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Abstract
Background: Public repositories of microarray data contain an incredible amount of information
that is potentially relevant to explore functional relationships among genes by meta-analysis of
expression profiles. However, the widespread use of this resource by the scientific community is
at the moment limited by the limited availability of effective tools of analysis. We here describe
CLOE, a simple cDNA microarray data mining strategy based on meta-analysis of datasets from
pairs of species. The method consists in ranking EST probes in the datasets of the two species
according to the similarity of their expression profiles with that of two EST probes from
orthologous genes, and extracting orthologous EST pairs from a given top interval of the ranked
lists. The Gene Ontology annotation of the obtained candidate partners is then analyzed for
keywords overrepresentation.

Results: We demonstrate the capabilities of the approach by testing its predictive power on three
proteomically-defined mammalian protein complexes, in comparison with single and multiple
species meta-analysis approaches. Our results show that CLOE can find candidate partners for a
greater number of genes, if compared to multiple species co-expression analysis, but retains a
comparable specificity even when applied to species as close as mouse and human. On the other
hand, it is much more specific than single organisms co-expression analysis, strongly reducing the
number of potential candidate partners for a given gene of interest.

Conclusions: CLOE represents a simple and effective data mining approach that can be easily used
for meta-analysis of cDNA microarray experiments characterized by very heterogeneous
coverage. Importantly, it produces for genes of interest an average number of high confidence
putative partners that is in the range of standard experimental validation techniques.

Background
The availability of genome sequences from several model
organisms, including humans, and of high-throughput

technologies to study gene function is dramatically chang-
ing the approach to biological problems. In particular, the
consolidated reductionist gene-by-gene strategy is being
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replaced by a 'modular approach', in which several genes
are studied simultaneously to gather a more comprehen-
sive picture of the many different cellular processes [1]: in
living organisms, the majority of gene products are part of
intricate molecular circuits, composed of physical, func-
tional and regulatory interactions. In higher eukaryotes,
the study of gene function is further complicated by the
alternative use of transcriptional units, frequently result-
ing in the production of proteins with different or even
antagonistic activities from the same genes [2,3].

It is well recognized that one of the most important and
widespread mechanisms used by cells to regulate func-
tional modules is the coordinate transcriptional and/or
post-transcriptional modulation of mRNA levels of the
interacting genes. Therefore, DNA microarrays represent a
fundamental tool to unravel biological complexity on a
genome-wide scale. Information concerning the expres-
sion of thousands of genes, and also of different tran-
scripts from the same gene, can be obtained in a single
experiment, and the relationships among gene expression
patterns can be studied systematically [4]. The extensive
use of this technology by hundreds laboratories has
resulted in the production of an enormous amount of
data, many of which have been deposited in public data-
bases [5,6].

Besides being useful to other researchers to confirm the
published results, the deposited datasets can be used as a
substrate for new analysis, aimed at discovering func-
tional modules by searching for related expression pro-
files. Recent studies have shown that, if the expression of
two or more genes is consistently related throughout
many independent microarray datasets, the genes display
a significant degree of functional similarity [7,8]. How-
ever, if this approach were applied to predict physical and
functional relationships, a very high number of false pos-
itives would still be expected. A first method that can be
used to reduce the number of false positives is to consider
only co-expression links that are consistent among many
different experimental datasets [7]. Nevertheless, even
when the co-expression of two genes is reproducibly
observed under a certain number of experimental condi-
tions, this does not imply necessarily that they are func-
tionally related. For instance, extensive meta analysis of
microarray data across different species has revealed that
neighboring genes are likely to be co-expressed, even
though they are not functionally related in any obvious
manner [9,10].

Phylogenetic conservation has been recently proposed as
a very strong criterion to identify functionally relevant co-
expression links among genes [11]. Significant co-expres-
sion of two or more orthologous genes across many spe-
cies is very likely due to selective advantages, strongly

suggesting a functional relation. In fact, the comparison of
data across species as distant as Homo sapiens, Saccharomy-
ces cerevisiae, Drosophila melanogaster and Caenorhabditis
elegans was very effective in identifying new genes
involved in core biological functions [11]. Although
extremely specific, this multi-species approach would be
unable to identify the relationships among genes involved
in more specialized biological processes.

Since regulatory regions diverge much more rapidly than
coding sequences [12,13], a similar approach would be
predicted to succeed even when comparing expression
patterns in more closely related species, such as mice and
humans. In this case, the possible loss of specificity would
be strongly compensated by the increased sensitivity in
the identification of functional links related to mamma-
lian-specific gene modules. This possibility has not been
so far explored.

Additionally, when using microarray data to establish sig-
nificant correlations among gene expression profiles,
almost invariably the information obtained with probes
covering different gene portions is averaged [14]. Though
useful in many cases to reduce the experimental noise,
this procedure could result in a significant loss of informa-
tion in the case of genes expressing different isoforms with
distinct expression patterns [15]: on one hand the iso-
form-specific expression profiles would not be detected;
on the other hand, the average expression profile would
be artificial and non-informative.

In this study we describe CLOE (Coexpression-based
Linking of Orthologous ESTs) a new data mining method
for the identification of transcripts showing evolutionary
conserved co-expression in cDNA microarray datasets.
This approach is based on the pairwise comparison of
data from two species. The predictive capability of the
method was proved by comparing human with mouse
data. Our results show that CLOE is a valuable tool for
biologists that can be used to identify putative partners for
genes of interest and/or to predict some of their functional
properties.

Results and discussion
The top percentiles of expression similarity ranked lists 
obtained with human-mouse orthologous ESTs pairs are 
strongly enriched of orthologous ESTs
The aim of our method is to use the available microarray
expression data to identify high- confidence putative part-
ners for genes of interest.

The basic assumption is that, if two or more genes are part
of a functional module, conserved between two species,
they will be likely co-expressed in both species. In con-
trast, if the co-expression of two genes in one species has
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no functional meaning, it should not be conserved in the
other.

A flow chart of the method is given in Figure 1. In sum-
mary, after finding representative EST clones for the gene
of interest in cDNA microarray datasets of both species,
we order all the ESTs in each dataset according to similar-
ity of their expression pattern with that of the chosen
ESTs. We then extract the orthologous pairs found in a
given top percentage of the ranked lists. Moreover, to
obtain a functional characterization of the identified puta-
tive partners, we analyze the co-expressed orthologous
pairs for overrepresentation of Gene Ontology (GO) key-
words [16].

Although in principle our method could be applied to
every pair of organisms for which cDNA microarray data
are available, we decided to compare the human and
mouse datasets contained in the Stanford Microarray
Database (SMD) [6] (2803 experiments for 74588 EST
probes and 145 experiments for 37521 ESTs, respectively,
data downloaded in Jan. 2004). The first reason for doing
so is that this comparison is particularly relevant in the
perspective of identifying mammalian-specific gene mod-
ules. The second is that, considering the widely different
number of experiments and the relatively short phyloge-
netic distance between the two species, this represents a
particularly severe test.

As a first proof of the method's effectiveness, and in order
to empirically determine a reasonable default cutoff for
obtaining the final list of candidates, we analyzed whether
genes with the highest ranks in the single organism lists
are actually enriched of orthologous sequences. To this
aim, we randomly chose 100 orthologous gene pairs rep-
resented in both the human and mouse datasets and
selected, for each one, the most representative EST (i.e. the
probes with the highest number of experiments in each
dataset). We then generated the respective ranked lists,
subdivided them in 1% rank intervals and analyzed the
number of orthologous pairs in corresponding rank inter-
vals. As a control, we performed the same analysis on an
equal number of randomly chosen (and hence non-
orthologous) human-mouse EST pairs. The analysis was
repeated three times with essentially identical results.

As shown in Figure 2, compared to the control, a strong
average enrichment of orthologous pairs was observed in
the top 1% rank interval (p = 1.6·10-94, chi square test).
The difference was still very significant in the 2% rank
interval, even though with a much higher p value (p =
1.3·10-10), but was not detectable below that threshold.
Interestingly, a slight enrichment was also observed in the
last rank interval (average number of orthologous pairs
equal to 7.8 for CLOE and 5.7 for random lists, p =

2.2·10-7). The latter observation is consistent with the
previously noted fact that negative correlations tend to be
less common and significant than positive correlations
[7]. Based on these results, we chose a top 1% cutoff for
all the following analysis.

Predictive value of CLOE compared to single organisms 
and multiple species co-expression analysis
We next investigated the effectiveness of our approach, by
comparing it to single and multiple organisms co-expres-
sion analysis. To address this point, we analyzed the abil-
ity of the three methods to predict known physical and
functional interactions among mammalian proteins. Pro-
tein-protein complexes have begun to be determined on a
genome-wide scale only for Saccharomyces cerevisiae [17],
Drosophila melanogaster [18] and Caenorhabditis elegans
[19], but no comparable datasets have been so far pub-
lished for mammalians, making it impossible to perform
a systematic comparison. Therefore, we focused on three
supramolecular structures, which have been analyzed by
different proteomic strategies at a high level of detail: the
centrosome [20] (110 proteins), the post-synaptic density
[21] (105 proteins) and the TNF-alpha/NFkB signalos-
ome [22] (128 proteins). For the single organism and
CLOE approaches, the analysis was restricted to proteins
represented in the SMD by at least one human and one
murine EST probe. These corresponded to 62, 67 and 97
ESTs pairs, respectively, covering on average 66% of the
proteins found in these complexes. In contrast, only 37%
of these genes were represented in the multiple species
network, thus confirming that the previous two methods
can be applied to a number of genes much higher than the
latter.

The average number of candidates produced by CLOE for
each analyzed protein was approximately 17, which rep-
resents a strong reduction if compared to the single organ-
ism approach (746 and 375 for the human and mouse
datasets, respectively). On the other hand, the average per-
centage of CLOE links that correspond to a documented
protein-protein interaction was 6.6 %, i.e. approximately
5 times higher than that obtained with the single organ-
ism method (Table 1). Significantly, the predictive value
of human-mouse CLOE was very similar to that obtained
by the multiple species co-expression network (Table 1).

Since considering only the proteomically-identified inter-
actions could lead to a strong underestimation of the pos-
itive results, as low affinity and purely functional
interactions would be completely excluded, we decided to
evaluate the predictive power of the three different meth-
ods respect to a less stringent functional index. To this
aim, we first determined which GO keywords represent
the best annotation of the three complexes, by identifying
the ones that are significantly overrepresented in the
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Schematic representation of the CLOE approachFigure 1
Schematic representation of the CLOE approach

The top percentiles of single organisms ranked lists obtained with orthologous probes are strongly enriched of orthologous sequencesFigure 2
The top percentiles of single organisms ranked lists obtained with orthologous probes are strongly enriched of 
orthologous sequences. 100 orthologous (CLOE) and 100 randomly chosen (Random) EST pairs were used to rank the 
ESTs in the human and mouse datasets on the basis of expression similarity. The ranked lists were divided in 1% rank intervals, 
and the average number of human ESTs in a given rank interval with at least one orthologous EST in the corresponding mouse 
rank interval was determined. The average number of these ESTs in the first top 10 rank intervals was plotted. Error bars = 
standard error.
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annotation of the respective proteins. Then, every pre-
dicted candidate partner obtained with the three methods
for all analyzed proteins was considered as a true positive
if it is annotated to at least one of the overrepresented key-
words of the corresponding complex. The results of this
analysis are summarized in Table 2.

Interestingly, even though also in this case our approach
and the multiple species comparison gave, on average, a
higher percentage of compatible predictions, this was not
dramatically different from the single-organism method.
These results strongly suggest that, compared to the single
organism approach, the highly reduced number of
candidate partners produced by multiple organism co-
expression analysis and CLOE is strongly enriched of
genes characterized by more stringent functional
relationships.

Conclusions
We have shown that CLOE represents a very flexible and
effective data mining approach to infer a list of putative
partners and the potential functions for genes of interest.
It can be easily used for meta-analysis of cDNA microarray
experiments characterized by very heterogeneous cover-
age, producing significant results even when data from
two species as close as mouse and human are analyzed.
Compared to single organisms co-expression analysis, it

strongly reduces the number of potential partners for
genes of interest, producing a list of targets that is highly
enriched in physically interacting proteins. On the other
hand, compared to multiple species co-expression analy-
sis, it retains a comparable specificity, but can find candi-
date partners for a greater number of genes. Since the
number of candidate partners obtained by this analysis is,
on average, in the range of standard experimental valida-
tion techniques, we believe CLOE represents a useful tool
for the exploration of gene function.

Methods
Definition of orthologous ESTs
The first step of our procedure is the identification of
orthologous ESTs in the two datasets. Although many dif-
ferent methods could be used to this purpose, we relied
on the InParanoid algorithm [23], which is ideally suited
for the identification of orthologous sequences between
two species. The results shown were obtained using the
pre-computed release 2.6 of the InParanoid database [24].
ESTs were linked to InParanoid clusters through their Uni-
Prot codes [25,26], and their association to UniGene
identifiers [27,28].

Choice of representative probes for the gene of interest
The procedure has been implemented for the analysis of
cDNA microarray datasets, such as those contained in the

Table 1: Percentage of known protein-protein interactions in the lists of candidate partners generated by the different co-expression-
based approaches. For every protein found in the three analyzed complexes, and represented by at least one EST probe in both 
datasets, we selected the most representative human and mouse probes. A CLOE analysis with a top 1% cutoff was performed on 
these sequences. In parallel, the human dataset was ranked for each human EST, and lists of candidates corresponding to the top 1% 
ranks where obtained (Single organism). The prevalence of ESTs corresponding to other proteins of the same complexes was then 
determined for both approaches. Finally, to determine the prevalence of correct predictions by the Multiple Species approach, we 
determined the ratio between the number of links with other proteins of the same complex and the total number of links for all the 
complex components (data from [11]).

Single organism Multiple organisms Human/mouse CLOE

Centrosome 1.4 4.2 6.2
PSD 0.9 5.5 6.5
TNFα/NF-kB 1.6 6.1 6.8
Average 1.3 5.7 6.6

Table 2: Prevalence of functionally compatible predictions obtained with the three different methods. The percentage of compatible 
predictions was determined as in the previous table using the functional index described in the text.

Single organism Multiple organisms Human/Mouse CLOE

Centrosome 19.5 36 26.3
PSD 33.8 47.8 41.3
TNFα/NF-kB 47.2 47.4 44.8
Average 33.5 43.7 37.4
Page 6 of 10
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:179 http://www.biomedcentral.com/1471-2105/5/179
SMD [6,29]. However, it could be adapted, with minor
modifications, to the analysis of Affymetrix datasets.

Ratiometric data for the different organisms are not sub-
jected to any further normalization, and downloaded as
log-transformed (base 2) ratios.

Within these datasets, the number of ESTs representing a
given transcription unit, as well as the number of valid
experiments for each EST, are highly variable. While this
feature would pose serious problems, if one should
attempt to average the data of all the probes belonging to
the same gene, it may offer extremely valuable informa-
tion when every EST is considered independently, since
each clone explores the expression properties of a particu-
lar group of exons, in a particular combination of experi-
mental situations.

Non-correlated or anti-correlated expression between two
well-represented EST probes belonging to the same gene
would strongly suggest that they correspond to alterna-
tively expressed transcripts. For this reason, we decided
not to merge the data of probes belonging to the same
gene, but to treat separately every EST probe in the
datasets.

The choice of the most representative EST for the genes of
interest represents a particularly critical aspect of our pro-
cedure. If interested to a single gene, the more exhaustive
solution to this problem would be to generate and evalu-

ate a list of candidate partners for every possible pairwise
combination of ESTs probes. However, this would greatly
complicate the analysis should one be interested in ana-
lyzing the potential partners of many genes. An alternative
possibility is to focus, for every Unigene cluster, on the
most representative ESTs, i.e. the probes with the highest
number of experiments. For these reasons, the decision
about what ESTs to analyze is left to the end user.

Our implementation of the method can accept as input
both a UniGene cluster ID or the results of a BLAST search
performed with the sequence of interest against the EST
database. In both cases, it retrieves a list of all probes
found in the two datasets for the orthologous UniGene
clusters.

To help the user decide which ESTs to analyze, the pro-
gram provides basic information about all the EST probes
representing the gene of interest in the two datasets. More-
over, to help the user identify the most representative EST
probe in each dataset, i.e. the probe with the highest
number of experiments, it also provides the number of
valid data points for every probe. Finally, to assess the
redundancy of the information provided by the different
probes, i.e. whether they represent different experiments
and display similar/different expression profiles, the pro-
gram calculates, for every pair of probes belonging to the
same UniGene cluster, the number of common
experiments and the Pearson correlation coefficient
between their expression profiles.

Table 3: List of candidate partners generated by CLOE analysis on the most representative ESTs corresponding to the protein of 
unknown function FAD104.

InParanoid Human EST 
with highest 

rank

Human 
UniGene 

name

Rank Mouse EST 
with highest 

rank

Mouse 
UniGene 

name

Rank Average rank

523 IMAGE:240295 FAD104 1 H3020H08 1600019O04Ri
k

1 1

1668 IMAGE:343072 ITGB1 2 IMAGE:105197
5

Itgb1 45 23.5

9060 IMAGE:786680 ANXA5 21 H3016C05 Anxa5 103 62
8045 IMAGE:486787 CNN3 102 H3056D03 Cnn3 29 65.5
9769 IMAGE:488479 TPM1 107 3110002E24 Tpm1 57 82
11683 IMAGE:487437 PPIC 87 H3028H10 Ppic 93 90
6369 IMAGE:142788 SERPINH1 70 H3125A07 Serpinh1 129 99.5
899 IMAGE:469969 ITGAV 18 1110004F14 Itgav 182 100
9579 IMAGE:345538 CTSL 140 2600002C17 Ctsl 95 117.5
8192 IMAGE:613056 RCN1 52 H3027B09 Rcn 195 23.5
11615 IMAGE:230261 RALA 78 H3121E01 Rala 198 138
221 IMAGE:897760 LAMC1 43 H3113E11 Lamc1 239 141
1306 IMAGE:897164 CTNNA1 258 2210403L09 Catna1 48 153
4123 IMAGE:840697 FKBP9 83 H3147A05 Fkbp9 236 159.5
12331 IMAGE:841664 CAV1 24 H3089D06 Cav 301 162.5
5726 IMAGE:377384 NR2F2 308 H3124H07 Nr2f2 26 167
13914 IMAGE:810485 ID1 5 H3003F10 Idb1 365 185
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Identification of orthologous sequences coexpressed in
both species

After finding representative EST clones for the gene of
interest in both species, we calculate, for each one, the
Pearson correlation coefficient (r) with every other EST in
the respective dataset. The raw r is the normalized for the
number of common data points (n) obtained for the ana-
lyzed ESTs. This is done by multiplying r for , since
the statistical significance of r is a function of the product

·r. Such normalization is particularly important
when, as in our case, n has a very wide range of variation.
The ESTs are then ranked by decreasing normalized score.
Finally, a user-defined top percentage of the two ranked
lists is compared to identify those ESTs that are associated
to the same InParanoid cluster ID. A non-redundant list of
the positive InParanoid clusters, sorted by the average
highest rank obtained in the two organisms, represents
the main output of the program (see Table 3 for an exam-
ple). Clearly, the choice of the cutoff top rank percentage
represents a critical parameter, which may strongly influ-
ence the number of identified candidates. The empirical
determination of an average best cutoff is reported in the
results.

Functional characterization of the co-expressed 
orthologous clusters
After obtaining a list of putative partners for the genes
under study, we analyze their functional characterization
according to the GO vocabulary [16,30]. This is very use-
ful to obtain new insight about the putative functional
properties of the gene of interest. GO terms are associated

to ESTs through the corresponding UniProt identifiers.
For each list of candidates, we compute the prevalence of
all GO terms among the annotated ESTs, and the proba-
bility that such prevalence would occur in a randomly
chosen set of ESTs of the same size. We always consider a
gene annotated to a GO term if it is directly annotated to
it or to any of its descendants in the GO graph. For a given
GO term t let K(t) be the total number of ESTs annotated
to it in the first organism dataset that have an orthologous
sequence in the second organism dataset, and k(m, t) the
number of ESTs annotated to it in the final list S(m). If J
and j(m) denote the number of orthologous ESTs in the
dataset and in S(m) respectively, such probability is given
by the right tail of the appropriate hypergeometric
distribution:

where

As an example, the results of the analysis performed on
the output shown in Table 4. A similar strategy was used
in all other cases where GO keywords overrepresentation
test were performed.

n −1

n −1
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Table 4: Gene Ontology keywords overrepresented in the list shown in the previous supplementary table. The results strongly suggest 
that this protein could be involved in some aspects of the functional interaction between the cytoskeleton and the extracellular 
matrix.

Keyword Organizing principle p-value

Endoplasmic reticulum Cellular Component 9.3·10-3

Protein binding Molecular Function 6.5·10-3

Peptidyl-prolyl cis-trans isomerase Molecular Function 6.5·10-3

Structural constituent of muscle Molecular Function 3.4·10-3

Collagen binding Molecular Function 3.1·10-3

Structural molecule Molecular Function 1.7·10-3

Tropomyosin binding Molecular Function 8.9·10-4

Basement membrane Cellular Component 5.7·10-4

Cytoskeleton Cellular Component 5.6·10-4

Cell adhesion Biological Process 6.4·10-5

Actin binding Molecular Function 4.6·10-8
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Availability
The programs used for this work are publicly available at
the URL:

http://www.personalweb.unito.it/ferdinando.dicunto/
CLOE/CLOE.html. This page contains the following files:

programs.zip (the program files and the corresponding
General Public License);

readme.txt (detailed instructions for using our program).
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