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Abstract
Background: The hit criterion is a key component of heuristic local alignment algorithms. It
specifies a class of patterns assumed to witness a potential similarity, and this choice is decisive for
the selectivity and sensitivity of the whole method.

Results: In this paper, we propose two ways to improve the hit criterion. First, we define the group
criterion combining the advantages of the single-seed and double-seed approaches used in existing
algorithms. Second, we introduce transition-constrained seeds that extend spaced seeds by the
possibility of distinguishing transition and transversion mismatches. We provide analytical data as
well as experimental results, obtained with the YASS software, supporting both improvements.

Conclusions: Proposed algorithmic ideas allow to obtain a significant gain in sensitivity of similarity
search without increase in execution time. The method has been implemented in YASS software
available at http://www.loria.fr/projects/YASS/.

Background
Sequence alignment is a fundamental problem in Bioin-
formatics. Despite of a big amount of efforts spent by
researchers on designing efficient alignment methods,
improving the alignment efficiency remains of primary
importance. This is due to the continuously increasing
amount of nucleotide sequence data, such as EST and
newly sequenced genomic sequences, that need to be
compared in order to detect similar regions occurring in
them. Those comparisons are done routinely, and there-
fore need to be done very fast, preferably instantaneously
on commonly used computers. On the other hand, they
need to be precise, i.e. should report all, or at least a vast
majority of interesting similarities that could be relevant
in the underlying biological study. The latter requirement
for the alignment method, called the sensitivity, counter-
weights the speed requirement, usually directly related to
the selectivity (called also specificity) of the method. The

central problem is therefore to improve the trade-off
between those opposite requirements.

The Smith-Waterman algorithm [1] provides an exact
algorithmic solution to the problem of computing opti-
mal local alignments. However, its quadratic time com-
plexity has motivated the creation of rapid heuristic local
alignments tools. A basic idea behind all heuristic algo-
rithms is to focus only on those regions which share some
patterns, assumed to witness (or to hit) a potential simi-
larity. Those patterns are formed by seeds which are small
strings (usually up to 25 nucleotides) that appear in both
sequences. FASTA [2] and BLAST [3,4] are well-known
examples of such methods. BLAST is currently the most
commonly used sequence alignment tool, and is a kernel
of higher-level search tools, such as PSI-BLAST [4] for
instance.
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More recently, several new alignment methods have been
proposed, such as BLAT [5], PatternHunter [6], LAGAN
[7], or BLASTZ [8], to name a few. The improvement
brought by all those tools results from new more efficient
hit criteria that define which pattern shared by two
sequences is assumed to witness a potential alignment.
Two types of improvements can be distinguished. On the
one hand, using two or more closely located smaller seeds
instead of one larger seed has been shown to improve the
sensitivity/selectivity trade-off [4-6], especially for detect-
ing long similarities. On the other hand, new seed models
have been proposed, such as spaced seeds [6], seeds with
errors [5], or vector seeds [9].

In this paper, we propose further improvements in both
those directions. In the first part (Section Group hit crite-
rion), we propose a new flexible and efficiently computa-
ble hit criterion, called group criterion, combining the
advantages of the single-seed ([3]) and multi-seed ([2,4-
6]) criteria. In the second part (Section Generalized seed
models), we propose a new more expressive seed model
which extends the spaced seed model of PatternHunter
[6] by the possibility of distinguishing transition and
transversion mismatches. We show that this allows to
obtain a further gain in sensitivity on real genomic
sequences, usually rich in transition mutations. Both pro-
posed improvements have been implemented in YASS
software [10], used in the experimental part of this work.

Results
Group hit criterion
The first preparatory step of most heuristic alignment
algorithms consists of constructing a hash table of all seeds
occurring in the input sequences. In this section, we
assume that a seed of weight k is a word consisting of k
contiguous nucleotides (k-word), more general notions of
seed will be considered in the next Section.

In the simplest case, implemented in the early version of
BLAST [3], an individual seed occurring in both sequences
acts as a hit of a potential alignment. It triggers the X-drop
algorithm trying to extend the seed to a so-called High-
scoring Segment Pair (HSP), used then to obtain a larger
final alignment. Gapped BLAST [4] proposes a double-seed
criterion that defines a hit as two non-overlapping seeds
occurring at the same dotplot diagonal within a fixed-size
window. This allows to considerably increase the selectiv-
ity with respect to the single-seed approach, and at the
same time to preserve, and even to improve, the sensitivity
on large similarities. On the other hand, Gapped BLAST is
less sensitive on short and middle-size similarities of weak
score. (We will show this more formally at the end of this
Section.) Most of the existing alignment programs [5,6]
use either a single-seed or a double-seed hit criterion.

Here we propose a new flexible hit criterion defining a hit
as a group containing an arbitrary number of possibly
overlapping seeds, with an additional constraint on the
minimal number of matching nucleotides. The seeds of
the same group are assumed to belong to the same simi-
larity, and therefore should be proximate to each other. In
contrast to other multi-seed hit criteria [4-6], we don't
require seeds to occur at the same dotplot diagonal but at
close diagonals, to account for possible indels. The possi-
ble placement of seeds is controlled by parameters com-
puted according to statistical models that we describe
now.

Group criterion
A hit criterion defines a pattern which is considered as an
evidence of a potential similarity. Every time this pattern
is found, its extension is triggered to compute a potential
larger alignment. The extension is usually done via a
dynamic programming algorithm and is a costly step. The
hit criterion should be selective enough to avoid spurious
extensions and, on the other hand, should be sensitive to
detect as many relevant similarities as possible.

The hit criterion we propose is based on a group of seeds
verifying conditions (1), (2) (see Section Methods). By the
considered statistical analysis, this ensures a good sensi-
tivity. However, many groups will contain a single seed or
two strongly overlapping seeds, that either belong to a
similarity with a low score, or do not belong to any simi-
larity at all (i.e. don't belong to an alignment with a suffi-
ciently high score). To cope with this problem, we
introduce an additional criterion that selects groups that
will be actually extended. The criterion, called group crite-
rion, is based on the group size defined as the minimal
number of matching individual nucleotides in all seeds of the
group. The group size can be seen as a parameter specifying
the maximal overlap of the seeds of a group. For example,
if the group size is k + 1, then no constraint on the overlap
is imposed, i.e. any group containing two distinct seeds
forms a hit. If the group size is 2k, then the group must
contain at least two non-overlapping seeds, etc.

Allowing overlapping seeds is an important point that
brings a flexibility to our method. Note that other popular
multi-seed methods [4,5] consider only non-overlapped
seeds. Allowing overlapped seeds and controlling the
overlap with the group size parameter offers a trade-off
between a single-seed and a multi-seed strategies. This
increases the sensitivity of the usual multi-seed approach
without provoking a tangible increase in the number of
useless extensions. In the next section, we will provide
quantitative measures comparing the sensitivity of the
YASS group criterion with BLAST and Gapped BLAST.
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Some comparative and experimental data
In this section, we adopt the following experimental setup
to estimate the sensitivity of the YASS group criterion
compared to other methods. We first set a match/mis-
match scoring system, here fixed to +1/-3 (default NCBI-
BLAST values). The main assumption is that the sensitivity
is estimated as the probability of hitting a random gapless
alignments of a fixed score. Moreover, to make this model
yet more close to reality, only homogeneous alignments are
considered, i.e. alignments that don't contain proper sub-
alignments of bigger score (see [11]). For a given align-
ment length, all homogeneous alignments are assumed to
have an equal probability to occur.

In this setting, we computed the hit probability of a sin-
gle-seed criterion with seed weight 11 (default for BLAST)
and compared it with multi-seed criteria of Gapped BLAST
and YASS for seed weight 9 (default for Gapped BLAST).
For YASS, the group size was set to 13. Figure 1 shows the
probability graphs for alignment score 25.

Comparing BLAST and Gapped BLAST, the former is more
sensitive on short similarities (having higher identity
rate), while the latter is more sensitive on longer similari-
ties, in which two close non-overlapping runs of 9
matches are more likely to occur than one run of 11
matches. The YASS group criterion combines the advan-
tages of both: it is more sensitive than the single-seed cri-
terion even for short similarities, and than the non-
overlapping double-seed criterion for large similarities
(Figure 1).

Note, however, that for the chosen parameters, the YASS
criterion is slightly less selective than that of Gapped
BLAST as it includes any two non-overlapping seeds but
also includes pairs of seeds overlapped by at most 5 bp.
The selectivity can be estimated by the probability of a hit
at a given position in a random uniform Bernoulli
sequence (see [5]). For YASS, this probability is 2.1·10-8,
which improves that of BLAST (2.4·10-7) by more than
ten. For Gapped BLAST, this probability is 7.3·10-9. To
make an accurate sensitivity comparaison of YASS and
Gapped BLAST, parameters should be set so that both
algorithms have the same selectivity level.

To compare the sensitivity of YASS and Gapped BLAST for
an equal selectivity level, we chose a parameter configura-
tion such that both algorithms have the same estimated
selectivity (10-6). This is achieved with seed weight 8 for
Gapped BLAST and group size 11 for YASS (while keeping
seed weight 9). In this configuration, and for sequences of
score 25, YASS turns out to be considerably more sensitive
on sequences up to 80 bp and is practically as sensitive as
Gapped BLAST on longer sequences (data not shown). At
the same time, YASS is more time efficient in this case, as
Gapped BLAST tends to compute more spurious individ-
ual seeds that are not followed by a second hit, which
takes a considerable part of the execution time. This is
because the YASS seed is larger by one nucleotide, and the
number of spurious individual seeds computed at the first
step is then divided by 4 on large sequences.

Compared to the single-seed criterion of BLAST, the YASS
group criterion is both more selective (group size 13 vs
single-seed size 11) and more sensitive for all alignment
lengths, as soon as the alignment score is 25 or more. If the
score becomes smaller, both criteria yield an unacceptably
low sensitivity, and the seed weight has then to be
decreased to detect those similarities.

Finally, we point out another experiment we made to
bring more evidence that the group criterion captures a
good sensitivity/selectivity trade-off. We monitored the
partition of the execution time between the formation of
groups and their extension by dynamic programming
(data not shown). It appeared that YASS spends approxi-
mately equal time on each of the two stages, which gives
a good indication that it provides an optimal distribution
between the two complementary parts of the work.

Generalized seed models
So far, we defined seeds as k-words, i.e. short strings of
contiguous nucleotides. Recently, it has been understood
that using spaced seeds allows to considerably improve the
sensitivity. A spaced seed is formed by two words, one
from each input sequence, that match at positions speci-
fied by a fixed pattern – a word over symbols # and _

Hit ProbabilityFigure 1
Hit Probability. Hit probability as a function of length of 
fixed-score alignments
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interpreted as a match and a don't care symbol respec-
tively. For example, pattern ##_# specifies that the first,
second and fourth positions must match and the third
one may contain a mismatch.

PatternHunter [6] was the first method that used carefully
designed spaced seeds to improve the sensitivity of DNA
local alignment. In [12], spaced seeds have been shown to
improve the efficiency of lossless filtration for approximate
pattern matching, namely for the problem of detecting all
matches of a string of length m with q possible substitu-
tion errors (an (m, q)-problem). The use of some specific
spaced seeds for this problem was proposed earlier in
[13]. Yet earlier, random spaced seeds were used in FLASH
software [14] to cover sequence similarities, and the sen-
sitivity of this approach was recently studied in [15].

The advent of spaced seeds raised new questions: How to
choose a good seed for a local alignment algorithm? How
to make a precise estimation of the seed goodness, or
more generally, of a seed-based local alignment method?
In [16], a dynamic programming algorithm was proposed
to measure the hit probability of a seed on alignments
modeled by a Bernoulli model. In the lossless case, an
analogous algorithm that allows to test the seed complete-
ness for an (m, q)-problem was proposed in [12]. The
algorithm of [16] has been extended in [17] for hidden
Markov models on order to design spaced seeds for com-
paring homologous coding regions. Another method
based on finite automata was proposed in [18]. A comple-
mentary approach to estimate the seed sensitivity is pro-
posed in [11]. Papers [19,20] present a probabilistic
analysis of spaced seeds, as well as experimental results
based on the Bernoulli alignment model.

Other extensions of the contiguous seed model have been
proposed. BLAT [5] uses contiguous seeds but allows one
error at any of its positions. This strategy is refined in
BLASTZ [8] that uses spaced seeds and allows one transi-
tion substitution at any of match positions. An extension,
proposed in [9], enriches the PatternHunter spaced seeds
model with a scoring system to define a hit.

Here we propose a new transition-constrained seed model.
Its idea is based on the well-known feature of genomic
sequences that transition mutations (nucleotide substitu-
tions between purins or between pyrimidins) occur rela-
tively more often than transversions (other substitutions).
While in the uniform Bernoulli sequence transitions are
twice less frequent than transversions, in real genomic
sequences this ratio is often inverted. For example, matri-
ces computed in [21] on mouse and human sequences
imply that the transition/transversion rate (hereafter ti/tv)
is greater than one on average. Transitions are much more
frequent than transversions in coding sequences, as most

of silent mutations are transitions. ti/tv ratio is usually
greater for related species, as well as for specific DNA
(mitochondrial DNA for example).

Transition-constrained seeds are defined on the ternary
alphabet {#, @, _}, where @ stands for a match or a tran-
sition mismatch (A ↔ G, C ↔ T), and # and _ have the
same meaning as for spaced seeds. The weight of a transi-
tion-constrained seed is defined as the sum of the number
of #'s plus half the number of @'s. This is because a tran-
sition carries one bit of information while a match carries
two bits.

Note that using transition-constrained seeds is perfectly
compatible with the group criterion described in Section
Group criterion. The only non-trivial algorithmic issue
raised by this combination is how to efficiently compute
the group size during the formation of groups out of
found seeds. In YASS, this is done via a special finite
automaton resulting from the preprocessing of the input
seed.

Transition-constrained seeds for Bernoulli alignment model
To estimate the detection capacity of transition-con-
strained seeds, we first use the Bernoulli alignment model,
as done in [6,19,20]. We model a gapless alignment by a
Bernoulli sequence over the ternary match/transition/
transversion alphabet with the match probability 0.7 and
the probabilities of transition/transversion varying
according to the ti/tv ratio. The sequence length is set to
64, a typical length of a gapless fragment in DNA align-
ments. We are interested in seed weights between 9 and
11, as they represent a good sensitivity/selectivity
compromise.

Table 1 compares the sensitivity of the best spaced seeds
of weight 9, 10 and 11, reported in [20], with some tran-
sition-constrained seeds, assuming that transitions and
transversions occur with equal probability 0.15. The tran-
sition-constrained seeds have been obtained using a step-
wise Monte-Carlo search, and the probabilities have been
computed with an algorithm equivalent to that of [16].
The table shows that transition-constrained seeds are
more sensitive with respect to this model.

A natural question is the efficiency of transition-con-
strained seeds depending on the ti/tv ratio. This is shown
in Figure 2. The left and right plots correspond to the seeds
from Table 1 of weight 9 and 10 respectively. The plots
show that the sensitivity of transition-constrained seeds
greatly increases when the ti/tv ratio is over 1, which is typ-
ically the case for real genomic sequences.
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Transition-constrained seeds for Markov alignment model
Homologous coding sequences, when aligned, usually
show a regular distribution of errors due to protein coding
constraints. In particular, transitions often occur at the
third codon position, as these mutations are almost
always silent for the resulting protein. Markov models
provide a standard modeling tool to capture such local
dependencies. In the context of seed design, papers [16-
18] proposed methods to compute the hit probability of

spaced seeds with respect to gapless alignments specified
by (Hidden) Markov models. To test whether using tran-
sition-constrained seeds remains beneficial for align-
ments specified by Markov models, we constructed a
Markov model of order 5 out of a large mixed sample of
about 100 000 crossed alignments of genomic sequences
of distantly related species (Neisseria Meningitidis, S. Cere-
visiae, Human X chromosome, Drosophila). The alignments
were computed with different seeds of small weight, to

Table 1: Bernouilli Model Hit probability of seeds on Bernoulli sequences of length 64 with match probability 0.7 and transition/
transversion probabilities 0.15

weight spaced seed hit proba transition-constrained seed hit proba

9 B9 = ##_##_#_#___### 0.7291 B9
tr = ##@_#@#__#_### 0.7366

10 B10 = ##_##___##_#_### 0.5957 B10
tr = #@#_#_@#_@#__@### 0.6056

11 B11 = ###_#__#_#__##_### 0.4671 B11
tr = #@#_#@__##_#_@@## 0.4784

Seed ProbabilityFigure 2
Seed Probability. Hit probability of seed models on Bernoulli sequences as a function on ti/tv ratio

Table 2: Markov Model Hit probability of seeds on a Markov model of order 5 trained on a large mixed sample of cross-species 
alignments

weight spaced seed hit proba transition-constrained seed hit proba

9 M9 = ##_##_##_### 0.822 M9
tr = ##@##_##@## 0.845

10 M10 = ##_##_##___##_## 0.716 M10
tr = #@@##_##_##@#@ 0.746

11 M11 = ##_##_##_##_### 0.603 M11
tr = ##@##_##_##@## 0.632
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avoid a possible bias caused by a specific alignment
method. We then designed optimal spaced and transition-
constrained seeds of weight 9–11 with respect to this
Markov model. Table 2 shows the results of this computa-
tion providing evidence that transition-constrained seeds
increase the sensitivity with respect to this Markov model
too.

Experiments
Seed experiments
In order to test the detection performance of transition-
constrained seeds on real genomic data, we made experi-
ments on full chromosomic sequences of S. Cerevisiae
(chromosomes IV, V, IX, XVI) and Neisseria meningitidis
(strains MC58 and Z2491). The experiments were made
with our YASS software [10] that admits user-defined tran-
sition-constrained seeds and implements the group crite-
rion described in Section Group criterion. The experiments
used seeds of weight 9 and 11, obtained on Bernoulli and
Markov models (reported in Tables 1 and 2). The search
was done using group size 10 and 12 respectively for seed
weight 9 and 11 (option -s of YASS). This means that at
least two distinct seeds were required to trigger the exten-
sion, with no additional constraint on their overlap,
which is equivalent to the double-seed criterion of Pat-
ternHunter. The scoring system used was +1/-1 for match/
mismatch and -5/-1 for gap opening/extension. Both
strands of input chromosomes has been processed in each
experiment (-r 2 option of YASS).

For each comparison, we counted the number of com-
puted alignments with E-value smaller than 10-3. Table 3
reports some typical results of this experiment. They con-
firm that using transition-constrained seeds does increase
the search sensitivity. A side (non-surprising) observation
is that, in all tests, the seed designed on the Markov model
turns out to be more efficient than the one designed on
the Bernoulli model. Note that the similarity search can be
further improved by using transition-specific scoring
matrices (for example, PAM Transition/Transversion
matrices or matrices designed for specific comparisons
[21]) rather than uniform matches/mismatch matrices,
and transition-constrained spaced seeds are more likely to
detect alignments highly scored by those matrices.

Another advantage of transition-constrained seeds comes
from the fact that they are more robust with respect to the
GC/AT composition bias of the genome. This is because
purins and pyrimidins remain balanced in GC- or AT-rich
genomes, and one match carries less information (is more
likely to occur "by chance") than two match-or-transition
pairs.

Program experiments
A series of comparative tests has been carried out to com-
pare the sensitivity with traditional approaches. Several
complete bacterial genomes ranging from 3 to 5 Mb have
been processed against each other using both YASS and
the b12seq programs (NCBI BLAST package 2.2.6.). The
tests used the scoring system +1/-1 for match/mismatch
and -5/-1 for gap opening/extension. The threshold E-
value for the output was set to 10 (default BLAST value),
and the sequence filtering was disabled. YASS was run
with its default seed pattern #@#__##__#_##@# of
weight 9 which provides a good compromise in detecting
similarities of both coding and non-coding sequences.

For each test, the number of alignments with E-value less
than 10-6 found by each program, and the number of
exclusive alignments were reported. By "exclusive align-
ment", we mean every alignment of E-value less than 10-6

that does not share a common part (do not overlap on
both sequences) with any alignment found by the other
program. To take into account a possible bias caused by
splitting alignments into smaller ones (X-drop effect), we
also computed the total length of exclusive alignments,
found by each program.

Experiments are summarized in Table 4 and show that
within a generally smaller execution time, YASS detects
more exclusive similarities that cover about twice the
overall length of those found by b12seq. The gain in exe-
cution time increases when the sequence length gets
larger.

Conclusions
In this paper, we introduced two independent improve-
ments of hit criteria for DNA local alignment. The group
criterion, based on statistical DNA sequence models,

Table 3: Seed experiments. Number of high-scoring similarities found with different seed patterns

sequences B9 B9
tr B11 B11

tr M9 M9
tr M11 M11

tr

IX/V 323 336 275 279 312 325 274 293
IX/XVI 342 354 271 280 349 357 280 295
XVI/IV 1314 1361 1124 1172 1309 1348 1180 1235
MC58/Z2491 361896 380028 341113 364792 385444 392164 359348 366759
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combines the advantages of both single-seed and double-
seed criteria. Transition-constrained seeds account for specif-
icities of real DNA sequences and allow to further increase
the search sensitivity with respect to spaced seeds. Both
options have been implemented in YASS software availa-
ble at http://www.loria.fr/projects/YASS/.

Transition-constrained seeds could be further extended
using the idea of vector seeds [9], i.e. by assigning weights
to each seed position, but also to each type of mutation.
This would give a more general mechanism to account for
the information brought by different mutations. But the
model is also more flexible, an thus involves a larger
search space to design seeds.

Another new direction for further improving the effi-
ciency is a simultaneous use of several seed patterns [22-
24], complementing the sensitivity of each other. How-
ever, designing such families is also hard problem, due to
the involved search space.

Methods
Statistical analysis
We first introduce some notations used in this section. Let
S1 and S2 be the input sequences of length m and n respec-
tively. Each of them can be considered as a succession of
m - k + 1 (respectively n - k + 1) substrings of length k,
called k-words. If a k-word of S1 matches another k-word of
S2, i.e. S1[i..i + k - 1] = S2[j..j + k - 1] for some i ≤ m and j ≤
n, then these two k-words form a seed denoted <i, j>. Two
functions on seeds are considered: For a seed <i, j>, the
seed diagonal d(<i, j>) is m + j - i. It can be seen as the dis-
tance between the k-words S1[i..i + k - 1] and S2[j..j + k - 1]

if S2 is concatenated to S1, For two seeds <i1, j1> and <i2,
j2>, where i1 <i2 and j1 <j2, the inter-seed distance D(<i1, j1>,
<i2, j2>) is the maximum between |i2 - i1| and |j2 - j1|. The
problem considered in this Section is to derive conditions
under which two seeds are likely to be a part of the same
alignment, and therefore should be grouped together.
More precisely, we want to be able to compute parameters
ρ and δ such that two seeds <i1, j1> and <i2, j2> have a prob-
ability (1 - ε) to belong to the same similarity iff

D(<i1, j1>, <i2, j2>) ≤ ρ,  (1)

|d(<i1, j1>) - d(<i2, j2>)| ≤ δ.  (2)

The first inter-seed condition insures that the seeds are
close enough to each other. The second seed diagonal
condition requires that in both seeds, the two k-words
occur at close diagonals.

We now describe statistical models used to compute
parameters ρ and δ.

Bounding the inter-seed distance
Consider two homologous DNA sequences that stem
from a duplication of a common ancestor sequence, fol-
lowed by independent individual substitution events.
Under this assumption, the two sequences have an equal
length and their alignment is a sequence of matched and
mismatched pairs of nucleotides. We model this align-
ment by a Bernoulli sequence with the probability p for a
match and (1 - p) for a mismatch. To estimate the inter-
seed shift Dk, we have to estimate the distance between the
starts of two successive runs of at least k matches in the Ber-

Table 4: Comparative Tests. Comparative tests of YASS vs b12seq (NCBI BLAST 2.2.6). Reported execution times have been obtained 
on a Pentium IV 2.4 GHz computer.

sequence 1 sequence 2 time (sec) # align. # ex. align. ex. align. length
name size name size Y. B. Y. B. Y. B. Y. B.

S.sp. 3.6 M.t. 4.4 122 148 494 310 130 27 29145 7970
S.sp. 3.6 C.g. 3.3 161 163 578 369 168 63 37310 30138
S.sp. 3.6 Y.p. 4.6 156 253 901 617 186 54 39354 19994
S.sp. 3.6 V.p. 3.3 164 167 940 465 349 60 65788 28883
M.t. 4.4 C.g. 3.3 211 542 1851 1265 397 160 102103 80012
M.t. 4.4 Y.p. 4.6 168 255 738 515 197 86 44348 23361
M.t. 4.4 V.p. 3.3 72 69 498 295 171 30 36474 12021
C.g. 3.3 Y.p. 4.6 130 161 962 640 186 45 34538 11277
C.g. 3.3 V.p. 3.3 95 93 1109 687 197 72 42009 21575
Y.p. 4.6 V.p. 3.3 149 217 2900 1953 622 264 186585 110352

C.g: Corynebacterium glutamicum ATCC 13032,
M.t: Mycobacterium tuberculosis (CDC1551),
S.sp.: Synechocystis sp. PCC 6803,
S.sp.: Vibrio parahaemolyticus RIMD 2210633 chr I,
Y.p.: Yersinia pestis KIM
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noulli sequence. It obeys the geometric distribution of
order k called the Waiting time distribution [25,26]:

Using this formula, we compute ρ such that the probabil-

ity  is (1 - ε) for some small ε.

Note that the Waiting time distribution allows us to esti-
mate another useful parameter: the number of runs of
matches of length at least k inside a Bernoulli sequence of
length x. In a Bernoulli sequence of length x, the probabil-
ity of the event Ip,x,r of having exactly r non-overlapping runs
of matches of length at least k is given by the following
recursive formula:

This gives the probability of having exactly r non-overlap-
ping seeds of length at least k inside a repeat of size x. The
recurrence starts with r = 0, in which case

 and is computed through the

Waiting time distribution.

The distribution  allows us to infer a lower

bound on the number of non-overlapping seeds expected
to be found inside a similarity region. In particular, we
will use this bound as a first estimate of the group crite-
rion introduced later.

Bounding the seed diagonal variation
Indels (nucleotide insertions/deletions) are responsible
for a diagonal shift of seeds viewed on a dotplot matrix. In
other words, they introduce a possible difference between
d(<i1, j1>) and d(<i2, j2>). To estimate a typical shift size,
we use a method similar to the one proposed in [26] for
the search of tandem repeats.

Assume that an indel of an individual nucleotide occurs
with an equal probability q at each of l nucleotides sepa-
rating two consecutive seeds. Under this assumption, esti-
mating the diagonal shift produced by indels is done
through a discrete one-dimensional random walk model,
where the probability of moving left or right is equal to q,
and the probability of staying in place is 1 - 2q. Our goal
is to bound, with a given probability, the deviation from
the starting point.

The probability of ending the random walk at position i
after l steps is given by the following sum:

A direct computation of multi-monomial coefficients
quickly leads to a memory overflow, and to circumvent
this, we use a technique based on generating functions.

Consider the function  and con-

sider the power Pl(x) = al.xl +…+ a-l.x-l. Then the coefficient
ai computes precisely the above formula, and therefore
gives the probability of ending the random walk at posi-
tion i after l steps. We then have to sum up coefficients ai

for i = 0,1, -1, 2, -2,..., l, -l until we reach a given threshold
probability (1 - ε). The obtained value l is then taken as
the parameter δ used to bound the maximal diagonal shift
between two seeds.
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