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Abstract
Background: Protein subcellular localization is an important determinant of protein function and
hence, reliable methods for prediction of localization are needed. A number of prediction
algorithms have been developed based on amino acid compositions or on the N-terminal
characteristics (signal peptides) of proteins. However, such approaches lead to a loss of contextual
information. Moreover, where information about the physicochemical properties of amino acids
has been used, the methods employed to exploit that information are less than optimal and could
use the information more effectively.

Results: In this paper, we propose a new algorithm called pSLIP which uses Support Vector
Machines (SVMs) in conjunction with multiple physicochemical properties of amino acids to predict
protein subcellular localization in eukaryotes across six different locations, namely, chloroplast,
cytoplasmic, extracellular, mitochondrial, nuclear and plasma membrane. The algorithm was
applied to the dataset provided by Park and Kanehisa and we obtained prediction accuracies for
the different classes ranging from 87.7% – 97.0% with an overall accuracy of 93.1%.

Conclusion: This study presents a physicochemical property based protein localization prediction
algorithm. Unlike other algorithms, contextual information is preserved by dividing the protein
sequences into clusters. The prediction accuracy shows an improvement over other algorithms
based on various types of amino acid composition (single, pair and gapped pair). We have also
implemented a web server to predict protein localization across the six classes (available at http://
pslip.bii.a-star.edu.sg/).

Background
One of the biggest challenges facing biologists today is the
structural and functional classification and characteriza-
tion of protein sequences. For example, in humans, the
number of proteins for which the structures and functions
are unknown makes up more than 40% of the total
number of proteins. As a result, over the past couple of

decades, extensive research has been done on trying to
identify the structures and functions of proteins.

It is well known that the subcellular localization of pro-
teins plays a crucial role in their functions [1]. A number
of computational approaches have been developed over
the years to predict the localization of proteins, including
recent works like [2-12].
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Initial efforts relied on amino acid compositions [13,14],
the prediction of signal peptides [15-19] or a combination
of both [20,21]. Later efforts were targeted at incorporat-
ing sequence order information (in the form of dipeptide
compositions etc.) in the prediction algorithms [22-27].

There are drawbacks associated with all these methods.
For example, prediction algorithms based on amino acid
compositions suffer from the drawback that there is a loss
of contextual information. As a result, sequences which
are completely different in function and localization but
that have a very similar amino acid composition would
both be predicted as belonging to the same region of the
cell. On the other hand, approaches that rely on predict-
ing signal peptides can lead to inaccurate predictions
when the signals are missing or only partially included
[13].

Recent efforts have also focused on the use of physico-
chemical properties to predict subcellular localization of
proteins [28,29]. Bhasin et al. [30] created an algorithm
which was a hybrid of four different predictive methods.
In addition to using amino acid compositions and dipep-
tide composition information, they also included 33 dif-
ferent physicochemical properties of amino acids,
averaged over the entire protein. However such a globally
averaged value again leads to a loss of contextual informa-
tion. Bickmore et al. [31] studied the characteristics of the
primary sequences of different proteins and concluded
that motifs and domains are often shared amongst pro-
teins co-localized within the same sub-nuclear compart-
ment. Since the structure and hence the function of
proteins is dictated by the different interacting physico-
chemical properties of the amino acids making up the

protein, it would stand to reason that co-localized pro-
teins must share some conservation in the different
properties.

In this paper, we present a new algorithm called pSLIP:
Prediction of Subcellular Localization in Proteins. We use
multiple physicochemical properties of amino acids to
obtain protein extracellular and subcellular localization
predictions. A series of SVM based binary classifiers along
with a new voting scheme enables us to obtain high pre-
diction accuracies for six different localizations.

Results and discussion
We implemented our algorithm on Park and Kanehisa's
dataset [Table 1]. We divided the dataset into clusters
based on sequence length and ran N-fold cross validation
(NF-CV) tests for each of the protein clusters. The accura-
cies for each of these clusters were recorded and finally,
these cluster accuracies were combined to produce overall
accuracies. Table 2 lists them along with results from Park
and Kanehisa's work [21] and Chou and Cai's work [8].
The protein subcellular localization method used in [21]
is based on amino acid compositions. Chou and Cai's
method [8] uses a hybrid algorithm called GO-FunD-
PseAA [5] that combines gene ontology [32], functional
domain decomposition [33] and pseudo-amino acid
composition [26] for localization prediction.

The results reported by Park and Kanehisa are obtained
after 5-fold cross validation testing. To ensure fairness in
comparing results, we ran a 5-fold test on our algorithm.
As is apparent from Table 2, our method provides good
overall accuracy of 89.5% which is significantly higher
than 78.2% and 79.1% obtained for the two different
cases from Park and Kanehisa's paper. Even more interest-
ing is the fact that the accuracies obtained by Park and
Kanehisa are skewed towards those locations that have the
most number of proteins in the dataset, viz., nuclear and
plasma membrane. Total accuracies can sometimes
present a misleading picture about the efficacy of a classi-
fication technique. Local accuracies, on the other hand
can provide a more realistic view of classification efficien-
cies. We obtained a local accuracy of 88.7% which is only
slightly less than the overall accuracy (89.5%) of the tech-
nique. On the other hand, the local accuracies obtained
by Park and Kanehisa are significantly lower than the cor-
responding total accuracies (57.9% and 68.5% when
compared with total accuracies of 78.2% and 79.1%
respectively.)

Chou and Cai have used the leave one out cross validation
(LOO-CV) test to assess the performance of their GO-
FunD-PseAA predictor. Due to reasons described later,
we've used only NF-CV tests. In order to make a reasona-
ble comparison with their results, we did a 10-fold test

Table 1: The number of proteins in the dataset. * These classes 
were not considered as they have too few proteins to achieve 
reliable training.

Subcellular Location Number of entries

Chloroplast 671
Cytoplasmic 1241
Cytoskeleton* 40
Endoplasmic reticulum* 114
Extracellular 861
Golgi apparatus* 47
Lysosomal* 93
Mitochondrial 727
Nuclear 1932
Peroxisomal* 125
Plasma membrane 1674
Vacuolar* 54

Total 7579
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which provides a good trade-off between bias and vari-
ance in test results. As results in Table 2 show, our algo-
rithm performs as well as the GO-FunD-PseAA predictor
and the obtained accuracy of 93.1% compares favorably
with the 92.4% accuracy obtained by Chou and Cai.
Although Chou and Cai's work tackles the harder problem
of classifying over more subcellular locations than we do,
the results do show the promise in the approach of using
physicochemical properties for localization prediction.

Table 3 shows the classification performance for each of
the individual clusters. We found that the prediction accu-
racies for each of the classes is largely uniform across the

different clusters. However, for the cluster with base
length of 450, the classification performance for all classes
are uniformly lower than the accuracies obtained for the
other clusters. This is probably due to the presence of
sequences of lengths far greater than the base length of
that cluster. The was because of an insufficient number of
sequences of lengths greater than 1350 (in order to form
a separate cluster of their own.) However, it is clear that if
not for this aberration, the overall accuracies for this
method would be higher.

Cross validation experiments are frequently prone to an
optimistic bias [34]. This occurs because the experimental

Table 2: Sensitivity (sens) and Specificity (spec) (in %) on Park and Kanehisa's dataset [21]. First two columns show results from Park 
and Kanehisa's algorithm [21] obtained by 5-fold crossvalidation. The next column shows results from Chou and Cai's work [8] 
obtained using leave one out test. The last set of results are from our algorithm obtained using 5-fold and 10-fold crossvalidation.

Subcellular P & K P & K Chou Cai pSLIP
Location 5-fold 5-fold LOO-CV 5-fold 10-fold

sens sens sens spec sens spec sens

Chloroplast 72.3 70.3 93.9 89.9 84.8 93.5 92.4
Cytoplasmic 72.2 73.9 91.5 86.2 84.1 91.6 87.7
Cytoskeleton 58.5 59.8 80.0 - - - -
ER 46.5 39.0 90.3 - - - -
Extracellular 78.0 77.1 90.0 96.3 92.0 98.4 93.7
Golgi Apparatus 14.6 - 76.6 - - - -
Lysosomal 61.8 62.4 92.5 - - - -
Mitochondrial 57.4 53.5 83.6 75.9 86.8 85.7 93.5
Nuclear 89.6 89.0 95.3 89.4 90.4 93.1 93.1
Peroxisomal 25.6 - 82.4 - - - -
Plasma Membrane 92.2 91.9 95.0 95.1 94.1 95.0 97.0
Vacuolar 25.0 - 66.7 - - - -

TA 78.2 79.1 92.4 89.5 93.1
LA 57.9 68.5 - 88.7 92.9

Table 3: Cluster-wise Specificity (spec) and Sensitivity (sens) (in %) for pSLIP using 10-fold cross validation.

Base length 50 150 300 450 Overall

spec sens spec sens spec sens spec sens spec sens

Chloroplast 99.3 97.9 95.9 93.0 97.3 89.1 83.0 90.2 93.5 92.4
Cytoplasmic 95.6 90.3 94.6 93.4 89.4 92.9 89.9 78.5 91.6 87.7
Extracellular 99.1 100 99.0 98.1 97.8 89.3 96.3 80.4 98.4 93.7
Mitochondrial 95.6 96.6 92.1 95.0 88.5 91.0 73.3 92.0 85.7 93.5
Nuclear 93.6 94.6 95.3 95.8 93.6 93.6 91.4 90.8 93.1 93.1
Plasma Memb 95.9 98.9 96.9 98.8 97.4 99.0 92.7 94.8 95.0 97.0

TA 96.4 95.9 93.8 89.3 93.1
LA 96.4 95.7 92.5 87.8 92.9
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setup can be such that the choice of the learning
machine's parameters becomes dependent on the test
data. We've tried to minimize the possible effect of this by
using only a small subset (ninety sequences of each type)
of the available sequences for parameter search, as
described later in this paper. As a further experiment,
we've also carried out an independent dataset (ID) test
using the the eukaryotic sequences dataset developed by
Reinhardt and Hubbard [14]. This dataset has also been
widely used for subcellular localization studies. Instead of
doing cross-validation testing on this dataset, we use the
SVM classifiers generated by our method using Park and
Kanehisa's dataset and predict the subcellular localization
of all sequences in the Reinhardt and Hubbard dataset.

The results of this test, along with the results obtained by
others using this dataset, are shown in Table 4. The first set
of results are from Reinhardt and Hubbard's work [14] in
which a neural network based classifier built upon amino
acid composition as input is used. The next set of results
are from Hua and Sun [13] who used an amino acid com-
position based SVM method. Esub8 [27] uses some
sequence information along with amino acid composi-
tion for classification using SVM. ESLpred [30] is a hybrid
model combining amino acid composition, dipeptide
composition and average physicochemical properties as
features for sequences that are then classified by SVM.

The results in Table 4 illustrate the importance of incorpo-
rating sequence order information in the classification
method. The first two methods ignore order information
entirely and we believe that their prediction accuracy suf-
fers as a result of this. Furthermore, although the predic-
tion accuracies of Esub8 and ESLpred are better than those
of our method, it must be borne in mind that these results
are from training and testing on the same dataset while
our results are from training the classifiers on a different
dataset. It must be noted however that the prediction
accuracies for mitochondrial proteins, which are

notoriously difficult to predict, are significantly higher
using our method than any of the other methods (85.3%
as compared to accuracies between 56% and 68.2% for
the other methods).

The GO-FunD-PseAA predictor, whose classification per-
formance on the Park and Kanehisa dataset is shown in
Table 2, has also been tested on the Reinhardt and Hub-
bard dataset. The predictor performs well on this dataset
too and yields the highest total accuracy of 92.9% [5]
using the rigorous leave one out cross validation test.
However, we could not include these results in Table 4
since the results in [5] do not provide a subcellular loca-
tion-wise breakdown of prediction performance.

We have implemented our algorithm for predicting sub-
cellular localizations as a web server which can be
accessed at http://pslip.bii.a-star.edu.sg/.

Conclusion
Protein subcellular localization has been an active area of
research due to the important role it plays in indicating, if
not determining, protein function. A number of efforts
have previously used amino acid compositions as well as
limited sequence order information in order to predict
protein localization. In this work, we have developed a
novel approach based on using multiple physicochemical
properties. In order to use sequence order information, we
divide the set of proteins into four different clusters based
on their lengths. Within each cluster, proteins are mapped
onto the lowest length in that cluster (50, 150, 300 and
450 for the four clusters).

We then developed multiple binary classifiers for each
cluster. For each protein, the output from each binary clas-
sifier was encoded as a binary bit sequence to form a meta-
dataset. To predict the localization of a query protein, a
similar binary sequence was generated based on the

Table 4: Classification performance (sensitivity) (in %) on Reinhardt and Hubbard's dataset [14]; NF-CV: Results are given by N-fold 
cross validation. LOO-CV: Results are given by leave one out cross validation test. ID: Results are given by directly testing entire 
dataset, without any training on this dataset.

Subcellular R&H SubLoc Esub8 ESLpred pSLIP
Location NF-CV LOO-CV LOO-CV NF-CV ID

Cytoplasmic 55 76.9 80 85.2 75.9
Extracellular 75 80 86.5 88.9 76.3
Mitochondrial 61 56.7 67.6 68.2 85.3
Nuclear 72 87.4 91.2 95.3 84.2

TA 66.0 79.4 84.14 88.0 81.0
LA 65.8 75.3 81.3 84.4 80.4
Page 4 of 12
(page number not for citation purposes)

http://pslip.bii.a-star.edu.sg/


BMC Bioinformatics 2005, 6:152 http://www.biomedcentral.com/1471-2105/6/152
outputs of the different binary classifiers and the nearest
neighbor to this protein was sought in the meta-dataset.

We obtained significantly higher classification accuracies
(93.1% overall and 92.1% local) for the Park and Kane-
hisa dataset. The prediction accuracies obtained for mito-
chondrial and extracellular proteins in particular are
among the highest that have been achieved so far.

The clustered approach was chosen to not only be able to
include sequence order information beyond that of di-,
tri-and tetra-peptide information but also to mitigate the
effects of over-averaging. One of the problems we encoun-
tered was the small number of proteins of length greater
than 1350. As a result, these were averaged down to a base
length of 450 leading to a drop in accuracies for the 450
cluster. Obviously larger datasets, with more representa-
tive samples in the length range greater than 1350 might
yield greater accuracies.

Methods
Dataset
We used the protein sequences dataset1created by Park
and Kanehisa [21]. The dataset consists of 7579 eukaryo-
tic proteins drawn from the SWISS-PROT database and
classified into twelve subcellular locations. The protein
sequences were classified based on the keywords found in
the CC (comments or notes) and OC (organism classifica-
tion) fields of SWISS-PROT. Proteins annotated with mul-
tiple subcellular locations were not included in the
dataset. Further, proteins containing B, X or Z in the
amino acid sequence were excluded from the dataset.
Finally, proteins with high sequence similarity (greater
than 80%) were not chosen for inclusion.

Table 1 summarizes the number of sequences in each of
the twelve subcellular locations. For some of the locations
such as cytoskeleton, there were too few sample sequences
to achieve reliable training accuracies using SVM, the
machine learning algorithm used in this work. Hence, we
considered only sequences of type: chloroplast, cytoplas-
mic, extracellular, mitochondrial, nuclear and plasma
membrane resulting in a dataset with 7106 eukaryotic
protein sequences.

Support vector machine
The concept of Support Vector Machines (SVM) was first
introduced by Vapnik [35,36] and in recent times, the
SVM approach has been used extensively in the areas of
classification and regression. SVM is a learning algorithm
which, upon training with a set of positively and nega-
tively labeled samples, produces a classifier that can then
be used to identify the correct label for unlabeled samples.
SVM builds a classifier by constructing an optimal hyper-
plane that divides the positively and the negative labeled

samples with the maximum margin of separation. Each
sample is described by a feature vector. Typically, training
samples are not linearly separable. Hence, the feature vec-
tors of all training samples are first mapped to a higher
dimensional space H and an optimal dividing hyperplane
is sought in this space.

The SVM algorithm requires the solving of a quadratic
optimization problem. To simplify the problem, SVM
does not explicitly map the feature vectors of all the sam-
ples to the space H. Instead, mapping is done implicitly by

defining a kernel function  between two samples

with feature vectors  and  as:

where Φ is the mapping to the space H.

For a detailed description of the mathematics behind
SVM, we refer the reader to an article by Burges [37]. For
the present study, we used the SVMlight package (version
6.01) created by Joachims [38]. The package is available
online2 and is free for scientific use.

Multi class SVM
A multi-class classification problem, such as the subcellu-
lar localization problem, is typically solved by reducing
the multi-class problem into a series of binary classifica-
tion problems. In the method employed here, called the
1-vs-1 method, a binary classifier is constructed for each
pair of classes. Thus, a c-class problem is transformed into
several two-class problems: one for each pair of classes (i,

j), 1 ≤ i, j ≤ c, i ≠ j. We use the notation  to refer to

both the binary classification problem of separating sam-
ples of classes i and j as well as the SVM classifier which is
used to solve this problem. The classifier for the two-class

problem  is trained with samples of classes i and j,

ignoring samples from all other classes.

Since SVM is a symmetric learning algorithm, the classifier

 is the same as the classifier . Thus, for the pur-

pose of classification, it is sufficient if we consider only

those classifiers  for which i<j Hence, we only con-

struct classifiers for each pair of classes (i, j), 1 ≤ i, j ≤ c, i
<j and there are c (c - 1) /2 such classifiers. To illustrate, if
a classification problem involved three classes a, b and c,
the 1-vs-1 method would require construction of the

binary classifiers  and .

We term those classifiers which are trained to differentiate
the true class of the test sample from other classes as rele-

K x y( , )

x y

K x y x y( , ) ( ) ( )= ⋅Φ Φ

i j,

i j,

i j, j i,

i j,

a b a c, , b c,
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vant classifiers while the remaining classifiers are termed
irrelevant classifiers. For example, using the three class
example cited above, if the (as yet unknown) true class of
a test sample is a, then the relevant classifiers would be

 and  while the classifier  would be

irrelevant.

An unlabeled test sample is tested against all the c (c - 1) /
2 binary classifiers and the predictions from each of these
classifiers are combined by some algorithm to assign a
class label to the sample. The design of the combining
algorithm should be such that the predictions from the
relevant classifiers gain precedence over those from the
irrelevant classifiers. A simple voting scheme is one such
algorithm that has been used earlier [27]. In this scheme,
a vote is assigned to a class every time a classifier predicts
that the test sample belongs to that class. The class with
the maximum number of votes is deemed to be the true
class of the sample.

The prediction performance of the voting scheme
approach relies on the assumption that the relevant clas-
sifiers for the unlabeled sample perform very well and the
number of votes they cast in favor of the true class out-
number the number of votes obtained by any other class
from the irrelevant classifiers. In practice, we found this
not to be the case. Some of the relevant classifiers per-
formed poorly and a wrong class frequently got the high-

est number of votes by virtue of many irrelevant classifiers
voting for it.

To solve this problem with combining classifier predic-
tions, we replaced the voting scheme with a new classifier,
called the meta-classifier. Described in [39], the meta-clas-
sifier works as follows: The set of all the two-class classifi-
ers described above is first built using the available
training samples. After this, each of the training samples is
tested against all the binary classifiers (Figure 1(a)) and
the class predictions are encoded in a binary (0 or 1) bit
sequence (Figure 1(b)). We choose a bit sequence of
length c2 with one bit for each possible combination

. All the bits in the sequence are ini-
tialized to zero. If a binary classifier  predicts the
training sample to belong to class p, then the bit corre-
sponding to the position (p,q) is set to 1; if the prediction
is for class q, then the bit corresponding to the position
(q,p) is set to 1.

Thus, after testing a sample with all the classifiers, we get
an encoded representation of the classifier predictions in
the form of a bit sequence. Since this sample is a training
sample, it's true class (or label) is known. The true class
and the bit sequence together constitute a meta-data
instance derived from the training sample. The collection
of all such meta-data instances derived from all the

Meta-data set constructionFigure 1
Meta-data set construction. This figure shows, using two samples, how the meta-data set is constructed for a three class 
problem. Figure 1(a) lists the predictions obtained by testing the two samples against all the binary classifiers. Figure 1(b) lists 
the bit sequences corresponding to the obtained predictions.
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training samples is termed the meta-data set. Figure 1 pro-
vides an illustration of this process.

When an unlabeled test sample is presented for classifica-
tion, it is first tested against all the binary classifiers (Fig-

ure 2(a)) and the class predictions are encoded in a bit
sequence (Figure 2(b)) as explained above. Then, we seek
an instance in the meta-data set whose bit sequence most
closely matches this test sample's bit sequence. To search
for such a matching sequence, we use a nearest neighbor
approach with the distance between two sequences being
the number of bits in which they differ. The Exclusive OR
(XOR) operator can be used to count the number of
differing bits. Table 5 shows the truth table for the XOR
operator. When we carry out a XOR operation between the
test bit sequence and a sequence from the meta-data set,
we get another bit sequence. The number of 1-bits in this
resulting sequence gives a measure of distance with a
higher number implying greater distance between the
sequences. Figure 2 describes this procedure with an

Meta-classificationFigure 2
Meta-classification. The unlabeled sample is first tested against all the binary classifiers and Figure 2(a) shows the predictions 
obtained after such a test. Next, its bit sequence representation is constructed [Figure 2(b)]. The XOR operation is performed 
between this bit sequence and each of the sequences from the meta-data set [Figures 2(c) & 2(d)]. The distance between sam-
ples is the number of 1-bits in the XOR operation result. Since the distance of the unlabeled sample from sample 1 is less than 
that from sample 2, the unlabeled sample is assigned the label of sample 1, i.e. it is assigned to the class a.
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Table 5: Truth table for the Exclusive OR (XOR) operator. Thus, 
for example, 101 XOR 011 would be 110.
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0 0 1
1 1 0
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example. This distance calculation method is similar to
the hamming decoding method described in [40].

After the sequence from the meta-data set that is closest to
the test sequence is identified, we assign its known class
label to the test sample. In case multiple (equidistant)
sequences are found after the nearest neighbor search,
resulting in a tie between two or more classes, we pick that
particular class which would have got the maximum votes
of the tied classes; the votes being counted according to
the voting scheme described earlier. By implementing this
meta-classification approach, we found an improvement
in accuracy of 10% – 15% over the voting method.

Feature vectors
Many previous efforts have used amino acid composition
as the feature to determine protein subcellular localiza-
tion. In these efforts, the feature vector corresponding to
an amino acid sequence is typically a 20-dimensional vec-
tor with each element of the vector representing the fre-
quency of occurrence of an amino acid in that particular
sequence. As highlighted earlier, this approach leads to a
complete loss of sequence order information. On the
other hand, the averaging of physicochemical properties
over the entire length of the protein sequence also results
in a loss of sequence order information. We believe that
sequences that are co-localized must share some similarity
across certain physicochemical properties, regardless of
their length.

To overcome the shortcomings of earlier efforts, we
employ a novel method of building feature vectors which
is based on an idea first proposed in [41]. Consider an
amino acid sequence of length L. Suppose we wish to use
M different physicochemical properties in the feature rep-
resentation of the amino acid sequence. Corresponding to

each amino acid i, we build property vectors  (1,...,

20) where  (1,..., M) is the vector of normal-

ized values of the M physicochemical properties for the
amino acid i. Then, for the sequence of length L, we con-
catenate the property vectors of each of the amino acids in
the sequence in succession to get a vector of dimension L
× M.

where  is one of  depending upon which amino
acid i is present at location k in the sequence.

While this method allows us to build feature vectors using
any number of desired physicochemical properties, it
results in vectors whose dimension is a function of the
length of the amino acid sequence. One of the problems

with using physicochemical properties averaged over the
entire sequence length, in localization prediction efforts
so far, has been the difference in lengths of the different
protein sequences. Since SVM requires equal length
feature vectors, this has always been a deterrent to utiliz-
ing sequence order information. Hence, we apply a local
averaging process to scale all generated feature vectors to
a standard dimension.

Suppose we take our standard dimension to be K and wish
to construct a feature vector of this dimension for a pro-
tein sequence of length L. For now, let's assume that we
are building amino acid property vectors using just one

physicochemical property. So the feature vector ,
obtained by concatenating property vectors as described
above, will also be of dimension L. We then sequentially
group the feature vector's elements such that we end up
with K groups or partitions of the vector. Withing each
part, we take the average values of the constituent ele-
ments and then build a vector out of these averaged val-
ues. This operation is like constructing a mapping

and can be thought of conceptually as reduc-
ing the protein sequence of length L to a standard length l
and here l = K.

If we used M physicochemical properties instead of one, a
conceptual scaling of a protein sequence of length L to a

standard length l is equivalent to a scaling of  (of length
L × M) to a standard dimension of K = l × M. To do this
operation, we partition the amino acid sequence of length
L into l nearly equal parts and then take the average value
of the property vectors within these partitions.

Figure 3 shows an example where the feature vector for an
amino acid sequence of length L = 6 is constructed. The
example uses M = 2 physicochemical properties and the
target standard dimension is of length K = 10.

There is a loss of sequence order information due to this
averaging process and this loss is significant when scaling
down proteins of very long lengths to a much shorter
length. To minimize this information loss, we divided our
dataset into clusters defining a base length for each clus-
ter. This base length is equivalent to the conceptual pro-
tein sequence standard length l. Within each cluster, no
sequence has a length less than l and the length of the
longest sequence is no greater than three times l. Initially,
we built clusters using the base lengths as (10, 30, 90, 270,
810, 2430) but this resulted in an uneven population dis-
tribution of sequences across clusters that caused prob-
lems in the SVM training stage. We adjusted the cluster
sizes and finally chose the base lengths as (50,150, 300,
450). For sequences of length less than fifty, we extended
their length to fifty by suitably repeating the residues. For

{ }y ii , 

y y jj= ,

χ = ⊕ ⊕ ⊕{ } { } { }y y y L1 2

{ }y k { }y i

χ

f L K: →

χ
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example, if the sequence AMKMSF of length six needs to
be scaled to a length of ten, we would repeat residues to
get AAMMKKMMSF.

Parameter selection
Once the set of sequence clusters is built, we treat each of
these clusters as a separate multi-class SVM problem. For
each of the clusters, we build a set of binary classifiers as
explained earlier. For the SVM algorithm itself, the kernel

 is to be defined first. We chose the widely used
Radial Basis Function (RBF) kernel which is defined as:

Further, the SVM optimization model employs a regulari-
zation parameter C which controls the trade-off between
the margin of separation (between positive and negatively
labeled samples) and the error in classification. Thus, the
process of parameter selection for the classification prob-
lem repeats over the set of binary classifiers per cluster and
then for each of the clusters.

There are three parameters that need to be ascertained:

1. The set of M physicochemical properties to represent
the amino acid sequences

2. The value of γ for the kernel function

3. The value of the regularization parameter C

For the set of physicochemical properties, we used the
Amino Acid index database [42] available at http://
www.genome.jp/dbget/aaindex.html. An amino acid
index is a set of 20 numerical values representing any of
the different physicochemical properties of amino acids.
This database currently contains 484 such indices.

The process of selecting the parameters is carried out using
the approach shown in Figure 4 which essentially involves
doing a parameter space search for the different possible
combinations of sequence clusters, classifiers and param-
eters. We first determine the prediction performances that
can be obtained by the different classifiers in the different
clusters by building feature vectors with each of the 484
indices taken one at a time. During this search over the
indices, we let SVMlight assign default values to C and γ.
Once this search is done, we pick the top five best per-
forming indices to be the representative physicochemical

Feature vector constructionFigure 3
Feature vector construction. In this example, the physicochemical properties chosen are hydropathy and hydrophobicity. 

Their property vectors  are concatenated in the order of occurrence of the residues in the sample protein sequence. The 

 vector thus obtained is scaled by averaging to the required target dimension.

{ }y i

χ

K x y( , )
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properties (for that particular combination of cluster and
classifier.)

We then build feature vectors using these top five indices
and do a search over the C and γ space looking for the best
performing combination of these parameters. At the end
of this parameter search, we obtain the best combination
of amino acid indices, C and γ for each classifier in each
sequence cluster. We then look at which sequence cluster
achieved the best overall prediction performance and pick
the set of best parameters for classifiers in that cluster as
the best set for all the clusters.

The set of top five amino acid indices for each of the clas-
sifiers as found using this parameter search for the Park
and Kanehisa dataset have been provided [see Additional
file 1].

Validation
To assess the prediction performance of the proposed
algorithm, a cross-validation test must be performed. The
three methods most often used for cross-validation are the
independent dataset (ID) test, the leave one out cross valida-
tion (LOO-CV) test and the N-fold cross validation (NF-CV)
test [43]. Of the three, the LOO-CV test is considered to be
the most rigorous and objective [44]. Although bias-free,
this test is very computationally demanding and is often
impractical for large datasets. Further, it suffers from pos-
sibly high variance in results depending on the composi-
tion of the dataset and the characteristics of the classifier.
The NF-CV test provides a bias-free estimate of the accu-

racy [45] at a much reduced computational cost and is
considered an acceptable test for evaluating prediction
performance of an algorithm [46].

In NF-CV tests, the dataset is divided into N parts with
approximately equal number of samples in each part. The
learning machine is trained with samples from N - 1 parts
while the Nth part is used as testing set to calculate classi-
fication accuracies. The learning-testing process is
repeated N times until each part has been used as a testing
set once.

Since the number of protein sequence samples in each
class are all different, it is obvious that during training
phase of a binary classifier, the number of training sam-
ples in the two classes will not be equal. If the SVM is
trained on these unequally sized sets, the resulting classi-
fier will be inherently biased toward the more populous
class; it is more likely to predict a test sample to belong to
that class. The greater the disparity in populations
between the two classes, the more pronounced the bias is.
It is difficult to prevent this bias in the training stage with-
out adjusting more parameters on a per classifier level. To
prevent this problem, we reduce the training set to an
equisized set by randomly selecting m samples from the
larger set; m being the size of the smaller set.

To quantify the performance of our proposed algorithm,
we use the widely used measures of Specificity and Sensitiv-
ity. Let N be the total number of proteins in the testing
dataset and let k be the number of subcellular locations

(classes). Let  be the number of proteins of class i clas-

sified by the algorithm as belonging to class j.

The specificity, also called precision, for class i measures
how many of the proteins classified as belonging to class
i truly belong to that class.

The sensitivity, also called recall, for class i measures how
many of the proteins truly belonging to class i were cor-
rectly classified as belonging to that class.

We further define Total Accuracy to measure how many
proteins overall were correctly classified.

Parameter searchFigure 4
Parameter search. This shows the approach taken to find 
the best parameters for the different possible combinations 
of sequence clusters and classifiers.
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It is expected that the most populous classes will domi-
nate the total accuracy measure and a classifier biased
towards those classes will perform well according to this
measure, even if the prediction performance for the
smaller sized classes is not good. Hence, we consider
another measure termed Location Accuracy and defined as:

Location accuracy reveals any poor performance by an
individual classifier by providing a measure of how well
the classification works for each class of proteins.

The definitions of Total Accuracy and Local Accuracy used
here are equivalent to those used by Park and Kanehisa
[21].

Authors' contributions
DS and GC designed and implemented the pSLIP algo-
rithm along with the voting scheme. KL and AK conceived
the study, participated in its design and supervised the
process. AK and DS drafted the manuscript. All authors
read and approved the final manuscript.

Additional material

Acknowledgements
The authors would like to acknowledge Tariq Riaz and Jiren Wang for their 
inputs during several helpful discussions.

References
1. Feng ZP: An overview on predicting subcellular location of a

protein.  Silico Biology 2002, 2(0027):.
2. Cai YD, Chou KC: Nearest neighbour algorithm for predicting

protein subcellular location by combining functional domain
composition and pseudo-amino acid composition.  Biochemical
and Biophysical Research Communications 2003, 305:407-411.

3. Cai YD, Zhou GP, Chou KC: Support vector machines for pre-
dicting membrane protein types by using functional domain
composition.  Biophysical Journal 2003, 84:3257-3263.

4. Cai YD, Chou KC: Predicting subcellular localization of pro-
teins in a hybridization space.  Bioinformatics 2004, 20:1151-1156.

5. Chou KC, Cai YD: A new hybrid approach to predict subcellu-
lar localization of proteins by incorporating Gene ontology.
Biochemical and Biophysical Research Communications 2003,
311:743-747.

6. Chou KC, Cai YD: Prediction and classification of protein sub-
cellular location: sequence-order effect and pseudo amino
acid composition.  Journal of Cellular Biochemistry 2003,
90:1250-1260.

7. Chou KC, Cai YD: Predicting subcellular localization of pro-
teins by hybridizing functional domain composition and
pseudo-amino acid composition.  Journal of Cellular Biochemistry
2004, 91:1197-1203.

8. Chou KC, Cai YD: Prediction of protein subcellular locations
by GO-FunD-PseAA predictor.  Biochemical and Biophysical
Research Communications 2004, 320:1236-1239.

9. Pan YX, Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L: Application
of pseudo amino acid composition for predicting protein
subcellular location: stochastic signal processing approach.
Journal of Protein Chemistry 2003, 22:395-402.

10. Wang M, Yang J, Liu G, Xu ZJ, Chou KC: Weighted-support vec-
tor machines for predicting membrane protein types based
on pseudo amino acid composition.  Protein Engineering, Design
and Selection 2004, 17:509-516.

11. Wang M, Yang J, Xu ZJ, Chou KC: SLLE for predicting mem-
brane protein types.  Journal of Theoretical Biology 2004, 232:7-15.

12. Zhou ZP, Doctor K: Subcellular location prediction of apopto-
sis proteins.  Proteins: Structure, Function and Genetics 2003, 50:44-48.

13. Hua S, Sun Z: Support vector machine approach for protein
subcellular localization prediction.  Bioinformatics 2001,
17(8):721-728.

14. Reinhardt A, Hubbard T: Using neural networks for prediction
of the subcellular location of proteins.  Nucleic Acids Res 1998,
26(9):2230-2236.

15. Claros M, Vincens P: Computational method to predict mito-
chondrially imported proteins and their targeting
sequences.  Eur J Biochem 1996, 241:779-786.

16. Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting
Subcellular Localization of Proteins Based on their N-termi-
nal Amino Acid Sequence.  Journal of Molecular Biology 2000,
300(4):1005-1016.

17. Emanuelsson O, Nielsen H, von Heijne G: ChloroP, a neural net-
work-based method for predicting chloroplast transit pep-
tides and their cleavage sites.  Protein Sci 1999, 8:978-984.

18. Fujiwara Y, Asogawa M, Nakai K: Prediction of Mitochondrial
Targeting Signals using Hidden Markov Models.  In Genome
Informatics 1997 Edited by: Miyano S, Takagi T. Japanese Society for
Bioinformatics, Tokyo: Universal Academy Press; 1997:53-60. 

19. Predotar: A prediction service for identifying putative mito-
chondrial and plastid targeting sequences  1997 [http://
www.inra.fr/predotar/].

20. Nakai K, Horton P: PSORT: a program for detecting the sort-
ing signals of proteins and predicting their subcellular
localization.  Trends Biochem Sci 1999, 24:34-35.

21. Park KJ, Kanehisa M: Prediction of protein subcellular locations
by support vector machines using compositions of amino
acids and amino acid pairs.  Bioinformatics 2003,
19(13):1656-1663.

22. Chou KC, Zhang CT: Predicting protein folding types by dis-
tance functions that make allowances for amino acid
interactions.  J Biol Chem 1994, 269(35):22014-20.

23. Chou KC: A novel approach to predicting protein structural
classes in a (20-1)-D amino acid composition space.  Proteins
1995, 21(4):319-344.

24. Chou KC, Elrod DW: Prediction of membrane protein types
and subcellular locations.  Proteins 1999, 34:137-153.

25. Chou KC, Elrod DW: Protein Subcellular location prediction.
Protein Eng 1999, 12(2):107-118.

26. Chou KC: Prediction of protein cellular attributes using
psuedo-amino acid composition.  Proteins 2001, 43(3):246-255.

27. Cui Q, Jiang T, Liu B, Ma S: Esub8: A novel tool to predict pro-
tein subcellular localizations in eukaryotic organisms.  BMC
Bioinformatics 2004, 5:66.

28. Chou KC: Prediction of protein subcellular locations by incor-
porating quasi-sequence-order effect.  Biochem Biophys Res
Comm 2000, 278(2):477-483.

29. Feng ZP, T ZC: Prediction of the subcellular location of
prokaryotic proteins based on the hydrophobicity index of
amino acids.  International Journal of Biological Macromolecules 2001,
28:255-261.

Additional File 1
This file lists the top five amino acid indices found by parameter search for 
each of the binary classifiers.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-152-S1.pdf]

Total Accuracy TA
n

N
i
i

i
k

, = =∑ 1

Location Accuracy LA
sensitivity i

k
i
k

,
( )

= =∑ 1
Page 11 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-152-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13678304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13678304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9547285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9547285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8944766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8944766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8944766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10891285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10891285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10891285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338008
http://www.inra.fr/predotar/
http://www.inra.fr/predotar/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7567954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7567954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10336379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10336379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10195282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11288174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11288174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15163352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15163352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11097861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11097861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251233


BMC Bioinformatics 2005, 6:152 http://www.biomedcentral.com/1471-2105/6/152
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

30. Bhasin M, Raghava GPS: ESLpred: SVM-based method for sub-
cellular localization of eukaryotic proteins using dipeptide
composition and PSI-BLAST.  Nucl Acids Res 2004,
32:W414-419.

31. Bickmore W, Sutherland H: Addressing protein localization
within the nucleus.  EMBO J 2002, 21(6):1248-1254.

32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene Ontology: tool for the unification
of biology.  Nature Genetics 2000, 25:25-29.

33. Chou KC, Cai YD: Using functional domain composition sup-
port vector machines for prediction of protein subcellular
location.  Journal of Biological Chemistry 2002, 277:45765-45769.

34. Scheffer T, Herbrich R: Unbiased Assessment of Learning
Algorithms.  IJCAI-97 1997:798-803.

35. Vapnik V: The Nature of Statistical Learning Theory Springer; 1995. 
36. Vapnik V: Statistical Learning Theory Wiley; 1998. 
37. Burges CJC: A Tutorial on Support Vector Machines for Pat-

tern Recognition.  Data Min Knowl Discov 1998, 2(2):121-167.
38. Joachims T: Making large-scale support vector machine learn-

ing practical.  In Advances in Kernel Methods: Support Vector Machines
Edited by: Schölkopf B, Burges C, Smola A. MIT Press, Cambridge,
MA; 1998. 

39. Savicky P, Füernkranz J: Combining Pairwise Classifiers with
Stacking.  In Advances in Intelligent Data Analysis V Edited by: Berthold
M, Lenz H, Bradley E, Kruse R, Borgelt C. Springer; 2003:219-229. 

40. Allwein EL, Schapire RE, Singer Y: Reducing multiclass to binary:
a unifying approach for margin classifiers.  Journal of Machine
Learning Research 2001, 1:113-141.

41. Bock JR, Gough DA: Predicting protein-protein interactions
from primary structure.  Bioinformatics 2001, 17(5):455-460.

42. Kawashima S, Kanehisa M: AAindex: amino acid index database.
Nucleic Acids Res 2000, 28:374.

43. Chou KC, Zhang CT: Prediction of Protein Structural Classes.
Crit Rev Biochem Mol Biol 1995, 30(4):275-349.

44. Mardia KV, Kent JT, Bibby JM: Multivariate Analysis London: Academic
Press; 1979:322-381. 

45. Stone M: Cross-validatory choice and assessment of statistical
predictions.  Journal of the Royal Statistical Society 1974, 36:111-147.

46. Kohavi R: Wrappers for performance enhancement and obliv-
ious decision graphs.  In PhD thesis Stanford University; 1995. 
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11889031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11889031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7587280
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Table 2
	Table 3

	Conclusion
	Methods
	Dataset
	Support vector machine
	Multi class SVM
	Feature vectors
	Parameter selection
	Validation

	Authors' contributions
	Additional material
	Acknowledgements
	References

