare against.

Recent research on modeling complex systems [21,25,27]
has found that networks such as the world wide web, met-
abolic networks [26] and protein-protein interaction net-
works [36] are scale-free. That is, the connectivity
distribution of the vertices of the graph follows a power
law, with many vertices of low degree and few vertices of
high degree. Scale-free networks are known to have large

Table 2: Average Number of YPD and GO Annotation Terms in Complex Sets.

Data Set YPD Functions YPD Roles GO Components GO Processes

MCODE on All Yeast 
Interactions

0.58 0.89 0.39 0.59

MIPS Complex Database 0.50 0.75 0.39 0.48
MCODE Random Model 
(100 AllYeast network 

permutations)

0.72 1.24 0.52 0.85

The average number of YPD and GO functional annotation terms per protein in an MCODE predicted complex is shown for MCODE predicted 
complexes on the AllYeast set, the MIPS complex database and the MCODE random model. A lower number indicates that the complexes from a 
set contain more functionally related proteins (or unannotated proteins). In the cases of multiple annotation, all terms are taken into account. Even 
though there are multiple annotation terms per protein and a variable amount of unannotated proteins per complex, these numbers should perform 
well in relative comparisons based on the assumption that the distribution of the latter two factors is similar in each data set.
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clustering coefficients, or clustered regions of the graph. In
biological networks, at least in yeast, these clustered re-
gions seem to correspond to molecular complexes and
these subgraphs are what MCODE is designed to find.

To test the significance of clustered regions in biological
networks, 100 random permutations of the large set of all
15,143 yeast interactions were made. If the graph to be
randomised is considered as a set of edges between two

Figure 7
The Second Highest Ranked MCODE Predicted Complex is Involved in RNA Processing and Modification . Fig-
ure legend: This complex incorporates the known polyadenylation factor I complex (Cft1, Cft2, Fip1, Pap1, Pfs2, Pta1, Ysh1, 
Yth1 and Ykl059c) and contains other proteins highly connected to this complex, some of unknown function. The fact that the 
unknown proteins (Yor179c and Pti1) connect more to known RNA processing/modification proteins than to other proteins 
in the larger data set likely indicates that these proteins function in RNA processing/modification. This complex was ranked 
second by MCODE from the predicted complexes in the AllYeast interaction set.
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Figure 8
An MCODE Predicted Complex Involved in Cytokinesis Figure legend: This predicted complex incorporates the 
known Septin complex (Cdc3, Cdc10, Cdc11 and Cdc12) involved in cytokinesis and other cytokinesis related proteins. The 
Yal027w protein is of unknown function, but likely functions in cell cycle control according to this figure, possibly in cytokine-
sis. This complex was ranked 23rd by MCODE from the predicted complexes in the AllYeast interaction set.
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Table 3: Statistics for Top, Middle and Bottom Five Scoring Optimized MCODE Predicted Complexes Found in All Known Yeast 
Protein Interaction Data Set

Complex 
Rank

Score Proteins Interactions Density Cell Role Cell Localization

1 10.04 46 236 0.22 RNA processing/
modification and 
protein degradation 
(26S Proteasome)

Nuclear

Protein names Dbf2,Ecm29,Gcn4,Hsm3,Hyp2,Lhs1,Mkt1,Nas6,Pre1,Pre2,Pre4,Pre5,Pre6,
Pre7,Pre8,Pre9,Pup3,Rad23,Rad24,Rad50,Rfc3,Rfc4,Rpn1,Rpn10,Rpn11,
Rpn12,Rpn13,Rpn3,Rpn4,Rpn5,Rpn6,Rpn7,Rpn8,Rpn9,Rpt1,Rpt2,Rpt3,Rpt4,
Rpt5,Rpt6,Scl1,Ubp6,Ura7,Ygl004c,Yku70,Ypl070w

2 9 19 90 0.51 RNA processing/
modification

Nuclear

Protein names Cft1,Cft2,Fip1,Fir1,Hca4,Mpe1,Pap1,Pcf11,Pfs2,Pta1,Pti1,Ref2,Rna14,Ssu72,
Uba2,Ufd1,Yor179c,Ysh1,Yth1

3 7.72 56 220 0.14 Pol II transcription Nuclear
Protein names Ada2,Adr1,Ahc1,Cdc23,Cdc36,Epl1,Esa1,Fet4,Fun19,Gal4,Gcn5,Hac1,Hfi1,

 Hhf2,Hht1,Hht2,Ire1,Luc7,Med7,Myo4,Ngg1,Pcf11,Pdr1,Prp40,Rna14,Rpb2,
Rpo21,Sap185,Sgf29,Sgf73,Spt15,Spt20,Spt3,Spt7,Spt8,Srb6,Swi5,Taf1,Taf10,
Taf11,Taf12,Taf13,Taf14,Taf2,Taf3,Taf5,Taf6,Taf7,Taf8,Taf9,Tra1,Ubp8,
Yap1,Yap6,Ybr270c,Yng2

4 7.58 18 72 0.44 Cell cycle control, 
protein degradation, 
mitosis (Anaphase 
Promoting 
Complex)

Nuclear

Protein names Apc1,Apc11,Apc2,Apc4,Apc5,Apc9,Cdc16,Cdc23,Cdc26,Cdc27,Dmc1,Doc1,
 Leu3,Rpt1,Sic1,Spc29,Spt2,Ybr270c

5 7 15 56 0.52 Vesicular transport 
(TRAPP Complex)

Golgi

Protein names Bet1,Bet3,Bet5,Fks1,Gsg1,Gyp6,Kre11,Sec22,Trs120,Trs130,Trs20,Trs23,
Trs31,Trs33,Uso1

102 3 3 3 1 RNA splicing Nuclear
Protein names Msl5,Mud2,Smy2

103 3 3 3 1 Signal transduction, 
Cell cycle control, 
DNA repair, DNA 
synthesis

Nuclear

Protein names Ptc2,Rad53,Ydr071c

104 3 3 3 1 Cell cycle control, 
mating response

Uknown

Protein names Far3,Vps64,Ynl127w

105 3 3 3 1 Chromatin/chromo-
some structure

Nuclear

Protein names Gbp2,Hpr1,Mft1

106 3 3 3 1 Pol II transcription Nuclear
Protein names Ctk1,Ctk2,Ctk3

205 2 3 4 1 Vesicular transport ER
Protein names Rim20,Snf7,Vps4
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vertices (v1, v2), a network permutation is made by
randomly permuting the set of all v2 vertices. The random
networks have the same number of edges and vertices as
the original network and follow a power-law connectivity
distribution, as do the original data sets [37]. Running
MCODE with the same parameters as the original network
(haircut = TRUE, fluff = TRUE, VWP = 0 and a fluff density
threshold of 0.1) on the 100 random networks resulted in
an average of 27.4 (SD = 4.4) complexes per network. The
size distribution of complexes found by MCODE did not
match that of the complexes found in the original net-
work, as some complexes found in the random networks
were composed of >1500 proteins. One random network
that had an approximately average number of predicted
complexes (27) was parameter optimized using the MIPS
benchmark to see how parameter choice affects the size
distribution and number of predicted complexes. Param-
eters of haircut = TRUE, fluff = TRUE, VWP = 0.1 and a
fluff density threshold of zero produced the maximal
number of 81 complexes for this network, but these com-
plexes were composed of on average 27 proteins (without
counting an outlier complex of size 1961), which is much
larger than normal (e.g. larger than the MIPS set average
of 6.0). None of these predicted complexes matched any
MIPS complexes above an overlap score of 0.1. Also, the
random network complexes had a much higher average
number of YPD and GO annotation terms per protein per
complex than for MIPS or MCODE on the original
network (Table 2). This indicates, as expected, that the
random network complexes are composed of a higher lev-
el of unrelated proteins than complexes in the original
network. Thus, the number, size and functional composi-
tion of complexes that MCODE predicts in the large set of

all yeast interactions are highly unlikely to occur by
chance.

To evaluate the effectiveness of our scoring scheme, which
scores larger, more dense complexes higher than smaller,
more sparse complexes, we examined the accuracy of
MCODE predictions at various score thresholds. As the
score threshold for inclusion of complexes is increased,
less complexes are included, but a higher percentage of
the included complexes match complexes in the bench-
mark. This is at the expense of sensitivity as many bench-
mark matching complexes are not included at higher
score thresholds (Figure 9). For example, of the ten pre-
dicted complexes with MCODE score greater or equal to
six, nine match a known complex in either the MIPS or
Gavin benchmark above a 0.2 threshold overlap score,
yielding an accuracy of 90%. 100% of the five complexes
that had an MCODE score better or equal to seven
matched known complexes. Thus, complexes that score
highly on our simple density based scoring scheme are
very likely to be real.

Directed mode of MCODE
To simulate an obvious example where the directed mode
of MCODE would be useful, MCODE was run with re-
laxed parameters (haircut = TRUE, fluff = TRUE, VWP =
0.05 and a fluff density threshold of 0.2) compared to the
best parameters on the AllYeast network. The resulting
fourth highest ranked complex, when visualized, shows
two clustered components and represents two protein
complexes, the proteasome and an RNA processing com-
plex, both found in the nucleus (Figure 10). This is an
example of where a lower VWP parameter would have
been superior since it would have divided this large

206 2 3 4 1 Protein 
translocation

Cytoplasmic

Protein names Srp14,Srp21,Srp54

207 2 3 4 1 Protein 
translocation

Cytoplasmic

Protein names Srp54,Srp68,Srp72

208 2 3 4 1 Energy generation Mitochondrial
Protein names Atp1,Atp11,Atp2

209 2 4 5 0.67 Nuclear-cytoplas-
mic and vesicular 
transport

Varied

Protein names Kap123,Nup145,Sec7,Slc1

Score is defined as the product of the complex subgraph density and the number of vertices (proteins) in the complex subgraph (DC × |V|). This 
ranks larger more dense complexes higher in the results. Density is calculated using the "loop" formula if homodimers exist in the complex, other-
wise the "no loop" formula is used. The cell role column is a manual combination of annotation terms for the proteins reported in the complex.

Table 3: Statistics for Top, Middle and Bottom Five Scoring Optimized MCODE Predicted Complexes Found in All Known Yeast 
Protein Interaction Data Set (Continued)
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complex into two more functionally related complexes.
The highest weighted vertices in the center of each of the
two dense regions in Figure 10 are the Rpt1 and Lsm4 pro-
teins. MCODE was run in directed mode starting with
these two proteins over a range of VWP parameters from
0 to 0.2, at 0.05 increments. For Lsm4, the parameter set
of haircut = TRUE, fluff = FALSE, VWP = 0 was used to find
a core complex, which contained 9 proteins fully connect-
ed to each other (Dcp1, Kem1, Lsm2, Lsm3, Lsm4, Lsm5,
Lsm6, Lsm7 and Pat1). Above this VWP parameter, the
core complex branched out into proteasome subunit pro-
teins, which are not part of the Lsm complex (see Figure

11A). Using this VWP parameter, combinations of haircut
and fluff parameters were used to further expand the core
complex. This process was stopped when the predicted
complexes began to include proteins of sufficiently
different known biological function to the seed vertex.
Proteins, such as Vam6 and Yor320c were included in the
complex at moderate fluff parameters (0.4–0.6), but not
at higher fluff parameters, and these are known to be lo-
calized in membranes outside of the nucleus, thus are
likely not functionally related to the Lsm complex pro-
teins. Therefore, the 9 proteins listed above were decided

Figure 9
Effect of Complex Score Threshold on MCODE Prediction Accuracy Figure legend: MCODE complexes equal to or 
greater than a specific score were compared to a benchmark comprising the combined MIPS and Gavin benchmarks. Accuracy 
was calculated as the number of known complexes better or equal to the threshold score divided by the total number of pre-
dicted complexes (matching and non-matching) at that threshold. A complex was deemed to match a known complex if it had 
an overlap score above 0.2. The number of predicted complexes that matched known complexes at each score threshold is 
shown as labels on the plot.
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to be the final complex (Figure 11B). This is intuitive be-
cause of their maximal density (a 9-clique).

Using this same method of known biological role "titra-
tion" on Rpt1 found a complex of 34 proteins (Gal4,
Gcn4, Hsm3, Lhs1, Nas6, Pre1, Pre2, Pre3, Pre4, Pre5,
Pre6, Pre7, Pre9, Pup3, Rpn10, Rpn11, Rpn13, Rpn3,
Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpt1, Rpt2, Rpt3, Rpt4,
Rpt6, Rri1, Scl1, Sts1, Ubp6, Ydr179c, Ygl004c) and 160
interactions using the parameter set haircut = TRUE, fluff
= TRUE, VWP = 0.2 and a fluff density threshold of 0.3.
Two regions of density can be seen here corresponding to
the two known subunits of the 26S proteasome. The 20S
proteolytic subunit of the proteasome is comprised of 15

proteins (Pre1 to Pre10, Pup1, Pup2, Pup3, Scl1 and
Ump1) of which Pre7, Pre8, Pre10, Pup1, Pup2 and
Ump1 are not found with MCODE. The 19S regulatory
subunit of the proteasome is known to have 21 subunits
(Nas6, Rpn1 to Rpn13, Rpt1 to Rpt6 and Ubp6) of which
Rpn1, Rpn2, Rpn4, Rpn12 and Rpt5 are not found with
MCODE. Known complex components not found by
MCODE are not present at a high enough local density re-
gions of the interaction network, possibly because not
enough experiments involving these proteins are present
in our data set. Figure 11C shows the final Rpt1 seeded
complex. Of note, Ygl004c is unknown and binds to
almost every Rpt and Rpn protein in the complex al-
though all of these interactions were from a single immu-

Figure 10
An MCODE Predicted Complex That is Too Large (Relaxed Parameters) Figure legend: An example of a predicted 
complex that incorporates two complexes, proteasome (left) and an RNA processing complex (right). These should probably 
be predicted as separate complexes as can be seen by the clear distinction of biological role annotation on one side of this lay-
out compared to the other (purple versus blue). This figure, however, shows the large amount of overall connectivity between 
these two complexes. This complex was ranked fourth by MCODE from the predicted complexes in the AllYeast interaction 
set with slightly relaxed parameters compared to the optimized prediction.
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noprecipitation experiment [6]. As well, Rri1 and Ydr179c
have unknown function and both bind to each other and
to Rpn5. Thus one would predict that these three un-
known proteins function with or as part of the 26S
proteasome. The protein Hsm3 binds to eight other 19S

subunits and is involved in DNA mismatch repair path-
ways, but is not known to be part of the proteasome, al-
though all of these Hsm3 interactions are from a
particular large-scale experiment [7]. Interestingly, Gal4, a
transcription factor involved in galactose metabolism, is

Figure 11
MCODE in Directed Mode Figure legend: MCODE was used in directed mode to further study the complex in Figure 10 by 
using seed vertices from high density regions of the two parts of this complex. A) The result of examining the Lsm complex 
using MCODE parameters that are too relaxed (haircut = TRUE, fluff = FALSE, VWP = 0.05). B) The final Lsm complex using 
MCODE parameters of haircut = TRUE, fluff = FALSE and VWP = 0 seeded with Lsm4. C) The final 26S proteasome complex 
seeded with Rpt1 using MCODE parameters haircut = TRUE, fluff = TRUE and VWP = 0.2. Visible here are two regions of 
density in this complex corresponding to the 20S proteolytic subunit (left side – mainly Pre proteins) and the 19S regulatory 
subunit (right side – mainly Rpt and Rpn proteins).
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found to be part of the proteasome complex. While this
metabolic functionality seems unrelated to protein degra-
dation, it has recently been shown that the binding is
physiologically relevant [38]. These cases illustrate the
possible unreliability of both functional annotation and
interaction data, but also that seemingly unrelated pro-
teins should not be immediately discounted if found to be
part of a complex by MCODE.

Of note, the known topology of the 26S proteasome [39]
compares favourably with the complex visualization of
Figure 11C without considering stoichiometry. Thus, if
enough interactions are known, visualizing complexes
may reveal the rough structural outline of large complex-
es. This should be expected when dealing with actual
physical protein-protein interactions since there are few
allowed topologies for large complexes considering the
specific set of defining interactions and steric clashes be-
tween protein subunits.

Complex connectivity
MCODE may also be used to examine the connectivity
and relationships between molecular complexes. Once a
complex is known using the directed mode, the MCODE
parameters can be relaxed to allow branching out into
other complexes. The MCODE directed mode preprocess-
ing step must also be turned off to allow MCODE to
branch into other connected complexes, which may reside
in denser regions of the graph than the seed vertex. As an
example, this was done with the Lsm4 seeded complex
(Figure 12). MCODE parameters were relaxed to haircut =
TRUE, fluff = FALSE, VWP = 0.2 although they could be
further relaxed for greater extension out into the network.

Discussion
This method represents an initial step in taking advantage
of the protein function data being generated by many
large-scale protein interaction studies. As the experimen-
tal methods are further developed, an increasing amount
of data will be produced which will require computation-
al methods for efficient interpretation. The algorithm de-
scribed here allows the automated prediction of protein
complexes from qualitative protein-protein interaction
data and is thus able to help predict the function of
unknown proteins and aid in the understanding of the
functional connectivity of molecular complexes in the
cell. The general nature of this method may allow
complex prediction for molecules other than proteins as
well, for example metabolic complexes that include small
molecules.

MCODE cannot stand alone in this task; it must be com-
bined with a graph visualization system to ease the under-
standing of the relationships among molecules in the data
set. We use the Pajek program for large network analysis

[40] with the Kamada-Kawai graph layout algorithm [41].
Kamada-Kawai models the edges in the graph as springs,
randomly places the vertices in a high energy state and
then attempts to minimize the energy of the system over a
number of time steps. The result is that the Euclidean dis-
tance, here in a plane, is close to the graph-theoretic or
path distance between the vertices. The vertices are visual-
ly clustered based on connectivity. Biologically, this visu-
alization can allow one to see the rough structural outline
of large complexes, if enough interactions are known, as
evidenced in the proteasome complex analysis above (Fig-
ure 11C).

It is important to note and understand the limitations of
the current experimental methods (e.g. yeast two-hybrid
and co-immunoprecipitation) and the protein interaction
networks that these techniques generate when analyzing
the resulting data. One common class of false-positive in-
teractions arising from many different kinds of experi-
mental methods is that of indirect interactions. For
instance, an interaction may be seen between two proteins
using a specific experimental method, but in reality, those
proteins do not physically bind each other, and one or
more other molecules that are generally part of the same
complex mediate the observed interaction. As can be seen
for the Arp2/3 complex shown in Figure 3, when pairwise
interactions between all combinations of proteins in a
complex are studied, this creates a very dense graph. Inter-
estingly, this false-positive effect is normally considered a
disadvantage, but is an advantage with MCODE as it in-
creases the density in the region of the graph containing a
complex, which can then be more easily predicted.

Apart from the experimental factors that lead to false-pos-
itive and false-negative interactions, representational lim-
itations also exist computationally. Temporal and spatial
information is not currently described in interaction net-
works. A complex found by the MCODE approach may
not actually exist even though all of the component
proteins bind each other in vitro. Those proteins may
never be present at the same time and place. For example,
molecular complexes that perform different functions
sometimes have common subunits as with the three types
of eukaryotic RNA polymerases.

Complex stoichiometry, another important aspect of bio-
logical data, is not represented either. While it is possible
to include full stoichiometry in a graph representation of
a biomolecular interaction network, many experimental
methods do not provide this information, so a homo-
multimeric complex is normally represented as a simple
homodimer. When an experiment does provide stoichi-
ometry information, it is not stored in most current
databases, such as MIPS and YPD. Thus, one is forced to
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return to the primary literature to extract the data, an ex-
tremely time-consuming task for large data sets.

Some quantitative and statistical information is present
when integrating results of large-scale approaches and this
is not used in our current graph model. For instance, the
number of different types of experiments that find the
same interaction, the quality of the experiment, the date
the experiment was conducted (newer methods may be
superior in certain aspects) and other factors that pertain
to the reliability of the interaction could all be considered

to determine a reliability index or p-value on edges in the
graph. For instance, one may wish to rank results pub-
lished in high-impact journals above other journals (or
vice versa) and rank classical purification methods above
high-throughput yeast two-hybrid techniques when deter-
mining the quality of the interaction data. It may also be
possible to weight vertices on the graph by other quality
criteria, such as whether a protein is hypothetical from a
gene prediction or not or whether a protein is expressed at
a particular time and place in the cell. For example, if one
were interested in a certain stage of the cell cycle, proteins

Figure 12
Examining Complex Connectivity with MCODE Figure legend: The complexes shown here are known to be nuclear 
localized and are involved in protein degradation (19S proteasome subunit), mRNA processing (Lsm complex and mRNA 
Cleavage/Polyadenylation complex), cell cycle (anaphase promoting complex) and transcription (SAGA transcriptional activa-
tion complex).
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that are known to be absent at that stage could be reduced
in weight (VWP in the case of MCODE) compared to pro-
teins that are present. It should be noted that any weight-
ing scheme that tries to assess the quality of an interaction
might make false assumptions that would prevent the dis-
covery of new and interesting data.

This paper shows that the structure of a biological network
can define complexes, which can be seen as dense regions.
This may be attributed to indirect interactions accumulat-
ing in the literature. Thus, interaction data taken out of
context may be erroneous. For instance, if one has a col-
lection of protein interactions from various different ex-
periments done at different times in different labs from a
specific complex that form a clique, and if one chooses an
interaction from this clique, then how can one verify if it
is indirect or not. We would only begin to know if we had
a very detailed description of the experiment from the
original papers where we could tell the amount of work
and quality of work that went into measuring each inter-
action. Thus with only a qualitative view of interactions,
in reference to Dobzhansky [42], nothing in the biomo-
lecular interaction network would make sense except in
light of molecular complexes and the functional connec-
tions between them. If one had a highly detailed represen-
tation of each interaction including time, place,
experimental condition, number of experiments, binding
sites, chemical actions and chemical state information,
one would be able to computationally delve into molecu-
lar complexes to resolve topology, structure, function and
mechanism down to the atomic level. This information
would also help to judge the biological relevance of an in-
teraction. Thus, we require databases like BIND [15] to
store this information. The integration of known qualita-
tive and quantitative molecular interaction data in a ma-
chine-readable format should allow increasingly accurate
protein interaction, molecular complex and pathway pre-
diction, including actual binding site and mechanism in-
formation in a sequence and structural context.

Based on our scale-free network analysis, it would seem
that real biological networks are organized differently
than random models of scale-free networks in that they
have higher clustering coefficients around specific regions
(complexes) and the vertices in these regions are related to
each other, by biological function. Thus, attempts to mod-
el biological networks and their evolution in a global way
solely using the statistics of scale-free networks may not
work, rather modeling should take into account as much
extant biological knowledge as possible.

Future work on MCODE could include researching differ-
ent, possibly adaptive, vertex scoring functions to take
into account, for example, the local density of the network
past the immediate neighborhood of a vertex and the in-

clusion of functional annotation and p-values on edges.
Time, space and stoichiometry should also be represented
on networks and in visualization systems. The process of
'functional annotation titration' in the directed mode of
MCODE could be automated.

Conclusions
MCODE effectively finds densely connected regions of a
molecular interaction network, many of which corre-
spond to known molecular complexes, based solely on
connectivity data. Given that this approach to analyzing
protein interaction networks performs well using
minimal qualitative information implies that large
amounts of available knowledge is buried in large protein
interaction networks. More accurate data mining algo-
rithms and systems models could be constructed to un-
derstand and predict interactions, complexes and
pathways by taking into account more existing biological
knowledge. Structured molecular interaction data resourc-
es such as BIND will be vital in creating these resources.

Methods
Data sources
All protein interaction data sets from MIPS [13], Gene On-
tology  [43] and PreBIND http://bioinfo.mshri.on.ca/
prebind/ were collected as described previously [6]. The
YPD protein interaction data are from March 2001 and
were originally requested from Proteome, Inc. http://
www.proteome.com. Other interaction data sets are from
BIND http://www.bind.ca. A BIND yeast import utility
was developed to integrate data from SGD [12], RefSeq
[44], Gene Registry http://genome-www.stanford.edu/
Saccharomyces/registry.html, the list of essential genes
from the yeast deletion consortium  [11] and GO terms
[43]. This database ensures proper matching of yeast gene
names among the multiple data sets that may use different
names for the same genes. The yeast proteome used here
is defined by SGD and RefSeq and contains 6,334 ORFs
including the mitochondrial chromosome. Before per-
forming comparisons, the various interaction data sets
were entered into a local instance of BIND as pairwise pro-
tein interaction records. The MIPS complex catalogue was
downloaded in February 2002.

The protein interaction data sets used here were com-
posed as follows. 'Gavin Spoke' is the spoke model of the
raw purifications from Gavin et al [7]. 'Y2H' is all known
large-scale [2–5,10] combined with normal yeast two-hy-
brid results from MIPS. 'HTP Only' is only high-through-
put or large-scale data [2–7,10] The 'Benchmark' set was
constructed from MIPS, YPD and PreBIND as previously
described [6]. 'Pre HTMS' was composed of all yeast sets
except the recent large-scale mass spectrometry data sets
[6,7]. 'AllYeast' was the combination of all above data
sets. All data sets are non-redundant.
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Network visualization
Visualization of networks was performed using the Pajek
program for large network analysis [40]http://
vlado.fmf.uni-lj.si/pub/networks/pajek/ as described pre-
viously [6,10]. using the Kamada-Kawai graph layout al-
gorithm followed by manual vertex adjustments and was
formatted using CorelDraw 10. Power law analysis was
also accomplished as previously described [6].
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