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Abstract
Background: Genomic islands can be observed in many microbial genomes. These stretches of
DNA have a conspicuous composition with regard to sequence or encoded functions. Genomic
islands are assumed to be frequently acquired via horizontal gene transfer. For the analysis of
genome structure and the study of horizontal gene transfer, it is necessary to reliably identify and
characterize these islands.

Results: A scoring scheme on codon frequencies

Score_G1G2(cdn) = log(f_G2(cdn) / f_G1(cdn))

was utilized. To analyse genes of a species G1 and to test their relatedness to species G2, scores
were determined by applying the formula to log-odds derived from mean codon frequencies of the
two genomes. A non-redundant set of nearly 400 codon usage tables comprising microbial species
was derived; its members were used alternatively at position G2. Genes having at least one score
value above a species-specific and dynamically determined cut-off value were analysed further. By
means of cluster analysis, genes were identified that comprise clusters of statistically significant size.
These clusters were predicted as genomic islands. Finally and individually for each of these genes,
the taxonomical relation among those species responsible for significant scores was interpreted.
The validity of the approach and its limitations were made plausible by an extensive analysis of
natural genes and synthetic ones aimed at modelling the process of gene amelioration.

Conclusions: The method reliably allows to identify genomic island and the likely origin of alien
genes.

Background
A microbial genome is by no means a random agglomer-
ation of genes. In addition to operons clustering function-
ally related genes, additional signals indicating structure
can be detected: Base composition e.g. can vary strand-
specifically [1] or the GC-content of a sequence may be
correlated with its distance from the origin of replication
[2]. Codon usage can be diversified depending on effects
like translational efficiency [3]. Such parameters as well as

the integration of bacteriophages or megaplasmids are
responsible for structures perceptible on the genome
level.

In addition, genomic island may result from horizontal
gene transfer (HGT), regarded as an additional evolution-
ary means of biochemical or environmental adaptation
[4]. Microbial genomes contain a varying portion of genes
presumably acquired via HGT [5]. It was claimed that in
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some genomes this portion exceeds 20% of the genomic
content. To study HGT, various methods based on the
analysis of codon or amino acid sequences or the con-
struction of phylogenetic trees were developed; reviewed
e.g. in [6]. Each approach has its individual drawbacks
and it might be that each method identifies a separate
class of genes acquired in a different period of genome
evolution [7]. Because of the mechanistic implications,
the pieces of DNA captured via HGT frequently have a
considerable length. Consequently, it has to be expected
that a large fraction of alien genes occurs in clusters. This
assumption is supported by biological evidence: Genes
responsible for pathogenicity are often agglomerated in
islands; see [8] and references therein. Huge clusters of
genes expanding evolutionary fitness can also be found in
non-pathogenic species. An example is the symbiotic
island of size 611 kb in the genome of M. loti [9].

An exhaustive analysis of genomic islands has several
aspects: It consists of the identification of clusters and the
interpretation of gene function. For putatively alien genes
(pA, acquired via HGT), their likely origin has to be pre-
dicted. The most reliable methods (if applied correctly)
coping with the latter task rely on the construction and
evaluation of phylogenetic trees. However, each such
analysis requires the inference of relations within a gene
family. For several reasons like the insufficient number of
appropriate clades, it is still difficult to extend these phyl-
ogenetic studies to each gene of a complete genome.
Therefore, methods were developed aimed at the identifi-
cation of pA genes without the need for computing phyl-
ogenetic trees [5,10-12]. These intrinsic methods assess (if
applied to sequences) the composition on DNA or pro-
tein level and measure the deterioration from the typical
case. One disadvantage of these surrogate methods [6] is
that the origin of the open reading frames cannot be
predicted.

In the following, I introduce a novel surrogate method
that has the potential of predicting the putative source of
a DNA sequence. It relies on the generally accepted
assumption that codon usage in phylogenetically related
species is similar [13,14]. The algorithm is integrated into
the software package named SIGI and is based on scores
assessing codon usage in pairwise comparisons and the
taxonomic evaluation of results. It will be shown that its
sensitivity in identifying genomic islands is comparable to
the most advanced methods like hidden Markov models
(HMM). The combination of a sensitive detector with
cluster analysis as implemented here, results in the relia-
ble identification of islands and allows to reduce the
number of false positive predictions. This seems to be a
problem in many studies of HGT published so far [15].
The validity of the predictions is made plausible by an
exhaustive statistical analysis based on natural and syn-

thetic genes. These predictions are one function of SIGI. In
addition, it identifies gene clusters originating from addi-
tional signals like codon usage bias aimed at the optimi-
sation of translational efficiency.

Results
The following paragraphs are organized as follows: First,
the predictive power of the new approach named MPW
(see Methods) is compared to methods already intro-
duced in order to validate its ability to find composition-
ally atypical (CA) genes and genomic islands. Then, the
performance of the algorithm in identifying the putative
source of genes is studied. Finally, predictions deduced for
completely sequenced genomes are presented.

Performance of the scoring system in identifying CA genes
An impressive number of methods for the identification
of CA and pA genes was introduced so far; e.g. [11,16-18],
see also [7]. In order to compare the predictive power of
methods and to evaluate the new approach, I used as a test
set the genes annotated on chromosome two of V. chol-
erae. This chromosome contains an integron island of size
125.3 kbp, which includes genes VCA0271 to VCA0491
[19]. For the analysis, two groups were formed consisting
of genes VCA0010 to VCA0230 (group cl) and genes
VCA0271 to VCA0491 (group gi). For each gene, codon
usage contrast, δ* difference, dicodon difference – as
defined in [18] – and hMPW(gene) as described in Methods
were determined. These scores were accumulated parame-
ter-wise in pairs of histograms Hcl and Hgi. The decision-
strength of each parameter was assessed by incrementing
a running cut-off c_or and reading from Hcl and Hgi the
fraction of genes accumulated below c_or. Resulting curves
are plotted in figure 1. The experiment clearly shows that
the new algorithm outperforms the methods, which eval-
uate deviation from mean frequencies of codons, dico-
dons or dinucleotides. In addition, the plot demonstrates
that codon usage contrast (in the following abbreviated as
CU) is the second best indicator on the test set.

Lawrence and Ochman [14] have developed a surrogate
method that combines analysis of GC-content on the first
and third codon position, of synonymous codon usage, of
positional homology and of BLAST hits (in the following
abbreviated as CALO). The results achieved for the E. coli K-
12 genome are available ftp://ftp.pitt.edu/dept/biology/
lawrence. In figure 2, for all genes of this genome, GCB
scores – signalling translational efficiency [20] – were
plotted vs. CU-contrast and MPW score values. 402 of the
569 genes annotated as CA with the MPW-approach were
also classified as CALO. This number of coincidences is the
4-fold of the fraction expected to occur merely by chance
and is much higher than the overlap of any two other
methods tested so far; see [6]. Therefore, it can be deduced
that a significant portion of the CA genes were acquired
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via HGT and that the periods of genomic evolution
addressed by the CALO and the MPW approach overlap to
a great extend. The plot makes also clear that putatively
highly expressed (PHX, see Methods) genes have to be
excluded in applying surrogate methods. At least some of
the genes identified as compositional atypical with the
CALO method were PHX. Because of the highly specific
codon usage, it is unlikely that these genes have been
acquired via HGT (see figure 2).

Fraction of CA genes and their location
It is known that the number of pA genes varies signifi-
cantly among microbial genomes [21]. Some reasons
explaining these differences are the nature and the effi-
ciency of the transformational system or the assortment of
the ecological niche the species occupy. In table 1, for a
number of species the fraction of CA genes is given and
compared to values published for HGT. For most of the
genomes listed in [21], the fractions of genes identified as

compositional atypical are similarly high. The MPW
approach identified for the genomes of Synechocystis
(CALO = 16.6% / MPW = 5.6%) and A. aeolicus (9.6% /
3.3%) a lower and for A. pernix (3.2% / 6.1%) a higher
amount of CA genes. For the genomes of M. leprae, T. ther-
mophilus, A. fulgidus, C. acetobutylicum, P. horikoshii, Halo-
bacterium, B. burgdorferi, A. aeolicus and Nostoc, the
fraction of CA genes was below 5% and for the genomes
of B. melitensis, C. crescentus, M. jannaschii, T. pallidum, C.
jejuni, M. thermautotrophicus, M. kandleri, P. aerophilum, C.
perfringens, T. elongatus, R. conorii and C. muridarum, it was
below 3%. This was also true for the genomes of D. radio-
durans and H. pylori, which is in contrast to already pub-
lished findings [21]. In the genomes of N. meningitidis, R.
prowazekii, F. nucleatum, Buchnera, M. genitalium, M. pul-
monis and U. urealyticum the fraction of CA genes was
below 1%. These values correspond well with findings
concerning the mosaic structure of genomes: In N. menin-
gitidis only 2.2% of the genome are meningococcus spe-
cific [22]. In the sequences of many microbial genomes, a
noticeable skew in the usage of guanosine and cytosine

Selectivity of four methods for the identification of composi-tional atypical genes.Figure 1
Selectivity of four methods for the identification of composi-
tional atypical genes. Two sets were analysed consisting of 
genes VCA0010 to VCA0230 (control group) and genes 
VCA0271 to VCA0491 (belonging to the integron island) 
from chromosome two of V. cholerae. For each gene, the 
indicators codon usage contrast (CU), δ* difference, dicodon 
usage (DC) and hMPW(gene) (as introduced here) were deter-
mined as described, the values were accumulated set-wise in 
histograms. Any position on a curve gives on the two axes 
the fraction of genes below the corresponding cut-off value.
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Plot of GCB-scores versus CU-contrast values for all genes of E. coli K-12 and the classification of compositional atypical genes.Figure 2
Plot of GCB-scores versus CU-contrast values for all genes of 
E. coli K-12 and the classification of compositional atypical 
genes. For all genes of the genomic data set, the two parame-
ters were determined, converted to z-values and plotted as 
small dots. A high GCB-score is an indicator for adaptation to 
translational efficiency. Genes annotated as putatively alien 
according to the classification CALO and/or by using the MPW 
approach were labelled. The set CALO AND MPW consists of 
those genes identified as compositional atypical by both 
methods.
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residues is detectable and frequently used to identify the
origin of replication. An extensive survey of genomes
based on such methods [2] identified six chromosomes
not presenting a significant structure: Those of Nostoc, Syn-
echocystis, Buchnera, R. conorii, B. burgdorferi and A. aeoli-
cus. Clusters of pA genes with deviating codon usage
would presumably influence the local GC-content, which
is obviously not the case in the considered genomes. The
two chromosomes of R. solanacearum (>10% of CA genes
each) have both a mosaic structure [23].

The genome of B. subtilis has been assessed using a system
of hidden Markov models in order to detect heterogenei-
ties in DNA composition [24]. Table 2 is an extended
version summing up these findings and the location of CA
clusters identified with the MPW approach. The table
demonstrates that both algorithms identify with similar
efficiency regions of deviating DNA composition.

In a critical survey, four surrogate methods were com-
pared [6] by studying the intersections of those sets of

Table 1: Fraction of compositional atypical genes in microbial genomes. The numbers in the column CULO are as in [21], column MPW 
gives the fraction of CA genes as determined by the MPW approach described here.

Species CALO [%] MPW [%]

Escherichia coli O157:H7 15.7
Salmonella enterica subsp. Enterica 14.8
Vibrio cholerae chr. II 14.2
Salmonella typhimurium LT2 13.3
Streptococcus pneumoniae TIGR4 13.0
Mesorhizobium loti 12.9
Mycoplasma pneumoniae 11.6 12.9
Ralstonia solanacearum megaplasmid 12.9
Shigella flexneri 12.6
Escherichia coli K-12 12.8 12.5
Ralstonia solanacearum chromosome 11.9
Streptococcus agalactiae 10.9
Streptococcus pyogenes 10.9
Methanosarcina acetivorans 10.8
Listeria innocua 10.6
Corynebacterium glutamicum 10.2
Yersinia pestis 10.2
Bacillus subtilis 7.5 10.1
Xanthomonas axonopodis 9.7
Xanthomonas campestris 9.4
Listeria monocytogenes 9.0
Lactococcus lactis 8.9
Thermoanaerobacter tengcongensis 8.5
Methanosarcina mazei 8.1
Thermoplasma volcanium 7.9
Staphylococcus aureus 7.7
Sulfolobus tokodaii 7.7
Bacillus halodurans 7.4
Vibrio cholerae chr. I 7.4
Pyrococcus abyssi 6.8
Oceanobacillus iheyensis 6.4
Sulfolobus solfataricus 6.3
Aeropyrum pernix 3.2 6.1
Chlamydophila pneumoniae 6.1
Thermotoga maritime 6.4 6.0
Brucella melitensis 5.9
Chlamydophila pneumoniae AR39 6.1
Haemophilus influenzae Rd 4.5 5.9
Synechocystis sp. PCC 6803 16.6 5.6
Sinorhizobium meliloti 5.4
Thermoplasma acidophilum 5.1
Picrophilus torridus 5.0
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genes identified as pA by the various methods. It turned
out that only the CALO approach and a method based on
hidden Markov models tagged the same genes as pA more
frequently than expected by change.

In [25], the genomes of two Xanthomonas pathogens were
compared: Xanthomonas axonopodis pv. citri (Xac) and Xan-
thomonas campestris pv. campestris (Xcc). To identify unique
genes the authors BLASTed each gene of one genome
against all genes of the second one and analysed the hits.
For the following comparison those genes were named
unique that had no BLAST hit with an E-value < 10-20 in the
second genome. These data sets were downloaded from
http://cancer.lbi.ic.unicamp.br/xanthomonas. As the
MPW approach was designed to predict clusters only,
unique genes lying isolated were removed. The resulting

data sets were compared against the MPW prediction. For
Xac, 425 genes were identified as unique; the MPW
approach annotated 488 genes as CA. 248 genes were
both unique and CA. In the Xcc data set consisting of 4240
genes, 340 had the attribute unique and 454 the attribute
CA, 213 genes had both attributes. If these attributes were
completely unrelated, one would expect for Xcc the fol-
lowing number n of genes with both attributes: n = (454/
4240 × 340/4240) × 4240 = 36. In both genomes, the
number of CA genes labelled as unique is more the five
times the expected value.

Altogether, these findings support the notion that the
MPW approach identifies to a great extend the same class
of genes as hidden Markov models or the CALO method.

Table 2: Genomic islands in the genome of Bacillus subtilis.

Function HMM [kb] MPW [kb] Repeats [kb] Putative Source

PHX: ribosomal proteins 108–155
P1 prophage 202–220 202–223 202–213 Bacilli
Surfactin 402–410 Bacilli
P2 prophage 529–570 529- 555–567 Bacteria

570–600 -587 -- Bacteria, Bacilli
P3 prophage 651–664 653–664 -- Bacilli
Site-specific recombinase 738–747 737–746 -- Bacillus
yesJ-yesZ, ABC transporter 752–782 Bacillales
Multidrug-efflux transporter 818–822 --
-- 1124–1130 --
P4 prophage 1262–1270 1275–1280 -- Bacteria
PBSX prophage (1320–1348) -- --
-- 1397–1399 1385–1424
-- 1442–1447 --
-- 1478–1482 --
P5 prophage 1879–1891 1879–1901 -- Bacteria, Bacilli
-- 2038–2041 --
P6 prophage 2046–2073 2050–2060
SPβ prophage 2151–2286 2152–2286 -- Bacteria, Bacillales, 

Chlamydophila, Streptococcus
Skin prophage 2652–2701 2652- 2654–2701 Bacteria, Bacilli, 

Streptococcus
P7 prophage 2707–2756 -2747 2725–2735 Bacteria, Bacilli
Competence 3253–3257 3252–3257 -- Enterobacteriaceae, Bacillus 

cereus group
Arsenic resistance regulator 3463–3467 3462–3469
PHX: eno, pgm, tpi, pgk, gap 3475–3482
-- -- 3608–3634
Cell wall synthesis 3658–3685 3658–3684 3665–3672 Bacteria, Bacilli
Nitrate reductase 3819–3831 Bacillales
yxiQ-yxxG, bglS, deaD 4009–4022 Bacteria
ABC transporter 4123–4134 4122–4139 -- Bacteria
ABC transporter 4171–4176 4168- 4170–4176 Bacteria, gamma 

subdivision
Streptothricin, tetracycline, mercury regul. 4184–4190 -4193 4189–4190 Bacteria

Numbers give positions on the chromosome in kb. The values in the columns HMM and Repeats are as from [24]. The column "Putative Source" 
lists predictions generated by SIGI.
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An example for a summary view of SIGI's output is given
in figure 3.

Identification of ameliorating genes and excluding false 
predictions
Beginning with the acquisition of an alien gene, its codon
usage will be modulated depending on selective con-
straints and mutational pressure affecting the recipient's
genome. This process was named amelioration [14]. One
might argue that the codon usage of an ameliorating gene
differs significantly from both the donor's and the accep-
tor's codon frequencies and may thus cause false predic-
tions. In order to test the robustness of the MPW approach
with respect to the amelioration process, synthetic genes
consisting of random codon sequences of different length

between 100 and 500 codons were generated. Each test set
consisted of 500 sequences. Codons were selected ran-
domly according to the frequency values as deposited in
the CUTG_RF database (see Methods). For each test set,
two species REC (recipient) and DON (donor) and a value
FRAC (0.0 ≤ FRAC ≤ 1.0) were chosen. Codons were
drawn according to the frequency tables CDNREC or CDN-

DON. FRAC determined, how often CDNDON was selected
as a source for the determination of codons frequencies.
For the analysis described below, for each combination of
a donor and an acceptor, nine data sets were generated
according to the FRAC-values 0.0, 0.05, 0.10, 0.25, 0.50,
0.75, 0.90, 0.95, 1.0. These test sets served as a crude
model for the amelioration process of genes originating
from the donor in the recipient's genome. Test sets were

Summary view of SIGI's annotation for the genome of S. agalactiae.Figure 3
Summary view of SIGI's annotation for the genome of S. agalactiae. Each symbol labels a single gene (product). Meaning of the 
characters: "R" tRNA gene, "x" or "X" two levels of bias in putatively highly expressed genes, "I" integrase, "T" transposase, "H" 
hypothetical protein identified as CA, "G" a gene annotated with a function and identified as CA, "." a gene classified as 
insuspicious.
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generated for four species. M. loti (GC-content 63%), E.
coli K-12 (GC-content 52%), P. horikoshii (GC-content
42%) and C. acetobutylicum (GC-content 31%) were
used as acceptors and different genomes were selected as
donors. The donors were chosen individually, according
to phylogenetic relation and their similarity in codon
usage with respect to the acceptor. Table 3 lists these com-
binations used to generate synthetic genes.

It is known that the mean GC-content at the three codon
positions is correlated with the mean GC-content of the
genome [26]. A significant deviation of the position-spe-
cific GC-content from expectation values derived from the
mean GC-content of a gene was interpreted as a signal
identifying ameliorating genes [14]. In order to determine
a precise measure for the calculation of position-specific
GC-values, 89 microbial genomic data sets were analysed
and used for linear regression. The following formulas
were deduced:

GCexp 1 = 0.761 GCmean + 17.9

GCexp 2 = 0.481 GCmean + 15.6

GCexp 3 = 1.732 GCmean - 33.0

GCmean is the mean GC-content of a gene set under study;
GC exp 1 .. GCexp 3 are the expected GC-content values of
codon positions 1 to 3. To evaluate the GC composition
of a gene, expectation values GCexp i as indicated above
were derived from its mean GC-content and compared to
the position-specific values GCi. An indicator already used
to signal amelioration [14] is the Manhattan distance
GC_dist assessing codon positions 1 and 3:

The underlying model implies that the mean GC_dist
value is larger in the midst of the amelioration interval.
The mean deviation should be minimal for newly
acquired genes or those having nearly gained the donor's
composition. Thus, one might expect that genes with high
GC_dist values generate the largest number of false
predictions. In table 4, which summarizes the results
obtained for predicting the putative source of synthetic
sequences, only entries having a GC_dist value below the
cut-off value AMELI were analysed via the MPW approach.
AMELI was incremented from 0.05 to 0.25. A putative
source was regarded a wrong prediction, if it was neither a
taxon linking the donor with the root of the taxonomic
tree nor a taxon linking the acceptor with the root. The
presented predictions were derived from the taxonomical
relation of the k = 3 highest scoring species (see Methods).
Consequently and in the worst case, the term "cellular
organism" or the name of a superkingdom was predicted
as the putative source. Predictions based on k = 2 pairwise
scores were in many cases wrong (data not shown). Inter-
estingly, the number of false predictions is extremely low,
if the acceptor's GC-content is above 40% and if the Man-
hattan distance to the acceptor's codon usage is below 15.
The results obtained for FRAC = 0.95 clearly indicate that
the algorithm is robust as long as the codon usage is spe-
cies-specific: Among 24 cases, only the combination of
the acceptor M. loti and the donator F. nucleatum gener-
ated more than 20% false positive predictions.

Table 3: Combinations of acceptor and donor species for the generation of random sequences mimicking the amelioration process.

Acceptor GC-Content 
[%]

Donor

I II III IV V VI VII VIII

Mesorhizobium loti 63 Pseudomonas Ralstonia Halobacterium Chloroflexus Corynebacterium Thermotoga Staphylococcus Fusobacteriu
m

denitrificans 
2.1

solanacearum 
4.5

salinarum 6.4 aurantiacus 
7.6

glutamicum 9.1 maritima 11.0 suis 17.8 nucleatum 
24.6

Escherichia coli K-
12

52 Synechococcu
s

Bacillus Methanosarcina Thermotoga Sinorhizobium Ralstonia Thermus Streptomyces

5.0 circulans 4.4 acetivorans 6.5 maritima 
9.0

meliloti 9.6 solanacearum 
13.4

thermophilus 
14.1

natalensis 
15.5

Pyrococcus 
horikoshii

42 Butyrivibrio Sulfolobus Aquifex Pyrobaculum Bacillus Mesorhizobium Myxococcus Cellulomonas

fibrisolvens 
6.2

islandicus 4.4 aeolicus 5.9 aerophilum 
7.0

circulans 8.2 loti 13.4 xanthus 18.4 fimi 22.5

Clostridium 
acetobutylicum

31 Borrelia Methanothermus Anaplasma Neisseria Bacillus Mesorhizobium Myxococcus Cellulomonas

burgdorferi 
2.7

fervidus 3.3 phagocytophilu
m 6.3

meningitidis 
15.7

caldolyticus 17.1 loti 21.1 xanthus 26.3 fimi 30.3

The columnAcceptor gives the name of the "accepting" species. Column I to VIII list the names of those species selected as donors and the 
Manhattandistance to the acceptor's codon frequency table.

GC dist GC GCi i
i

_ | |exp
,

= −
=
∑
1 3
Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/22
If the random sequences used for the analysis are a proper
model for the amelioration process, then the following
problem arises: The result suggests that the amelioration
of a sequence originating from a species with very
dissimilar codon usage causes misleading signals. In addi-
tion, the results presented in table 4 do not show a corre-
lation of the relative number of false positive predictions
with the GC_dist value. Therefore, and at least for the data
set used here, the interpretation of the GC_dist value was
no indicator to identify ameliorating sequences. If
ameliorating sequences of that kind were frequent in
genomes, then the interpretation of codon usage or signa-
tures as in [27] would be questionable. However, there is
one argument that might resolve the dilemma: It was
made plausible that the range and the frequency of HGT
is constrained by selective barriers [15] and one might
expect that a codon usage too dissimilar to the acceptor's
one prevents an expression level necessary to guarantee
the survival of a gene in the acceptor's genome.

A second test for the predictive power was based on the
analysis of native genes selected in 20 species representing
the bacterial and archeal superkingdoms. From the
genomes of A. fulgidus, M. acetivorans, T. acidophilum, P.
horikoshii, T. maritima, D. radiodurans, C. glutamicum, L.
lactis, S. pneumoniae, B. subtilis, E. coli, Y. pestis, H. influen-
zae, N. meningitidis, H. pylori, A. tumefaciens, M. loti, R.
conorii, C. pneumoniae and M. pulmonis, genes annotated
by SIGI as putative native ones were extracted. Each data
set consisted of more than 200 genes. During the analysis

and for all data sets, each of the mentioned species was
regarded as the putative acceptor resulting in 20 × 20 indi-
vidual tests. For all genes, the putative source was pre-
dicted individually as described (see Methods). In 14 of
the 20 data sets, the highest score identified the source
correctly for more than 90% of the genes on the level of
the taxonomical family irrespective of the choice of the
putative acceptor. Less specific were the results for the data
sets extracted from the genomes of L. lactis (72% correct
predictions on the family level), S. pneumoniae (81%), C.
glutamicum (88%), B. subtilis (88%), Y. pestis (83%) and
from genes of chromosome 1 of D. radiodurans (59% cor-
rect predictions on the phylum level). Inferring the puta-
tive source from three high scoring pairwise comparisons
as described below, reduced – as expected – the specificity
of the taxonomical classification. However, the number of
false predictions decreased drastically: For all cases
besides D. radiodurans, less than 5% of the sources were
misclassified on the level of the taxonomic class. In the
worst case, i.e. for D. radiodurans genes, 32% of the predic-
tions were wrong on the phylum level. These findings sug-
gest that codon usage in the extracted gene set of D.
radiodurans is unspecific and has to be studied in more
detail. In no case, more than 1% false classifications were
generated on the level of the superclass. This result indi-
cates that codon usage in Bacteria and Archaea is quite
distinct.

Table 4: SIGI's performance in predicting the donor genome for synthetic genes modelling the amelioration process.

Acceptor Cut-off 
AMELI

Donor

I II III IV V VI VII VIII

Mesorhizobium loti 0.05 0.50 7/2 0.50 69/1 0.50 34/11 0.50 26/1 0.50 115/0 0.10 1/2 0.50 54/89 0.50 51/52
0.10 0.75 286/16 0.75 329/3 0.50 82/17 0.50 298/7 0.50 360/7 0.50 399/6 0.50 154/251 0.50 193/265
0.25 0.75 360/23 0.75 359/3 0.50 90/20 0.95 485/8 0.25 58/8 0.50 482/7 0.50 161/259 0.50 207/277

0.95 476/13 0.95 486/2 0.95 489/7 0.95 485/8 0.95 497/1 0.95 499/0 0.95 499/0 0.95 302/198
Escherichia coli K-12 0.05 1.00 32/6 0.50 38/0 0.50 69/1 0.95 10/2 0.75 73/1 0.90 88/3 0.75 45/3 0.75 133/7

0.10 0.95 349/39 0.75 455/1 0.75 454/8 0.50 392/6 1.00 444/4 0.90 455/6 0.50 433/21 0.75 446/27
0.25 1.00 378/69 0.75 484/1 0.75 490/8 0.50 471/8 1.00 496/4 0.90 492/8 0.50 473/27 0.75 469/31

0.95 386/44 0.95 499/0 0.95 497/2 0.95 497/2 0.95 498/2 0.95 495/5 0.95 499/1 0.95 499/1
Pyrococcus horikoshii 0.05 0.75 134/1 0.50 1/0 0.75 5/0 0.50 8/0 0.75 98/2 0.75 58/1 0.50 23/11 0.90 303/84

0.10 0.75 389/1 0.95 358/2 0.75 137/0 0.50 120/1 0.75 455/8 0.75 440/5 0.50 258/153 0.90 381/110
0.25 0.75 411/1 0.95 466/2 0.50 23/0 0.50 177/1 0.75 484/9 0.75 494/6 0.50 324/176 0.90 388/112

0.95 498/0 0.95 428/0 0.95 500/0 0.95 494/6 0.95 496/4 0.95 476/26 0.95 460/40
Clostridium 
acetobutylicum

0.05 1.00 20/7 0.50 5/1 0.75 134/42 0.50 46/37 0.75 157/6 0.50 50/32 0.25 60/20 0.75 121/242

0.10 1.00 60/39 0.00 4/2 0.75 335/137 0.50 309/148 0.75 452/19 0.50 299/167 0.25 312/151 0.75 181/306
0.25 1.00 79/44 0.00 7/2 0.75 354/146 0.50 338/162 0.50 472/23 0.25 378/122 0.25 339/161 0.75 188/312

0.95 66/35 0.95 155/0 0.95 405/95 0.95 495/5 0.95 494/6 0.95 496/4 0.95 470/30 0.95 405/95

For each pair of donor and acceptor, the worst case is given for three values of AMELI. Each entry lists the fraction FRAC and the number of correct/
incorrect prediction generated for a dataset consisting of 500 sequences. The last line gives the number of correct/incorrect predictions for a FRAC 
value of 0.95.
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Predicting the origin of CA genes
It is known that genomic islands are inhomogeneous in
composition and have a mosaic structure, as they are the
result of a multistep process [8]. For a first analysis of the
genomes however, I identified genomic islands annotated
relatively homogeneously with respect to the putative
donor.

Each Salmonella genome has approximately 12 fimbria
operons frequently involved in virulence [28]. In S. typh-
imurium, the operons fim, saf, std and sth were identified
as CA, bcf, lpf, stc, stf, sti and stj were silent. In S. enteritidis,
sef, stb, std, ste and tcf were identified as CA, bcf, saf, sta, stc,
stg and sth were inconspicuous. The integrated phage
genomes Gifsy-1, Gifsy-2, Fels-1 and Fels-2 were CA. In
many cases, for these islands the taxa "Bacteria" or plas-
mids are predicted as putative source, indicating an
unspecific codon usage. The bias seen in the fimbria oper-
ons might be due to the strong selective pressure imposed
by the host immune system. Based on the analysis of the
ycdB gene, it was claimed that genomic islands of low GC-
content were acquired from Lactococcus lactis [29]. SIGI
gave the following annotations for the most similar
sequences of ycdB: AAC75047 of E. coli K-12 predicted as
CA originating from Bacilli, second most similar codon
usage (hit) Lactococcus, CAD06974 of S. enteritidis CA
(Bacilli, first hit Lactococcus), AAL23317 of S. typhimurium
was not annotated as CA, SF2054 of S. flexneri CA, (Bacilli,
first hit Lactococcus).

In Salmonella enterica, several CA clusters were identified.
In the following list, for some clusters the positions, gene
names, coded proteins and putative sources are given:
1004 kb – 1053 kb contains genes annotated as putative
bacteriophage proteins, originating according to SIGI
from plasmids or Enterobacteriaceae; 1625 kb – 1651 kb,
ssa genes, coding for a type III secretion system, Enterobac-
teriaceae; 2118 kb – 2135 kb, rfb, putative transferases,
inhomogeneous codon usage; 2863 kb – 2900 kb, prg and
sip, pathogenicity 1 island effector proteins, spa, surface
presentation of antigens, inv, secretory proteins, Enterobac-
teriaceae; 3830 kb – 3838 kb, ccm heme exporter protein,
Proteobacteria; 3930 kb – 3941 kb, waa, involved in the
lipopolysaccharide core biosynthesis, Enterobacteriaceae;
4403 kb – 4543 kb, topB, a topoisomerase, pil, vex polysac-
caride export, Enterobacteriaceae, plasmids.

The codon usage of most CA genes identified in Bacillus
subtilis (see table 2) is unspecific. If SIGI predicts a specific
taxon, it is a closely related clade. A similar result was
observed for the genome of Escherichia coli O157:H7. 728
genes were identified as CA, the codon usage table causing
the highest score was in 137 cases derived from a plasmid,
349 times it was from a species belonging to the gamma
subdivision. All prophages and prophage-like elements

known to be integrated into the genome [30] were found
plus several additional CA clusters. All known pathogenic-
ity islands of V. cholerae are CA, among these were the
recently identified islands on chromosome one, named
"seventh pandemic islands" [31]. For a detailed analysis,
see the material deposited on our webserver.

In the genome of the α-Proteobacterium Caulobacter cres-
centus, only 2.5% of the genes are CA. Several genes clus-
tered in the area from 621 kb – 694 kb were predicted as
originating from the Rhizobiaceae group: CC0575 coding
for a putative beta-lactamase (p1 = 5 × 10-4, p2 = 9 × 10-5),
CC0576, it's product is an asparaginase family protein (p1
= 0.01, p2 = 9 × 10-5) or CC0618, cysG coding for a siro-
heme synthase (p1 = 0.01, p2 = 9 × 10-5). The indices p1
and p2 are explained in Methods. A second cluster at 2.90
kb – 2.95 kb contains the genes for the conjugal transfer
protein trbI and several transposases. The codon signature
is inhomogeneous, dominated by species of the Rhizo-
biaceae group.

Haemophilus influenzae Rd is a small, Gram-negative bacte-
rium; the only natural host is human. For 15 genes, the γ-
Proteobacterium Shewanella was predicted as putative
source. 12 of these hits were clustered in the region 1572
kb – 1590 kb which belongs to an island extending from
1555 kb – 1595 kb. It contains among genes for hypothet-
ical proteins fepC and genes coding for Mu proteins like
muA. Recently, a Shewanella species was identified as
human pathogen [32] making the prediction plausible. As
the GC-content of H. influenzae is 38%, these predictions
have to be interpreted with care (see above, results for
ameliorating genes).

In many cases, restriction-modification enzymes were
identified as CA like in Nostoc. A genomic island (3278 kb
– 3289 kb) containing a type 1 restriction modification
enzyme follows a tRNA-Ala gene and a transposase. A
second enzyme of that type is located in the genomic
island (4186 kb – 4220 kb) following a tRNA-Gly. These
genes are predicted as originating from Bacilli and Chlamy-
dophila.

In the genome of Streptococcus pyogenes, 131 genes are
annotated as "phage associated". However, only 50 of
these genes were identified as CA. A CA island spans from
884 kb to 895 kb containing a putative methyltransferase
and the srt system involved in lantibiotic production; the
putative source is diffuse.

It is known that the genome of Mesorhizobium loti contains
a huge symbiosis island (4645 kb – 5256 kb) of size 611
kb [9]. SIGI predicts most of these genes as originating
from the Rhizobiaceae group. The hypothetical protein
MLR6371 has the codon signature of the beta subdivision.
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Examples for additional CA clusters are: 341 kb – 362 kb
coding for unknown proteins around a bacteriophage
integrase, genes are similar in codon usage to plasmids
and Rhizobiaceae; 779 kb – 827 kb codes several trans-
ferases; 843 kb – 861 kb containing genes for an adenylate
cyclase, putatively originating from the Rhizobiaceae group
(p1 = 0.04, p2 = 3 × 10-5) and rsp, the rhizobiocin secretion
system; 2592 kb – 2610 kb containing a cyclase and a gly-
cosyltransferase gene; 3219 kb – 3234 kb with genes for a
DNA invertase rlgA and an excisionase; 3705 kb – 3755 kb
containing genes for a glycosyltransferase, a DNA
polymerase, chloramphenicol-acetyltransferase, heat
shock proteins, codon usage most similar to Rhizobiaceae
group; 5714 kb – 5742 kb containing genes for elements
of an ABC-transporter, methyltransferases, hydrolases;
6580 kb – 6681 kb genes for hypothetical proteins, an
ABC-transporter, a DNA modification-methylase, a histi-
dine-kinase and a site-specific recombinase, the codon
usage is most similar to that of the Rhizobiaceae group.

For a complete listing of the results, see the material
deposited on the web server http://www.g2l.bio.uni-goet
tingen.de. For each genome, results are available in a tab-
ulated version and a format readable by the gene browser
ARTEMIS [33].

Discussion
It was argued that codon usage and atypical GC-content
are no reliable indicators for the study of horizontally
transferred genes [34]. An analysis of positional ortholo-
gous genes in E. coli and S. typhimurium came up with a
similar result [35]. Interestingly the genes referred to as
being classified as false positives in E. coli K-12 (gloB,
gadB, yheB) with the CALO approach were not classified as
CA by the MPW method. Definitely, the number of false
positive predictions can be reduced by applying a cluster-
ing method as introduced here. The risk of missing a large
fraction of pA genes should be minimal, as the pieces of
transferred DNA have usually a considerably length [8],
although there exist exceptions like in the genome of Neis-
seria [22].

The assumption that surrogate methods might overlook
genes acquired by horizontal transfer might be valid for
more ancient events, recently acquired genes seem to be
detected to a great extend by surrogate methods [2]. Law-
rence and Ochman estimated the age of imported genes
[5]. The conclusion was that most are relatively recent, i.e.
acquired within the last few million years; see e.g. [36].
This suggests that older imports have been purged from
the genomes presumably because these genes did not
improve fitness [15]. If this argument is valid, there is no
need to search for huge amounts of ancient pA genes.

The highly consistent findings of the HMM and the MPW
approach for the B. subtilis genome confirm specificity and
sensitivity of the MPW method. However, there might be
two problems: Predicting the false donor and ameliora-
tion. The most convincing proof for the correctness of
SIGI's prediction are concordances with phylogenetic
studies. One example of consistent results is the analysis
of the ycdB gene presented above. However, in many
cases, genes identified as pA with other methods were not
part of a CA cluster. This was the case for gltB and ino1 of
Thermotoga maritima identified as archeal [37], or the
events of HGT described for D. radiodurans [38]. The
analysis of synthetic genes showed that the risk of predict-
ing a false source is high, if the codon usage of the donor
is extremely different. There is however biological evi-
dence that such HGT events are rare. Therefore, most of
SIGI's predictions are reliable on a statistical level. The
analysis of the domain structure of aminoacyl-tRNA syn-
thetases revealed a complex history of HGT events [39]. In
no genome, the MPW method annotated an aminoacyl-
tRNA synthetase as CA. This might indicate the limita-
tions of the approach, which is limited to signals on the
codon level.

The GC-content decreases near the replication terminus of
several microbial species. The AT richness of the terminus
region could be caused by the replication machinery or
the DNA repair system [2]. This deviation might be the
source for classifying genes incorrectly as CA. In many
cases, the GC-content of pathogenicity islands is however
lower than the average content – see examples in [22,31]
– and it might be that genomic islands were imported
preferentially opposite of the origin of replication. In
addition, not all genomic islands are AT rich: the area
between 1555 kb and 1595 kb in the genome of H. influ-
enzae consists of 40 genes having a GC-content that is
higher and 11 genes having a GC-content lower than the
mean GC-content of the genome. If GC-content is deter-
mined gene-wise, then for 45% of the genomes analysed
here, more than 75% of the genes have a lower than mean
GC-content, which is in agreement with [40,41]. How-
ever, 18% of the genomes harbour in GIs more than 50%
of CA genes having a higher GC-content. An extreme case
is the genome of S. solfataricus, where 90% of CA genes
have a GC-content higher than the mean value of 35%.

In principle, the MPW should also identify genomic
islands whose GC-content is similar to the rest of the
genome as long as the codon usage is different. Even a
similarity of codon usage as detected in thermophilic bac-
teria of different clades [42] will not cause false predic-
tions: because of the interpretation of taxonomic relation
between hits, the annotation will in these cases be less
specific but not false.
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There are several options to improve SIGI: The integration
of more codon usage tables and additional indicators like
those introduced in [11] or [27] may further enhance its
predictive power. Applying models for the amelioration
process [14,34] may allow to "reameliorate" genes and to
determine the source of pA genes more specifically.
Finally, a statistical model for the MPW approach has to
be developed.

Conclusions
SIGI is able to detect genomic islands with high sensitiv-
ity. These areas are also candidates for HGT events. Study-
ing such events, SIGI complements methods based on
phylogenetic approaches. The analysis of the taxonomical
relation among putative donors makes clear that a simple
comparison of codon usage may create misleading
predictions.

Methods
A scoring scheme to test relatedness of codon usage
The simplest statistical model describing genes as a
sequence of codons assumes that codons occur independ-
ently from each other. For this model, the Neyman-Pear-
son lemma assures that a function of the type

is optimal to decide, whether gene = start codon, cdn1,
ccdn2......cdnn is a member of the family G1 characterized
by codon frequencies fG1 (cdnj) or belongs to family G2
having codon frequencies fG2 (cdnj). As a result of test the-
ory, it is known that there exists no other function with a
decision strength greater than expression (I). Applying the
logarithm and normalizing for gene length gives:

Now h(gene) is the sum of species-specific log-odds scores
PWG1G2(cdn) divided by the number of codons constitut-
ing the gene. Scores of that type were utilized frequently
and are supported by a sound theory [43]. Recently it was
shown that a similar approach is appropriate to quantify
codon usage bias associated with translational efficiency
[20].

The score values PWG1G2(cdn), which were here always
deduced from codon frequencies among synonymous
codons, can be used to decide whether codon usage in
gene resembles more the prevalences of species G1 or spe-
cies G2. If gene is from genome G1 and if h(gene) is >> 0
then its codon usage is more similar to G2. Therefore, and
if G2 is taxonomically distinct, the gene under study must
be regarded an alien gene and genome G2 might be its
source. In the study presented here, a putative source was

predicted for genes longer than 100 codons only. This
lower limit for gene length was introduced in order to
reduce statistical variation due to small sampling size.

As it was one aim of the study to predict the putative
source of compositional atypical genes, it was necessary to
generate a sufficiently large number of score sets covering
most of the possible origins of taxonomically related spe-
cies. A prerequisite for the calculation of these scores
PWG1G2 are codon usage tables. Their compilation was ini-
tiated with data sets derived from completely sequenced
microbial genomes, which were publicly available.
Frequency values fG2(cdnj) were determined from those
genes not annotated as hypothetical or with a putative
function. It is known that codon frequencies in putatively
highly expressed (PHX) genes deviate significantly from
mean values [3,44]. For each gene, z-scores were deter-
mined for CU contrast [18] and GCB-values [20] (com-
pare figure 2). A gene was regarded as PHX, if the
combination of the two scores exceeded a predefined cut-
off value. This initial set was supplemented with entries
from the CUTG database [45] in the version as of Aug.
2002. From this collection, only those microbial entries
were accepted that contained more than 6400 codons. If
more than one frequency table existed for the same taxo-
nomic species, the data set deduced from the largest
number of codons was processed further. After data col-
lection, similarity of codon usage among species was con-
trolled by calculating pairwise a Manhattan-like distance
among codon usage tables. This distance values were used
to select the final set CUTG_RF of codon frequencies. For
all elements of CUTG_RF, it was confirmed that the most
similar species on codon usage belongs to the same taxo-
nomic class or superclass. This step and the other precau-
tions mentioned above were introduced in order to
guarantee taxonomic relatedness among the entries and to
eliminate codon usage tables presumably derived from a
non-representative sample of a genome. The collection
was supplemented with codon usage tables of plasmids.
Altogether CUTG_RF consisted of nRF = 371 entries used
for the calculation of scores PWG1G2(cdn) at position G2.
The codon frequencies fG1 (cdnj) of the genome G1 under
study were determined from those genes not annotated
with the terms "hypothetical" or "putative" and which
were no PHX genes.

For the analysis of each gene of a genome G1, its codon
usage was evaluated in a multiple pairwise test (MPW)
using nRF individual scoring schemes PWG1G2(cdn). The
species G2max causing the highest score hMPW(gene) was
considered a putative source, if hMPW(gene) exceeded a cut-
off value. In order to quantify the statistical relevance of
the prediction, two parameters p1 and p2 were introduced.
p1 gives the fraction of genes in G1 that achieved a score
at least as high as hMPW(gene), if evaluated with the scoring
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scheme PWG1G2max(cdn). A p1- value of 0.01 e.g. indicates
that 1% of the genes in G1 have a score equal to or greater
than hMPW(gene) if compared to the codon usage of G2max.
The second parameter p2 was derived from a taxonomic
rating of those k = 2 or 3 species G21-G2k triggering the k
largest score values for gene. The basis for the analysis was
a taxonomic tree generated by using material obtained
from the ftp-server of the NCBI ftp://ftp.ncbi.nih.gov/
pub/taxonomy/. The nodes that represent species belong-
ing to the set CUTG_RF were labelled with an indicator.
To calculate the parameter p2, the position of the leaves
G21... G2k were used to identify the nearest node (ancestor
in the taxonomy tree) t1 that subsumes the k leaves. If t1 is
the ancestor of those nt species belonging to CUTG_RF,
then the probability p2 of picking by chance k species
belonging to the taxonomic group t1 can be calculated as

Formula (III) was adapted accordingly, if nt1 was smaller
than k. The identification of taxon t1 and the p2 value allow
to determine the specificity of codon usage. If the high
scoring species are taxonomically unrelated, t1 will be
unspecific and p2 relatively large. A specialized codon
usage will result in small p2 values and a more specific
taxon.

Identification of CA clusters
The concepts introduced so far allowed to characterize
individual genes and to quantify related scores statisti-
cally. Now, it was necessary to assess the set of all
hmax(gene) values in order to derive a cut-off which dis-
criminated those values h(gene) > 0 that deviated signifi-
cantly from expected fluctuations. Because of the
focussing on identifying clusters of CA genes, a statistical
approach could be utilized to eliminate false positive pre-
dictions. To identify genomic islands and to dynamically
adapt the cut-off for each genome individually, a two-pass
strategy was used. During the first pass, for each gene with
number i, all nRF scores were determined and hMPW(genei)
was identified. A text string genome was created according
to the following instruction:

For the string genome the global frequency fglob(S) was
determined and clusters SSSSS indicating a successive
sequence of at least five CA genes were localized. These
clusters were extended in both directions until the local
frequency floc(S) fell below the value 2 × fglob(S). The
hMPW(gene)  values of the genes in the extended clusters
and the remaining ones were accumulated in two histo-
grams h_cl and h_rem. From the histogram h_cl, the cut-off

c_o2 for round two of the clustering process was derived as
the hMPW value exceeded by 95% of the values determined
for genes in extended clusters. c_o2 allows to estimate the
error of not classifying a CA gene correctly: Applying c_o2
on h_rem gives the number of genes having a score above
this cut-off and not being classified as a CA gene. Using
cut-off c_o2, the clustering algorithm was reinitiated and
the genes classified as belonging to extended clusters in
round two were annotated as being CA. The cut-off for
round one was always set to 0.025, a value deduced from
the analysis of chromosome two of V. cholerae (see
Results).

There were several reasons to design the algorithm as
described: The main argument for focusing on clusters
was a combination of biological evidence and statistical
principles that help to increase the reliability of the pre-
diction. First, it is known that genomic islands frequently
have a size of 10 – 200 kb [8]. Second, if the probability
of annotating a gene as CA is p(S) then the probability for
a CA cluster of n successive genes is p(S)n, if independency
is assumed. Thus, for realistic values of p(S) and n it is
highly unlikely that such a cluster occurs merely by
chance. Even if we consider a large value like p(S) = 0.3,
then the probability p(S)5 for a cluster of size 5 (as
assumed above) is < 2.5 × 10-3. A rough estimation (1 /
p(S)5) gives that then one among 400 of such clusters
occurs merely by chance and is a false positive classifica-
tion. This situation allows to gain high sensitivity in iden-
tifying individual CA genes and to deliberately adjust the
cut-off level as described above. As mentioned, the calcu-
lation is based on the assumption that the classification of
adjacent genes is independent of the context. Assuming
independency is a simplistic model, however a rough
approximation, if compared to findings in E. coli: 80% of
transcription units (which subsume operons) have less
than five genes [46].

The factor 2.0 used in the expression 2 × fglob(S) for the
propagation of extended clusters was inferred from the
analysis of the integron island on chromosome two of V.
cholerae (see Results). The exact value of this parameter
did not critically influence the identification and
localization of the integron island (annotation as from
[19], data not shown). In general, the algorithm used for
the extension of clusters resembles principles imple-
mented in BLAST for the identification of optimal high
scoring segment pairs [47].

Data sets (accession numbers in brackets)
Archaea
Archaeoglobus fulgidus (NC_000917), Aeropyrum pernix
(NC_000854), Halobacterium sp. NRC-1 (NC_002607),
Methanothermobacter thermautotrophicus (NC_000916),
Methanocaldococcus jannaschii (NC_000909), Methanosa-
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rcina acetivorans (NC_003552), Methanosarcina mazei
(AE008384), Pyrococcus abyssi (NC_000868), Pyrococcus
horikoshii (NC_000961), Sulfolobus solfataricus
(NC_002754), Sulfolobus tokodaii (NC_003106), Thermo-
plasma acidophilum (NC_002578), Thermoplasma volca-
nium (NC_002689).

Bacteria
Agrobacterium tumefaciens (AE007869, AE007870),
Aquifex aeolicus (NC_000918), Bacillus halodurans
(NC_002570), Bacillus subtilis (NC_000964), Brucella
melitensis (NC_003317, NC_003318), Borrelia burgdorferi
(NC_001318), Buchnera sp. APS (NC_002528), Campylo-
bacter jejuni (NC_002163), Caulobacter crescentus
(NC_002696), Chlamydia muridarum (NC_002620),
Chlamydia trachomatis (NC_000117), Chlamydophila
pneumoniae J138 (NC_002491), Chlamydophila pneumo-
niae AR39 (NC_002179), Clostridium acetobutylicum
(NC_003030), Clostridium perfringens (NC_003366),
Corynebacterium glutamicum (NC_003450), Deinococcus
radiodurans (Chromosome 1, NC_001263), Escherichia
coli K-12 (NC_000913), Escherichia coli O157:H7 EDL933
(NC_002655), Fusobacterium nucleatum (NC_003454),
Haemophilus influenzae Rd (NC_000907), Helicobacter
pylori 26695 (NC_000915), Helicobacter pylori J99
(NC_000921), Lactococcus lactis subsp. Lactis
(NC_002662), Listeria innocua (NC_003212), Listeria
monocytogenes (NC_003210), Mesorhizobium loti
(NC_002678), Methanopyrus kandleri (NC_003551),
Mycobacterium tuberculosis CDC1551 (NC_002755), Myco-
bacterium tuberculosis H37Rv (NC_000962), Mycoplasma
genitalium (NC_000908), Mycobacterium leprae strain TN
(NC_002677), Mycoplasma pneumoniae (NC_000912),
Mycoplasma pulmonis (NC_002771), Neisseria meningitidis
Z2491 (NC_003116), Nostoc sp. PCC 7120
(NC_003272), Oceanobacillus iheyensis (NC_004193),
Pasteurella multocida (NC_002663), Pseudomonas aerugi-
nosa (NC_002516), Pyrobaculum aerophilum
(NC_003364), Ralstonia solanacearum (NC_003295,
NC_003296), Rickettsia conorii (NC_003103),Rickettsia
prowazekii (NC_000963), Salmonella enterica
(NC_003198), Salmonella typhimurium (NC_003197),
Shigella flexneri (NC_004337), Sinorhizobium meliloti
(NC_003047), Staphylococcus aureus subsp. aureus N315
(NC_002745), Staphylococcus aureus strain Mu50
(NC_002758), Streptococcus agalactiae (NC_004116),
Streptococcus pneumoniae R6 (NC_003098), Streptococcus
pneumoniae TIGR4 (NC_003038), Streptococcus pyogenes
(NC_002737), Synechocystis sp. PCC6803 (NC_000911),
Thermoanaerobacter tengcongensis (NC_003896), Ther-
mosynechococcus elongatus (NC_004113), Thermotoga mar-
itima (NC_000853), Treponema pallidum (NC_000919),
Ureaplasma urealyticum (NC_002162), Vibrio cholerae
(NC_002505, NC_002506), Xanthomonas axonopodis
(NC_003919), Xanthomonas campestris (NC_003902),

Xylella fastidiosa (NC_002488), Yersinia pestis
(NC_003143).

The data sets for Thermus thermophilus and Picrophilus tor-
ridus were preliminary data prepared at the Göttingen
Genomics Laboratory.
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