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Abstract
Background: An increasing number of researchers have released novel RNA structure analysis
and prediction algorithms for comparative approaches to structure prediction. Yet, independent
benchmarking of these algorithms is rarely performed as is now common practice for protein-
folding, gene-finding and multiple-sequence-alignment algorithms.

Results: Here we evaluate a number of RNA folding algorithms using reliable RNA data-sets and
compare their relative performance.

Conclusions: We conclude that comparative data can enhance structure prediction but
structure-prediction-algorithms vary widely in terms of both sensitivity and selectivity across
different lengths and homologies. Furthermore, we outline some directions for future research.

Background
Motivation
RNA, once considered a passive carrier of genetic informa-
tion, is now known to play a more active role in nature.
Many recently discovered RNAs are catalytic, for example
RNase P which is involved in tRNA maturation and the
self-splicing introns involved in mRNA maturation [1]. In
addition, there is evidence that RNA based organisms
were an essential step in the evolution of modern DNA-
protein based organisms [2,3]. The number of non-coding
RNAs (ncRNA) in humans remains a mystery, but
progress in this direction suggests the number of ncRNAs
produced is comparable to the number of proteins [4-6].
Surprisingly, the number of protein coding genes does not
correlate with our concept of "organism complexity",
hence it has been hypothesised that control of gene
expression via a combination of alternative splicing and
non-coding RNAs are responsible for this, implying that

the "Central Dogma" (RNA is transcribed from DNA and
translated into protein) at least in higher eukaryotes is
woefully inadequate [7,8].

A fundamental tenet of biology is that a stable tertiary
structure is essential for biological function. In the case of
RNA the secondary structure (the base-pair set for an RNA
molecule) provides a scaffold for the tertiary structure
[9,10]. Yet, the experimental determination of RNA struc-
ture remains difficult [11]; Researchers increasingly turn
to computational methods. To date the most popular
structure prediction algorithm is the Minimum Free
Energy (MFE) method for folding a single sequence, this
has been implemented by two packages: Mfold [12] and
RNAfold [13]. However, there are several independent
reasons why the accuracy of MFE structure prediction is
limited in practise (see discussion below). Generally the
best accuracy can be achieved by employing comparative
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methods [14]. This paper explores the extent to which this
statement is true, given the current state of the art, for
automated methods. There are currently three approaches
to automated comparative RNA sequence analysis where
the comparative study is supported by available algo-
rithms (see plans A, B, and C, figure 1). A researcher fol-
lowing plan A may align sequences using standard
multiple sequence alignment tools (i.e. ClustalW [15], t-
coffee [16], prrn [17],...), then use signals provided by
structure neutral mutations for the inference of a consen-
sus structure. Frequently the mutual-information measure
is used for this [18-20]. Recently tools have been devel-
oped that use a combination of MFE and a covariation-
score [21,22] or probabilistic models compiled from large
reference data-sets [23,24]. However, a multiple-
sequence-alignment step assumes a well conserved
sequence. This is often not so with swiftly evolving ncRNA
sequences, in this case incorrect sequence alignments can
destroy any covariation signal.

This has motivated plan B, the use of the "Sankoff-Algo-
rithm", an algorithm designed for the simultaneous align-
ment, folding and inference of a protosequence for a set
of homologous structural RNA sequences [25]. The recur-
rences combine sequence alignment and Nussinov (max-
imal pairing) folding [26]. The algorithm requires extreme
computational resources (O(n3m) in time, and O(n2m) in
space, where n is the sequence length and m is the number
of sequences). Current implementations, Foldalign
[27,28], Dynalign [29] and PMcomp [26], are restricted
implementations of the Sankoff-algorithm which impose
pragmatic limits on the size or shape of substructures.

The final approach (plan C) applies when no helpful level
of sequence conservation is observed. We may exclude the
sequence alignment step, predict secondary structures for
each sequence (or sub-group of sequences) separately,
and directly align the structures. Because of the nested
branching nature of RNA structures, these are adequately

RNA analysisFigure 1
RNA analysis. Current automated approaches to analysing homologous RNA sequences and structures usually follow one of 
three "plans". Plan A uses aligned sequences (usually produced by a standard multiple sequence alignment algorithm) to infer a 
consensus secondary structure from the evolutionary and energetic information contained in an alignment. This is a highly suc-
cessful approach, but is limited to data-sets with sequence homology high enough for the alignment step to work yet divergent 
enough for detection of structurally consistent mutations. Plan B employs the "Sankoff algorithm" to simultaneously align and 
infer a consensus structure. This algorithm requires extreme amounts of memory and time. Plan C aligns RNA structures 
rather than sequences. This approach can be used in the rare situation where reliable structures are known. Representative 
algorithms which could be used for each plan are indicated within the figure.
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represented as trees. The concept of a similarity
measurement via edit operations, a standard procedure
for string comparisons, has been generalised to trees [30-
33]. Tree comparison and tree alignment models have
been proposed [34,35] and implemented [13,36-39]. The
crucial point in plan C is the question whether the initial
independent folding produces at least some structures
that align well and hence give clues as to the underlying
consensus structure – when one exists. An increasing
number of researchers have recently released novel RNA
structure analysis and prediction algorithms
[22,23,37,40-43]. Yet few algorithms are tested upon
standardised example data-sets, and often they are not
compared with algorithms of the same pedigree. Algo-
rithm evaluation is a regular event for protein structure
prediction groups [44-47], gene-prediction [48-50] and
multiple sequence alignments [51-54]. Based on reliable
data-sets, we evaluate:

• the viability of plan A, B, or C given tools available
today, and

• the relative performance of the tools used within each
plan.

We shall explicitly not evaluate computational efficiency,
which (by necessity) differs widely between the tools. We
also do not evaluate user friendliness (such as ease of
installation and convenience of input or output formats,
etc.) except for some remarks in the discussion section.
Data-sets, documentation and relevant scripts are freely
available from http://www.binf.ku.dk/users/pgardner/
bralibase/.

Structural alignments and consensus structures
RNA secondary structure inference is the prediction of
base-pairs which form the in vivo structure, given only the
sequence of bases. Three general considerations apply: (1)
The in vivo structure is not only predetermined by the pri-
mary structure, but also by cellular components such as
chaperones, base modifications, and even by the tran-
scriptional process itself. There are currently no computa-
tional tools available that assess these effects. (2) There are
'ribo-switches', whereby two or more functional structures
exist for a given sequence [55-57]. Such cases will fool all
the tools studied here, because asking for a single consen-
sus structure is simply the wrong question. On the other
hand, the potential of conformational switching can be
reliably detected [58-60]. (3) Structures may contain
pseudo-knots, which are ignored by most current tools
due to reasons of computational complexity and scarcity
of these motifs. We do not consider pseudoknots here.
However, several comparative approaches that include
pseudoknots are currently under development, and cer-
tainly merit a comparative study of their own. Note that in

an application scenario, we often do not know whether
the considerations (1–3) apply.

The comparative approach to structure inference is initi-
ated from a set of homologous RNA sequences. Attempts
are made to infer the in-vivo structure for each of them, as
well as a consensus structure that captures the common,
relevant structural aspects. The consensus structure per se
does not exist in vivo, and so some mathematical rigour
should be applied when working with this notion.

An RNA sequence is a string over the RNA alphabet {A, C,
G, U}. An RNA sequence B = b1,...,bn contains n bases, but
no structural information. For comparative analysis, we
are given the RNA sequences B1,...,Bk. A secondary struc-
ture can be associated with each sequence B as a string S
over the alphabet {"(",".",")"}, where parentheses in S
must be properly nested, and B and S must be compatible:
If (si, sj) are matching parentheses, then (bi, bj) must be a
legal base-pair. A base-pair is also denoted as bi·bj, si·sj, or
simply i·j when the sequence is clear from the context.
Both sequences and structures may be padded with a gap
symbol "-", in order to align sequences and structures of
different lengths. For compatibility of padded sequences
and structures, we require that bi = "-" iff si = "-".

A multiple structural alignment is a multiple sequence
alignment of the 2 * k sequences, B1, S1,..., Bk, Sk, such that
Bi is compatible with Si, and the following consistency cri-

terion is satisfied: For any Si and Sj and any base-pair ,

we have  ≠ ")" and  ≠ "(", and if  = "(" or  = ")",

then . This means that if one partner of a base-pair

in Sj is aligned to one partner in Si, their partners must also
be aligned to each other (see figure 2 for an illustration).

A consensus structure C for a multiple structural alignment
can be determined by a majority rule approach using a

threshold p with 0.5 <p ≤ 1. We define ck = x if  = x for

at least  sequences Si, and ck = ".", otherwise. The

latter definition is somewhat arbitrary; when relating the
consensus structure to a particular sequence B in the align-
ment, we quietly turn those dots into gaps that align with
gaps in B. For p = 1, we speak of a strict consensus, and the
base-pair set in C is the intersection of the base-pairs in all
Si.

A consensus structure exhibits base-pairs shared by the
majority of structures under consideration, but has no
sequence information associated with it. Each individual
structure for a concrete sequence typically has additional
base-pairs which are properly nested between those that
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constitute the consensus. Given a consensus structure C
and a sequence B compatible with it, we can obtain a
structure refold(B, C) which is the best thermodynamic
folding for B that exhibits the base-pairs specified by C,
plus additional ones that do not conflict with the former.
Refolding can be achieved by RNAfold with option -C (this
option is used to constrain the minimum free energy pre-
diction with prior knowledge – such as known base-pairs,
unpaired regions, etc). If B and S contain gaps, we remove
them before refolding and reintroduce them in the same
positions afterwards.

Given a consistent structural alignment, it is easy to derive
a consensus structure, as we can count majorities at indi-
vidual positions. If the 5' partner of a base-pair passes the
majority threshold, consistency implies that its 3' partner
also makes it into the consensus.

Given a consensus structure and a sequence alignment
without structural information, we can approximate a
structural alignment by computing Si = refold(Bi, C). We
call this structural alignment reconstruction. While all Si

will be consistent with C, and with each other as far as the
base-pairs of C are concerned, they may be inconsistent
for the base-pairs introduced in refolding. This is tolera-
ble, since if we trust the consensus to capture the relevant
common structural features, there is no need to require
that all members of a family agree upon extra-consensus
features.

We note in passing that it seems worthwhile to study the
conditions under which consensus derivation and struc-
tural alignment reconstruction are mutually inverse oper-
ations, but such theoretical issues are outside our present
scope.

Interpreting database information
While the plans A, B and C we are about to evaluate strive
to find a good consensus structure from sequence data,
the "truth" available to us comes in a different form. Struc-
tural databases only convey a consensus by example: They
provide a reference sequence, say B1, with an experimen-
tally proved structure S1, and provide a multiple sequence
alignment of B1, S1 and additional sequences B2,..., Bn in
the family under consideration. The sequence alignment
is chosen to exhibit structural similarities between the ref-
erence structure and the other family members, but in
general, we do not know the precise model of achieving
similarity, nor do we know whether this model has been
solved to optimality.

One consequence of this situation would be to conclude
that the reference structure is the only reliable anchor
point available to us for evaluation. Comparative analysis
tools would then be evaluated by the capacity to predict
this particular structure by using family information. This
would be a meaningful way to proceed, however, the
effect of structural homogeneity within a sequence family
would go unmeasured, and so would the difficulty or suc-
cess of exploiting it. We therefore proceed in a different
way which we call consensus reconstruction.

The reference structure S1 need not be compatible with
any Bi except for i = 1. However, we can still compute Si :=
refold(Bi, S1) by treating bases as unpaired where they vio-
late compatibility. (This is also achieved with RNAfold,
option -C.) What we obtain in this way is a reconstructed
structural alignment, which will be consistent to the
extent that the reference structure indeed describes the
common structural features, and to the extent that the
database sequence alignment reflects these. In all our test
cases, this alignment was overall consistent, an indicator

Alignment consistencyFigure 2
Alignment consistency. A violation of RNA structural alignment consistency is shown (left), together with a possible cor-
rection (right) – see text for details. Note that the inconsistent alignment may maximise sequence similarity, showing 3 mis-
matches versus 1 mismatch and 2 indels, with the concrete outcome depending on the gap scoring used. Inconsistency is the 
reason why it is dangerous to align two structures in string representation by a standard sequence alignment algorithm. Incon-
sistency is hard to detect by human eye inspection, and structural alignments in databases are not always free from consistency 
violations.

AACCAAAAAGAGAA
..((.....).)..
AACUUAAAAGAGAA
..(.(...))....

AACCA−AAAAGAGAA
..((.−....).)..
AA−CUUAAAAGAGAA
..−(.(...))....
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that the families and their structural features are in fact
well defined. From this alignment, we derive a consensus
structure as explained above using a threshold p = 0.5,
which will serve as the standard of truth in our evaluation.

One may argue that our approach to reconstruct the truth
is somewhat ad-hoc and should be replaced by a more sys-
tematic method. However, this is what the tools we eval-
uate try to achieve, and we should not add one of our own
as the standard of truth. Hence, our consensus reconstruc-
tion is designed to stay as close as possible to the database
information.

Caveats
Results of observations based on the above measures must
be interpreted with care. We list a number of caveats that
must be kept in mind when proceeding to the subsequent
sections.

Use of defaults
In all tests, one could possibly obtain better predictions by
tuning the program's parameters. We felt that it would be
inappropriate to do so, since in the evaluation, we know
the correct result and could use this knowledge in the tun-
ing, whereas in a true application context, one does not
have such guidance. Hence we used the recommended
defaults in all cases.

Tool abuse
In some cases we apply a tool to data where we know that
the model structure has features not recognised by the
tool. An example is a structure with multiloops or pseudo-
knots, searched for with a tool that explicitly excludes
such structures. We permit such cases, because again, in a
true application context one does not know whether the
tool is appropriate or not, and it is still of interest to see
how close to the correct structure one can get.

Standard of truth
We take for granted the correctness of structural align-
ments taken from the literature, and the consensus recon-
structed thereof. Should one of the tested algorithms
produce a result that is actually better (closer to the func-
tionally important structure), it may be penalised. Also,
we do not consider a large number of data-sets here, it is
possible that performance of some algorithms improves
on a different selection of data-sets.

Tools improve
Our data reflect the state of the art in 2004. Most of the
tools tested are very recent, and their authors are still
improving them. Hence, not all observations will remain
reproducible. In fact, we hope this study helps to obtain
better results in the future.

Methods
We have compiled RNA sequence alignments consisting
of up to 11 sequences derived from reliable sources (see
table 1). These have been used to test several RNA analysis
packages. Each alignment contains at least one reference
sequence B1 with (preferably) an experimentally verified
secondary structure S1. Experimental verification of a
structure may be from a variety of sources: x-ray crystallog-
raphy, NMR, enzymatic structure probing or phylogenetic
inference. A comparison of phylogenetic with x-ray crys-
tallographic structures has shown the phylogenetic pre-
dictions of rRNA to be very reliable (sensitivity > 97%)
[61]. This data specifies a "consensus by example", as
explained above, to which our consensus reconstruction
was applied to obtain the "true" consensus.

To avoid results bias, we constructed test alignments, with
corresponding phylogenies that, wherever possible, were
free of highly similar clades. In addition, we endeavoured
to ensure that the reference sequence was central to the
phylogeny, or more specifically, not an out group. To
meet these requirements, sequences from large data-sets

Table 1: Characteristics and sources of the four test data-sets, columns from left to right show: data-set, lengths, mean pair-wise 
sequence similarity (mean pair-wise Kimura "2-parameter" distance is shown in parentheses [109]), the number of sequences in each 
alignment and the alignment and structure sources are given.

Test data-set characteristics and sources

Data-set length mean pairwise seq. identity Number of Sequences Alignment source Structure source

High Med. High Med.
E. coli LSU rRNA 2904 88.1 (0.12) 72.0 (0.35) 11 11 Wuyts et al., (2001) Cannone et al., (2002)
E. coli SSU rRNA 1542 90.7 (0.08) 80.0 (0.21) 11 11 Wuyts et al., (2002) Cannone et al., (2002)
E. coli RNase P 377 81.5 (0.09) 67.1 (0.41) 9 11 Brown, (1999) Brown, (1999)
S. cerevisiae tRNA-PHE 73 84.4 (0.19) 60.0 (0.71) 11 11 Griffiths-Jones et al., (2003) Sundaralingham & Rao, (1975)
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were sorted into high-similarity and medium-similarity
groups (with respect to the model sequence), from which
maximum-likelihood phylogenies [62] were constructed.
These were pruned until the desired size and topology was
achieved. For each data-set two sequence alignments were
constructed, one of high sequence identity (approxi-
mately 90–99%) and the other more diverse data-set of
medium sequence identity (approximately 70–90%).

Our data-sets are quite diverse and must for the purposes
of this study be considered difficult to analyse in structural
terms. The shape of ribosomal RNA is believed to be influ-
enced by interaction with ribosomal proteins. The shape
of RNase P shows relatively little sequence and structure
conservation, and furthermore, it contains pseudoknots
which are generally excluded by prediction algorithms.
Transfer RNAs are known to be a hard case for thermody-
namic folding, primarily due to the propensity of modi-
fied bases which influence structure formation. All tools
tested may perform better upon less complex data-sets,
but the purpose of this study is not to show how good the
algorithms are but to compare relative performance when
prediction is difficult.

Performance Measures
Sensitivity (X) and selectivity (Y) are common measures for
determining the accuracy of prediction methods [63].
Selectivity is also known as the "specificity" [28] and "pos-
itive predictive value" [64,65]. We use slightly modify ver-
sions of the standard definitions of X and Y for examining
RNA secondary structure prediction:

where TP is the number of "true positives" (correctly pre-
dicted base-pairs), FN is the number of "false negatives"
(base-pairs in the reference structure that were not pre-
dicted) and FP is the number of "false positives" (in-cor-
rectly predicted base-pairs). However, not all FP base-
pairs are equally false! We classify FP base-pairs as either
inconsistent, contradicting or compatible. Predicted base-
pairs which conflict with a base-pair in the reference struc-
ture are labelled inconsistent (i.e. i·j is predicted where
either i·k and/or h·j are paired in the reference structure
(h ≠ i and j ≠ k)). Predicted base-pairs (i·j) which are non-
nested with respect to the reference structure are labelled
contradicting (i.e. there exists base-pairs k·l in the reference
satisfying k <i <l <j). Note that some base-pairs may both
contradict and be inconsistent with the reference struc-
ture. Predicted base-pairs which are neither true positive,
contradicting or inconsistent are labelled compatible and
can be considered neutral with respect to algorithm accu-
racy. Hence these are subtracted in the selectivity evalua-
tion, their number is ξ in the above equation. It is of

interest to note that the base-pair metric [66,67] between
the reference and predicted structures dBP(Sref, Spred) is the
sum of FN and FP, and hence is different from the meas-
ure used here.

A measure combining both selectivity and sensitivity is
useful for ranking algorithms. For this we employ the Mat-
thews correlation coefficient [63] defined below:

MCC ranges from -1 for extremely inaccurate (TP = TN =
0) to 1 for very accurate predictions (FP - ξ = FN = 0).
When comparing RNA structures TN = 0 occurs only in
extreme examples, hence MCC generally ranges from 0 to
1. Furthermore, for the specific case of RNA structure com-
parisons, MCC can be approximated by the arithmetic-
mean or geometric-mean of X and Y [28].

Results
Single sequence methods
The accuracy of the MFE single sequence method has been
evaluated elsewhere and was found to have an accuracy of
73% when averaged over many different RNAs and "base-
pair slippage" was tolerated in the evaluation [68]. A
recent and more stringent work found MFE predictions
had a sensitivity of 56% and selectivity of 46% for RNase
P, SRP and tmRNA structures [64]. Similar values are also
reported by the "Gutell Lab" for tRNA and rRNA structures
[69-71]. We need to clarify the accuracy of this method on
the particular data-sets we employ here for comparison
with the multi-sequence methods. After all, if MFE folding
worked perfectly for our given data-sets, there would be
no need to resort to comparative methods.

Mfold & RNAfold
Mfold [12,72] and RNAfold [13,73] both implement the
Zuker-Stiegler algorithm for computing minimal free
energy (MFE) structures assuming a "nearest neighbour
model" and using empirical estimates of thermodynamic
parameters for neighbouring interactions and loop entro-
pies to score structures. The algorithm is O(n3) in time and
O(n2) in memory where n is the sequence length. Both
employ the same thermodynamic parameters [68].
Hence, differences in the predictions are generally minor
and are the result of slightly different implementations.
There appears to be no significant differences in terms of
algorithm accuracy.

The sensitivity, selectivity and correlation of MFE methods
(for the four data-sets considered here) ranged from 22–
63%, 20–60% and 0.18–0.61 respectively (See figures 3
&4). The low accuracies (22%, 20% & 0.18) are due to an
alternative long-stem conformation of S. cerevisiae tRNA-
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PHE which the free energy methods favour. Mfold infers
'suboptimal' structures by calculating minimum free
energy structures with the restriction that every possible
base-pair is forced in a one-by-one fashion. Unique struc-
tures are then ranked by energy. Investigating the top two
suboptimal structures from Mfold resulted in an overall
increase in the range of sensitivity, selectivity and correla-
tion, 22–69%, 20–67% and 0.18–0.68 respectively. The
predictions shown here are used to illustrate the potential
advantages of using comparative analyses over single
sequence methods.

Sfold
Sfold [41,74] represents another energy-based single-
sequence folding algorithm. For a given RNA, Sfold sto-
chastically samples all possible structures in the Boltz-
mann ensemble of secondary structures using conditional
probabilities which are computed with the partition func-
tion [75]. Clustering techniques could then be used to
obtain representative ' likely ' structures. Instead, the cur-
rent implementation samples 1000 structures, sorts these
by energy, the minimum and maximum energy structures
are computed and the energy range divided into 10
equally sized energy blocks. The minimum energy struc-
ture from each block is returned with ranking 1 to 10. We
consider the top 3 structures labelled 'Sfold (1–3)'. In
terms of accuracy, the results are very similar to those of
the Zuker-Stiegler single sequence methods, although
with a slightly higher variance (See figures 3 &4).

Intrinsic limits of single sequence methods
There are systematic limits to the accuracy of single
sequence prediction methods. The thermodynamics may
not be accurate, as some parameters are extrapolated and
parameter measuring conditions in vitro are different from
in vivo conditions. Indeed the thermodynamic model
itself is an estimate of the real physics of RNA folding.
Also, many bases of structural RNAs are chemically mod-
ified by sugar methylation, pseudo-uridine, dihydrour-
acil, etc, these are generally ignored by these methods.
Kinetics of folding are also ignored. Given only a single
sequence, we have no way to distinguish base-pairs and
structure elements important for the consensus from
those that are peculiar for the given sequence. Finally,
some functional RNAs have bistable structures, while in
others, the structure is irrelevant, hence not conserved,
and the optimal MFE structure is biologically meaning-
less. This is some justification of why researchers proceed
to comparative methods.

Comparative method: alignment folding (plan A)
To simulate realistic RNA folding studies we use ClustalW
[15] to re-align each of our test data-sets, then folded these
using each of the methods mentioned below. The result-

ant predicted structures were then compared to our recon-
structed consensus structures.

RNAalifold
RNAalifold [21,76] implements an extension of the
Zuker-Stiegler algorithm for computing a consensus struc-
ture from RNA alignments. The algorithm computes an

averaged energy matrix  (where N is the

number of sequences in the alignment) and a covariation
score matrix, augmented with penalties for inconsistent
sequences, Bij. A standard trace-back procedure is per-
formed to recover a consensus structure with the optimal

sum-of-average-energy-and-covariation-score .

The algorithm is remarkably efficient O(N·n2 + n3) in
time and O(n2) in memory.

The sensitivity, selectivity and correlation of the RNAali-
fold predictions ranged from 57–91%, 57–100% and
0.57–0.95 respectively, showing a significant increase in
the accuracy measures when compared to the MFE-meth-
ods.

Pfold
Pfold implements a "stochastic context free grammar"
(SCFG) designed to produce a "prior probability distribu-
tion of RNA structures" for an RNA alignment input
[23,24,77]. A maximum-likelihood phylogeny is used to
weight posterior probabilities computed from large refer-
ence data-sets.

The algorithm is generally accurate and efficient. Hence,
the over-all sensitivity, selectivity and correlation of the
Pfold predictions ranged from 0–100%, 0–100% and
0.0–1.0, respectively. But removing those points where
Pfold predictions were empty structures (LSU rRNA (H &
M) and SSU rRNA (M), see figure 3), the prediction accu-
racies ranged from 66–100%, 89–100% and 0.77–1.0,
respectively. The zeros are due to 'under-flow errors', a
solution is presently under construction by the authors
(pers. commun. Bjarne Knudsen).

ILM
ILM (iterated loop matching) is one of the few compara-
tive RNA folding algorithms which can return pseudo-
knotted structures [22,78]. It uses a combination of ther-
modynamic and mutual information content scores [18]
to produce a secondary structure. All possible stems
("small" internal loops and bulges inclusive) are
generated and ranked according to a combination of ther-
modynamic and mutual-information scores. The stem
with maximal score is selected, scores are updated and
stems conflicting the selection removed, then the next

E Eij ij
k

k

N
= ∑

E Bij ij+
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Prediction correlation with realityFigure 3
Prediction correlation with reality. Matthews correlation coefficient versus the logarithm of the sequence length for a 
range of different ncRNAs and structure prediction algorithms. Inset A shows accuracies of thermodynamic single sequence 
prediction algorithms. Insets B and C shows accuracies of comparative methods on the high and medium similarity data-sets 
respectively.
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ROC plotsFigure 4
ROC plots. We use ROC (receiver operating characteristic) plots to simultaneously display both sensitivity and selectivity for 
plans A, B and C respectively. Accuracies of the MFE methods (MFold, RNAFold and SFold) are shown in each plot to provide 
a base-line. Points on the line X = Y are as sensitive as they are selective, points below this line indicates a greater selectivity, 
points above indicate greater sensitivity. Points below the line X = 100 - Y are worse than "random" assignments; Assuming 
base-pairs are independent of each other (this is false for base-pairing). Points in the top right corner are "perfect" predictions. 
Interestingly many algorithms form characteristic clusters in these plots. Where the variance is sufficiently small these have 
been indicated with a closed curve.
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highest scoring stem is selected. This algorithm is iterated
until no stems remain. ILM generally ranked low in terms
of selectivity and was not as sensitive as either RNAalifold
or Pfold on the high similarity data, but did improve on
the medium similarity data-sets (see figure 3). The over-all
sensitivity, selectivity and correlation of ILM predictions
ranged from 44–100%, 37–75% and 0.40–0.86, respec-
tively. To ensure the low selectivity values weren't due to
the reference-structure being pseudo-knot free we re-eval-
uated ILM with reference-structures replete with pseudo-
knots. The new sensitivity, selectivity and correlation val-
ues ranged from 31–100%, 26–75% and 0.29–0.86, in
fact evaluating with pseudo-knotted structures did little to
increase ILM selectivity. But, keep in mind that the sensi-
tivity of the other (non-knot-inclusive) methods must
decrease when a significant proportion of the true base-
pairs are engaged in pseudo-knots.

The inclusion of pseudo-knots prediction vastly increases
the number of possible secondary structures, this is why
they are generally excluded from exhaustive folding algo-
rithms. In addition, there is a general lack of experimen-
tally derived thermodynamic parameters which include
pseudo-knots. ILM is a method still under development,
hence the performance may improve once pseudo-knots
can be more accurately modelled.

Comparative method: simultaneous sequence alignment 
and folding (plan B)
Sankoff
The Sankoff algorithm is a dynamic programming
approach to obtain a common base-pair list with maximal
sum of base-pair weights. Basically, this is a merger of
sequence alignment and Nussinov [79] (maximal-pair-
ing) folding dynamic programming methods [26].
Sankoff's algorithm can be used to obtain both an align-
ment and consensus structure. Full implementations of
the "Sankoff algorithm" for the solution of simultaneous
RNA folding, alignment and protosequence problems
have proven too computationally taxing (O(n3m) in time,
and O(n2m) in space for sequence length n and m
sequences) to be practical [25]. Hence, three restricted ver-
sions of this algorithm have been implemented. These are
Foldalign [27], Dynalign [29] and recently PMcomp has
also been published [26]. Carnac [80,81] is another recent
innovation designed to detect conserved stems in una-
ligned sequences, we include it here as a relative of the
Sankoff approach.

Foldalign
Foldalign [27] can be interpreted as "a mixture of local
alignment and maximum number of base-pairs algo-
rithm" [28,82]. A combination of "clustal" [15] and "con-
sensus" [83] heuristics are used to build multiple
sequence alignments from pair-wise comparisons.

Restricting maximum motif size (for this study 50 was
used) and forbidding bifurcating structures (multi-loops)
reduces the time complexity to O(n4N) in time (where N
is the number of sequences and n is the length of the long-
est sequence). A simple match-based scoring scheme is
used to rank putative conserved structure elements.

The Tool Abuse Caveat generally applies to the tool Folda-
lign as all of our data-sets contain multi-loops. The use of
Foldalign for the prediction of global, multi-looped sec-
ondary structures is not recommended-as Foldalign is spe-
cifically designed for the location of short regulatory
motifs such as IREs [84] where the motifs are only related
at the level of (non-bifurcating) structure and not at the
level of sequence. Hence the relatively poor sensitivity,
selectivity and correlation, which ranged from 5–24%,
23–36% and 0.11–0.27 respectively, for our test data-sets.

Dynalign
Dynalign [29,85] is a pairwise implementation of the
Sankoff algorithm, which uses a "full energy model" to
locate a common low energy structure (including multi-
loops) and align two structural RNAs. The computational
complexity of the full Sankoff is reduced by restricting the
difference in the indices i and j of aligned nucleotides
(where i indexes positions in sequence 1 and j indexes
sequence 2) to be less than M. In addition, Dynalign uses
the same method employed by MFold to reduce the con-
formation space, by limiting the size of internal loops
[29,86]. The complexity is thus reduced to O(n3M3).

The current Dynalign implementation is restricted to pair-
wise sequence comparisons. Rather than compute all

 pairwise foldings we compared all sequences

with the reference structure. Due to the computational
expense of this algorithm it could only be used to predict
tRNA and RNase P structures. Dynalign performed well
on the tRNA, medium sequence homology data-set (sen-
sitivity, selectivity and correlation of 94%, 95% and 0.94
respectively, when averaged over all pairwise alignments
with the reference sequence). With this one high-scoring
point removed, averaged sensitivity, selectivity and corre-
lation values ranged from 32–54%, 33–54% and 0.32–
0.54 respectively. Comparing the performances of MFold
and Dynalign showed that MFold performance was
always superior on the RNase P data-set, Dynalign how-
ever did much better on the shorter and more diverse
tRNA sequences. Performance gains could be made by
investing more computer time and refolding RNase P with
larger ' maximum insert size', which was set to 10 during
this study. The use of Dynalign on the RNase P data-sets
in this study is therefore a case of tool-abuse, as the
parameters recommended by the authors of Dynalign

1
2

1n n( )−
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were not used (to ensure calculations completed in rea-
sonable time).

Carnac
The Carnac algorithm, as mentioned previously, is not
strictly an implementation of the Sankoff algorithm. A set
of filters are employed through which sets of sequences
are passed in a pair-wise fashion [80,81,87]. Sequences
are scanned for stems and "high similarity" regions of
sequences (dubbed "anchor points") are identified, a
dynamic program is used to select conserved stems using
anchor point and covariation information.

The Carnac algorithm was remarkably selective at base-
pair predictions. However, the sensitivity of the algorithm
was generally low, although when evaluated with the cor-
relation coefficient it is comparable to RNAalifold and
Pfold. Sensitivity, selectivity and correlation values for
Carnac predictions ranged from 45–71%, 92–100% and
0.65–0.82 respectively. The sensitivity of Carnac can be
increased by constraining a minimum free energy fold
(i.e. with "RNAfold-C") with the Carnac predicted struc-
ture, but this cost in terms of selectivity. On average this
increased the sensitivity by 22.5, decreased the selectivity
by 17.2 and slightly increased the correlation by 0.05.

Alignment of predicted structures (plan C)
RNA forester
RNAforester [37,88] implements the tree alignment
model. In contrast to approaches that produce only a sim-
ilarity value, but no underlying alignment, it computes
pairwise alignments of two input structures. RNAforester
can produce either global or local alignments; we used the
global mode. A structure alignment is itself a branching
(tree-like) structure; the set of matched base-pairs can be
derived from it and evaluated as with the other
approaches.

We used the tRNA and RNase P data-sets and generated
structure single sequence predictions with RNAfold. All
predicted structures were aligned pairwise and a neigh-
bour-joining approach used to cluster and align high sim-
ilarity sequences and structure profiles. The highest
scoring alignment was used to derive a predicted consen-
sus that was evaluated against the consensus tRNA model
structures. Sensitivity, selectivity and correlation ranges of
consensus structures computed from the highest scoring
RNAforester alignments were 29–67%, 27–67% and
0.26–0.66 respectively. It seems likely that much of the
inaccuracy of this approach is due to MFE structure predic-
tion, however the structure-clustering approach fre-
quently separates mis-folded MFE predictions from the
accurate folds.

MARNA
The MARNA algorithm [39,89] proceeds by constructing
edge weights between nucleotides in a pairwise fashion.
Weights are structure-enhanced-sequence-similarities
transformed from edit distances proposed by Zhang [90].
Phase two pipes the set of alignment edges into t-coffee
[16] for multiple alignment production. The resultant
alignments are not strictly structural alignments in the
sense defined above. Rather, these are sequence align-
ments influenced by structure.

Sensitivity, selectivity and correlation values of consensus
structures computed from MARNA alignments of MFE
structures ranged from 29–52%, 32–84% and 0.30–0.65
respectively. We also tried trimming high entropy base-
pairs from the MFE predictions using the bound Qij > 1,

where , , and pij are pair-

probabilities computed using McCaskilPs partition func-
tion [75]. The new accuracy ranges were 29–71%, 92–
100% and 0.53–0.84. A related approach for trimming of
low probability was recently shown to improve the selec-
tivity of MFE predictions [65]. MARNA is generally less
dependant upon the accuracy of the input structures
hence performs slightly better with the poorly predicted
tRNA structures than RNAforester.

Discussion
We have evaluated three different strategies for compara-
tive structure prediction, and altogether eight tools (not
counting the single sequence methods). The results of
which are summarised in figures 3 &4. A surprising dis-
covery given that the test data-sets are so diverse is that
algorithm specific clusters formed in sensitivity versus
selectivity scatter plots, indicating algorithm-specific
eccentricities. A number of algorithms which might have
been evaluated here have been excluded, primarily due to
the heavy computational costs of the various implementa-
tions on our longer data-sets. We favoured recent
algorithms which could be compiled on modern comput-
ers and those with input and output which could be sim-
ply dealt with (for example returning dot-bracket
[13,37,91] or tabular-connect type formats [12,29,41],
rather than coordinates and lengths of stacks or graphic
(gif/pdf) representations favoured by a minority of
researchers).

Practical recommendations
For well aligned short sequences, both Pfold and RNAali-
fold generally perform well, PFold performed marginally
better than RNAalifold. It is likely that some moderate
refinements to RNAalifold would improve accuracy with-
out altering the efficiency, for example, if gaps were not
penalised in the free-energy evaluation and a more
sophisticated model for scoring mutations was employed,

Q q qij i j= q p pi ij ijj
= ∑ log
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Table 2: The following tables display results of several structure predictions using a variety of algorithms upon data-sets containing 
either S. cerevisiae tRNA-PHE, E. coli RNase P, E. coli SSU rRNA or E. coli LSU rRNA sequences. Reading columns from left to right we 
show: prediction method, number of base-pairs in the reference structure, number of base-pairs in the predicted structure, the number 
of true positive base-pairs in the prediction (% sensitivity as described earlier in parentheses), the number of false positive base-pairs in 
the prediction (% selectivity as described earlier in parentheses), correlation values are the "Matthews correlation coefficient" (with 
approximate correlation in parentheses). Each of these MFE-based attempts to predict the famous S. cerevisiae tRNA-PHE structure 
converges on an alternative lengthy-helix type structure. Adding prior knowledge, such as forcing modified bases in the RNA sequence 
to be unpaired can produce dramatic improvements.

S. cerevisiae tRNA-PHE: Single Sequence Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

RNAfold 18 23 4 (22.2) 16 (20.0) 0.178 (21.1)
Mfold (1) 18 21 4 (22.2) 14 (22.2) 0.191 (22.2)
Mfold (2) 18 22 8 (44.4) 11 (42.1) 0.409 (43.3)
Mfold (3) 18 23 4 (22.2) 16 (20.0) 0.178 (21.1)
Sfold (1) 18 23 4 (22.2) 16 (20.0) 0.178 (21.1)
Sfold (2) 18 23 4 (22.2) 16 (20.0) 0.178 (21.1)
Sfold (3) 18 21 4 (22.2) 14 (22.2) 0.191 (22.2)

Table 3: Generally the comparative approaches perform much better than MFE methods at determining S. cerevisiae tRNA-PHE 
structure. For the consensus predictions of RNAalifold and Carnac we also computed "filled" structures using constrained MFE 
predictions. This usually improved the sensitivity of the methods. PFold a built-in stem-extension procedure to fill structures. As the 
tRNA structure contains a multi-loop Foldalign is not expected to perform well here. Dynalign performed well on the most diverse data-
set (M) but didn't do well on the high similarity data-set. The structure alignment methods generally did poorly here. Most probably 
due to the miss-folded MFE structure which were used as input. Trimming high entropy base-pairs from the input structures produced 
modest improvements.

S. cerevisiae tRNA-PHE: Comparative Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

Plan A: ClustalW Alignment
RNAalifold (H) 21 20 19 (90.5) 0 (100.0) 0.950 (95.2)
RNAalifold (H) + RNAfold-C 21 21 21 (100.0) 0 (100.0) 1.000 (100.0)
RNAalifold (M) 18 14 14 (77.8) 0 (100.0) 0.880 (88.9)
RNAalifold (M) + RNAfold-C 18 21 18 (100.0) 0 (100.0) 1.000 (100.0)
ILM (H) 21 24 16 (76.2) 7 (69.6) 0.722 (72.9)
ILM (M) 18 30 18 (100.0) 6 (75.0) 0.863 (87.5)
Pfold (H) 21 21 20 (95.2) 0 (100.0) 0.975 (97.6)
Pfold (M) 18 21 18 (100.0) 0 (100.0) 1.000 (100.0)
Plan B: Unaligned sequences
Carnac (H) 21 17 15 (71.4) 1 (93.8) 0.815 (82.6)
Carnac (H) + RNAfold-C 21 21 19 (90.5) 1 (95.0) 0.925 (92.7)
Carnac (M) 21 13 12 (57.1) 1 (92.3) 0.722 (74.7)
Carnac (M) + RNAfold-C 21 22 16 (76.2) 5 (76.2) 0.757 (76.2)
Dynalign (H) 21 22.40 11.50 (54.78) 10.20 (54.45) 0.5353 (54.59)
Dynalign (M) 21 21.10 19.80 (94.27) 1.20 (95.00) 0.9448 (94.64)
Foldalign (H) 21 16 5 (23.8) 11 (31.2) 0.259 (27.5)
Foldalign (M) 21 16 5 (23.8) 10 (33.3) 0.268 (28.6)
Plan C: Structure alignment
MARNA (H) 21 19 6 (28.6) 12 (33.3) 0.295 (31.0)
MARNA (M) 21 22 7 (33.3) 15 (31.8) 0.311 (32.6)
MARNA-trim (H) 21 6 6 (28.6) 0 (100.0) 0.530 (64.3)
MARNA-trim (M) 21 15 15 (71.4) 0 (100.0) 0.843 (85.7)
RNAforester (H) 21 23 6 (28.6) 16 (27.3) 0.263 (27.9)
RNAforester (M) 21 21 14 (66.7) 7 (66.7) 0.659 (66.7)
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Table 4: Note the improvement in prediction accuracy on the supposedly more difficult and longer E. coli RNase P data-set. This shows 
that MFE methods are less sensitive to folding errors on longer data-sets but are also less likely to resolve the entire structure. There 
is little difference in algorithm accuracy for each of the methods explored here. Each employs the same energy parameters so 
differences are due to slightly different implementations.

E. coli RNase P: Single Sequence Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

RNAfold 110 116 69 (62.7) 46 (60.0) 0.612 (61.4)
Mfold (1) 110 118 67 (60.9) 49 (57.8) 0.591 (59.3)
Mfold (2) 110 114 67 (60.9) 46 (59.3) 0.599 (60.1)
Mfold (3) 110 118 76 (69.1) 37 (67.3) 0.680 (68.2)
Sfold (1) 110 116 73 (66.4) 42 (63.5) 0.647 (64.9)
Sfold (2) 110 119 t86 (78.2) 28 (75.4) 0.767 (76.8)
Sfold (3) 110 117 61 (55.5) 55 (52.6) 0.538 (54.0)

Table 5: RNase P is a difficult data-set to study. Five sequences in the high similarity data-set are truncated at both the 5 and 3 prime 
ends (due to the primers used for sequencing these). Sequences in the medium similarity data-set are full-length but do not align well 
using traditional tools such as ClustalW. Values corresponding to the re-evaluation of ILM with pseudo-knot inclusive reference 
structures are indicated by "ILM-pknot".

E. coli RNase P: Comparative Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

RNAalifold (H) 71 113 56 (78.9) 16 (77.8) 0.782 (78.3)
RNAalifold (H) + RNAfold-C 71 119 55 (77.5) 16 (77.5) 0.773 (77.5)
RNAalifold (M) 54 66 31 (57.4) 23 (57.4) 0.571 (57.4)
RNAalifold (M) + RNAfold-C 54 77 33 (61.1) 16 (67.3) 0.639 (64.2)
Pfold (H) 71 67 47 (66.2) 6 (88.7) 0.765 (77.4)
Pfold (M) 54 87 47 (87.0) 4 (92.2) 0.895 (89.6)
ILM (H) 71 124 31 (43.7) 54 (36.5) 0.395 (40.1)
ILM (M) 54 133 38 (70.4) 31 (55.1) 0.620 (62.7)
ILM-pknot (H) 110 124 53 (48.2) 65 (44.9) 0.463 (46.5)
ILM-pknot (M) 110 133 44 (40.0) 75 (37.0) 0.382 (38.5)
Plan B: Unaligned sequences
Carnac (H) 71 40 36 (50.7) 0 (100.0) 0.712 (75.4)
Carnac (H) + RNAfold-C 71 116 50 (70.4) 25 (66.7) 0.684 (68.5)
Carnac (M) 97 80 63 (64.9) 3 (95.5) 0.787 (80.2)
Carnac (M) + RNAfold-C 97 118 78 (80.4) 25 (75.7) 0.779 (78.1)
Foldalign (H) 71 41 14 (19.7) 25 (35.9) 0.265 (27.8)
Foldalign (M) 97 24 5 (5.2) 17 (22.7) 0.107 (13.9)
Dynalign (H) 71 95.13 28.63 (40.31) 41.50 (39.59) 0.3974 (39.96)
Dynalign (M) 97 103.20 31.00 (31.95) 61.50 (32.80) 0.3208 (32.39)
Plan C: Structure alignment
MARNA (H) 71 89 37 (52.1) 23 (61.7) 0.566 (56.9)
MARNA (M) 97 60 48 (49.5) 9 (84.2) 0.645 (66.8)
MARNA-trim (H) 71 52 37 (52.1) 3 (92.5) 0.694 (72.3)
MARNA-trim (M) 97 43 39 (40.2) 1 (97.5) 0.625 (68.9)
RNAforester (H) 71 114 40 (56.3) 31 (56.3) 0.562 (56.3)
RNAforester (M) 97 117 64 (66.0) 44 (59.3) 0.624 (62.6)
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Table 6: E. coli SSU rRNA with a length of approximately 1600 nucleotides is beyond the reach of many structure prediction algorithms 
such as RNAforester and Dynalign. The minimum free energy methods, however, can produce results.

E. coli SSU rRNA: Single Sequence Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

RNAfold 468 493 207 (44.2) 271 (43.3) 0.437 (43.8)
Mfold (1) 468 480 240 (51.3) 224 (51.7) 0.515 (51.5)
Mfold (2) 468 487 242 (51.7) 229 (51.4) 0.515 (51.5)
Mfold (3) 468 487 202 (43.2) 273 (42.5) 0.428 (42.8)
Sfold (1) 468 481 232 (49.6) 229 (50.3) 0.499 (49.9)
Sfold (2) 468 499 231 (49.4) 249 (48.1) 0.487 (48.7)
Sfold (3) 468 475 232 (49.6) 230 (50.2) 0.498 (49.9)

Table 7: The probabilistic approach of PFold can, on occasion, suffer from "under-flow" errors caused by multiplying many probabilities 
together producing numbers too low to be dealt with on modern computers. This is what has happened on the medium similarity data-
set.

E. coli SSU rRNA: Comparative Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

Plan A: ClustalW Alignment
RNAalifold (H) 460 472 275 (59.8) 179 (60.6) 0.601 (60.2)
RNAalifold (H) + RNAfold-C 460 483 273 (59.3) 195 (58.3) 0.588 (58.8)
RNAalifold (M) 441 433 372 (84.4) 32 (92.1) 0.881 (88.2)
RNAalifold (M) + RNAfold-C 441 469 388 (88.0) 44 (89.8) 0.889 (88.9)
Pfold (H) 460 377 326 (70.9) 26 (92.6) 0.810 (81.7)
Pfold (M) 441 0 0 (0.0) 0 (0.0) 0.000 (0.0)
ILM (H) 460 565 236 (51.3) 313 (43.0) 0.469 (47.1)
ILM (M) 441 564 264 (59.9) 249 (51.5) 0.554 (55.7)
ILM-pknot (H) 468 565 236 (50.4) 311 (43.1) 0.466 (46.8)
ILM-pknot (M) 468 564 266 (56.8) 258 (50.8) 0.537 (53.8)
Plan B: Unaligned sequences
Carnac (H) 460 233 206 (44.8) 12 (94.5) 0.650 (69.6)
Carnac (H) + RNAfold-C 460 470 332 (72.2) 112 (74.8) 0.734 (73.5)
Carnac (M) 448 294 259 (57.8) 18 (93.5) 0.735 (75.7)
Carnac (M) + RNAfold-C 448 471 337 (75.2) 110 (75.4) 0.753 (75.3)

Table 8: E. coli LSU rRNA is approximately 3350 nucleotides in length. The longest member of our test-set. The highest ranked Sfold 
prediction is remarkably poor, resolving just 5.8% of the reference structure.

E. coli LSU rRNA: Single Sequence Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

RNAfold 839 906 435 (51.8) 430 (50.3) 0.510 (51.1)
Mfold (1) 839 883 458 (54.6) 383 (54.5) 0.545 (54.5)
Mfold (2) 839 892 480 (57.2) 364 (56.9) 0.570 (57.0)
Mfold (3) 839 889 454 (54.1) 392 (53.7) 0.539 (53.9)
Sfold (1) 839 903 49 (5.8) 811 (5.7) 0.057 (5.8)
Sfold (2) 839 878 432 (51.5) 411 (51.2) 0.513 (51.4)
Sfold (3) 839 882 384 (45.8) 463 (45.3) 0.455 (45.6)
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perhaps ribosum matrices [92] could be used to weight
base-pair bonuses and penalties. For well aligned, long
sequences the performance and speed of RNAalifold was
excellent. For data-sets consisting of short (< 200 bases)
and diverse sequences Dynalign might do well, as it does
not require sequence similarity – in fact the scoring func-
tion does not include sequence comparison. Otherwise,
one might choose to use a mixture of RNAalifold and/or
Pfold to fold similar clades and RNAforester and/or
MARNA to align folded clades. Advocates of plan A
should note that many multiple sequence alignment algo-
rithms generally do not favour transitions over transver-
sions or employ ad hoc 2-parameter methods to model
these (ClustalW [15] for example). Structural RNA
sequences however evolve rapidly via structure neutral
mutations which are frequently transitions and rarely
transversions [92,93]. Multiple sequence algorithms
which employ more complex yet more accurate models of
sequence evolution will undoubtedly produce "better"
alignments for folding.

Carnac produced highly selective structures for all the test
data-sets, which if used to constrain a free energy fold pro-
duced sensitive predictions with a cost to selectivity. The
consistency of Carnac performance is remarkable, for all
the data-sets considered here this heuristic approach per-
formed well. It is however unclear how Carnac will per-
form on highly diverse data-sets.

For advocates of plan C, we have an encouraging message:
Both MARNA and RNAforester perform better on the

medium similarity data than on high similarity data. This
seems paradoxical at first glance, but one must under-
stand that for an approach purely based on predicted
structures, high sequence similarity can be a curse rather
than a blessing: If sequences are very similar, they may
jointly fold into the wrong MFE structure. With more
sequence variation, it becomes more likely that at least
some family members have good predictions, which by
their mutual similarity can be picked out from the rest.
This means that especially in the case of low sequence
similarity, where nothing else works, plan C, currently the
least explored strategy of all, has a certain promise.

Conclusions
Finally, let us outline some directions for future research.

An implementation of the single sequence pseudoknot
algorithms [42,43,94] employing similar strategies to
RNAalifold [21] for alignment folding would be most use-
ful. Based upon the RNAalifold results this approach
would dramatically increase the accuracy of these algo-
rithms upon certain data-sets. Also, an extension of these
allowing constrained foldings to incorporate prior knowl-
edge would be of assistance, this has proved extremely
useful for MFE predictions. Sampling structures from ref-
erence alignments is also likely to prove beneficial. The
implementation of fast and accurate variants of the
Sankoff algorithm remains an open problem.

Again allowing constrained foldings and alignments
would be useful. The further development of "BLAST-like"

Table 9: Pfold predictions on both the high and medium similarity data-sets underflow on E. coli LSU rRNA. RNAalifold and Carnac, 
however, produce reasonable results.

E. coli LSU rRNA: Comparative Methods

Algorithm number of bps in 
reference

number of bps in 
prediction

True Positives (% 
sensitivity)

False Positives (% 
selectivity)

Correlation (%)

Plan A: ClustalW Alignment
RNAalifold (H) 794 879 627 (79.0) 195 (76.3) 0.776 (77.6)
RNAalifold (H) + RNAfold-C 794 871 629 (79.2) 185 (77.3) 0.782 (78.2)
RNAalifold (M) 819 721 614 (75.0) 53 (92.1) 0.831 (83.5)
RNAalifold (M) + RNAfold-C 819 790 691 (84.4) 78 (89.9) 0.871 (87.1)
Pfold (H) 794 0 0 (0.0) 0 (0.0) 0.000 (0.0)
Pfold (M) 819 0 0 (0.0) 0 (0.0) 0.000 (0.0)
ILM (H) 794 1048 389 (49.0) 602 (39.3) 0.438 (44.1)
ILM (M) 819 1161 560 (68.4) 405 (58.0) 0.630 (63.2)
ILM-pknot (H) 869 1048 272 (31.3) 759 (26.4) 0.287 (28.8)
ILM-pknot (M) 869 1161 377 (43.4) 629 (37.5) 0.403 (40.4)
Plan B: Unaligned sequences
Carnac (H) 816 422 390 (47.8) 7 (98.2) 0.685 (73.0)
Carnac (H) + RNAfold-C 816 873 674 (82.6) 156 (81.2) 0.819 (81.9)
Carnac (M) 821 508 463 (56.4) 14 (97.1) 0.740 (76.7)
Carnac (M) + RNAfold-C 821 865 682 (83.1) 147 (82.3) 0.827 (82.7)
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folding heuristics for this should be a priority, obviously
Carnac is a good start. The MARNA approach for produc-
ing structurally enhanced multiple alignments produced
rather selective results after trimming high-entropy base-
pairs from MFE predictions. This suggests that weighting
edit-distances with partition-function derived probabili-
ties or entropies will produce reasonable RNA alignments.
A consensus structure could then be derived from MFE-
structures or from PFold or RNAalifold predictions on the
resultant alignment. This approach would effectively
decouple the Sankoff algorithm into manageable struc-
ture-enhanced-alignment and folding stages.

Note added in proof
Two further developments are likely to increase the power
of plan C. Pure multiple structure alignment (as opposed
to pairwise alignment used here) presented in [95] may
leave out some misfolded structures from a progressively
constructed profile aligment. A small but representative
set of near-optimal structures can now be derived by
abstract shape analysis [96]. Combining both approaches,
one could consider a progressive multiple alignment
approach where these representative, near-optimal struc-
tures are included for each sequence.

More training data is essential for this field to progress, for
this homology search tools are essential. Infernal [91,97]
used to construct the Rfam database [98,99] is an excel-
lent approach but sensitivity might be increased with a
phylogenetic approach and RNA-specific sequence search
tools. The implementation of methods combining ener-
getics, covariation [21] and co-transcriptional folding
[100] in a statistically reasonable manner is also a poten-
tially fruitful direction for development.
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