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Abstract
Background: Baum-Welch training is an expectation-maximisation algorithm for training the
emission and transition probabilities of hidden Markov models in a fully automated way. It can be
employed as long as a training set of annotated sequences is known, and provides a rigorous way
to derive parameter values which are guaranteed to be at least locally optimal. For complex hidden
Markov models such as pair hidden Markov models and very long training sequences, even the most
efficient algorithms for Baum-Welch training are currently too memory-consuming. This has so far
effectively prevented the automatic parameter training of hidden Markov models that are currently
used for biological sequence analyses.

Results: We introduce the first linear space algorithm for Baum-Welch training. For a hidden
Markov model with M states, T free transition and E free emission parameters, and an input
sequence of length L, our new algorithm requires O(M) memory and O(LMTmax (T + E)) time for
one Baum-Welch iteration, where Tmax is the maximum number of states that any state is
connected to. The most memory efficient algorithm until now was the checkpointing algorithm
with O(log(L)M) memory and O(log(L)LMTmax) time requirement. Our novel algorithm thus renders
the memory requirement completely independent of the length of the training sequences. More
generally, for an n-hidden Markov model and n input sequences of length L, the memory
requirement of O(log(L)Ln-1 M) is reduced to O(Ln-1 M) memory while the running time is changed
from O(log(L)Ln MTmax + Ln(T + E)) to O(Ln MTmax (T + E)).

An added advantage of our new algorithm is that a reduced time requirement can be traded for an
increased memory requirement and vice versa, such that for any c ∈ {1, ..., (T + E)}, a time
requirement of Ln MTmax c incurs a memory requirement of Ln-1 M(T + E - c).

Conclusion: For the large class of hidden Markov models used for example in gene prediction,
whose number of states does not scale with the length of the input sequence, our novel algorithm
can thus be both faster and more memory-efficient than any of the existing algorithms.

Background
Hidden Markov Models (HMMs) are widely used in Bio-
informatics [1], for example, in protein sequence align-

ment, protein family annotation [2,3] and gene-finding
[4,5].
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When an HMM consisting of M states is used to annotate
an input sequence, its predictions crucially depend on its
set of emission probabilities ε and transition probabilities

. This is for example the case for the state path with the
highest overall probability, the so-called optimal state
path or Viterbi path [6], which is often reported as the pre-
dicted annotation of the input sequence.

When a new HMM is designed, it is usually quite easy to
define its states and the transitions between them as these
typically closely reflect the underlying problem. However,
it can be quite difficult to assign values to its emission

probabilities ε and transition probabilities . Ideally, they
should be set up such that the model's predictions would
perfectly reproduce the known annotation of a large and
diverse set of input sequences.

The question is thus how to derive the best set of transi-
tion and emission probabilities from a given training set
of annotated sequences. Two main scenarios have to be
distinguished [1]:

(1) If we know the optimal state paths that correspond to
the known annotation of the training sequences, the tran-
sition and emission probabilities can simply be set to the
respective count frequencies within these optimal state
paths, i.e. to their maximum likelihood estimators. If the
training set is small or not diverse enough, pseudo-counts
have to be added to avoid over-fitting.

(2) If we do not know the optimal state paths of the train-
ing sequences, either because their annotation is
unknown or because their annotation does not unambig-
uously define a state path in the HMM, we can employ an
expectation maximisation (EM) algorithm [7] such as the
Baum-Welch algorithm [8] to derive the emission and
transition probabilities in an iterative procedure which
increases the overall log likelihood of the model in each
iteration and which is guaranteed to converge at least to a
local maximum. As in case (1), pseudo-counts or Dirichlet
priors can be added to avoid over-fitting when the training
set is small or not diverse enough.

Methods and results
Baum-Welch training
The Baum-Welch algorithm defines an iterative procedure
in which the emission and transition probabilities in iter-
ation n + 1 are set to the number of times each transition
and emission is expected to be used when analysing the
training sequences with the set of emission and transition
probabilities derived in the previous iteration n.

Let  denote the transition probability for going from

state i to state j in iteration n,  the emission proba-
bility for emitting letter y in state i in iteration n, P(X) the
probability of sequence X, and xk the kth letter in input
sequence X which has length L. We also define Xk as the
sequence of letters from the beginning of sequence X up
to sequence position k, (x1, ...xk). Xk is defined as the
sequence of letters from sequence position k + 1 to the end
of the sequence, (xk+1, ...xL).

For a given set of training sequences, S, the expectation

maximisation update for transition probability , 

can then be written as

The superfix n on the quantities on the right hand side
indicates that they are based on the transition probabili-

ties  and emission probabilities  of iteration

n. f(Xk, i): = P(x1, ...xk, s(xk) = i) is the so-called forward
probability of the sequence up to and including sequence
position k, requiring that sequence letter xk is read by state
i. It is equal to the sum of probabilities of all state paths
that finish in state i at sequence position k. The probabil-
ity of sequence X, P(X), is therefore equal to f(XL, End).
b(Xk, i): = P(xk+1, ...xL|s(xk) = i) is the so-called backward
probability of the sequence from sequence position k + 1
to the end, given that the letter at sequence position k, xk,
is read by state i. It is equal to the sum of probabilities of
all state paths that start in state i at sequence position k.

For a given set of training sequences, S, the expectation

maximisation update for emission probability ,

, is

δ is the usual delta function with  = 1 if xk = y and

 = 0 if xk ≠ y. As before, the superfix n on the quanti-

ties on the right hand side indicates that they are
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calculated using the transition probabilities  and emis-

sion probabilities  of iteration n.

The forward and backward probabilities fn (Xk, i) and
bn(Xk, i) can be calculated using the forward and backward
algorithms [1] which are introduced in the following
section.

Baum-Welch training using the forward and backward algorithm
The forward algorithm proposes a procedure for calculat-
ing the forward probabilities f(Xk, i) in an iterative way.
f(Xk, i) is the sum of probabilities of all state paths that fin-
ish in state i at sequence position k.

The recursion starts with the initialisation

where Start is the number of the start state in the HMM.
The recursion proceeds towards higher sequence positions

and terminates with

where End is the number of the end state in the HMM. The
recursion can be implemented as a dynamic program-
ming procedure which works its way through a two-
dimensional matrix, starting at the start of the sequence in
the Start state and finishing at the end of the sequence in
the End state of the HMM.

The backward algorithm calculates the backward proba-
bilities b(Xk, i) in a similar iterative way. b(Xk, i) is the sum
of probabilities of all state paths that start in state i at
sequence position k. Opposed to the forward algorithm
the backward algorithm starts at the end of the sequence
in the End state and finishes at the start of the sequence in
the Start state of the HMM.

The backward algorithm starts with the initialisation

and continues towards lower sequence positions with the
recursion

and terminates with

As can be seen in the recursion steps of the forward and
backward algorithms described above, the calculation of
f(Xk+1, i) requires at most Tmax previously calculated ele-
ments f(Xk, j) for j ∈ {1, ..M}. Tmax is the maximum
number of states that any state of the model is connected
to. Likewise, the calculation of b(Xk, i) refers to at most
Tmax elements b(Xk+1, j) for j ∈ {1, ..M}.

In order to continue the calculation of the forward and
backward values f(Xk, i) and b(Xk, i) for all states i ∈ {1,
..M} along the entire sequence, we thus only have to
memorise M elements.

Baum-Welch training using the checkpointing algorithm
Unit now, the checkpointing algorithm [11-13] was the
most efficient way to perform Baum-Welch training. The
basic idea of the checkpointing algorithm is to perform
the forward and backward algorithm by memorising the

forward and backward values only in  columns
along the sequence dimension of the dynamic program-
ming table. The checkpointing algorithm starts with the
forward algorithm, retaining only the forward values in

 columns. These columns partition the dynamic

programming table into  separate fields. The
checkpointing algorithm then invokes the backward algo-
rithm which memorises the backward values in a strip of

length  as it moves along the sequence. When the
backward calculation reaches the boundary of one field,
the pre-calculated forward values of the neighbouring
checkpointing column are used to calculate the corre-
sponding forward values for that field. The forward and
backward values of that field are then available at the
same time and are used to calculate the corresponding val-
ues for the EM update.

The checkpointing algorithm can be further refined by
using embedded checkpoints. With an embedding level of

k, the forward values in  columns of the initial cal-
culation are memorised, thus defining

 long fields. When the memory-sparse
calculation of the backward values reaches the field in
question, the forward algorithm is invoked again to
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calculate the forward values for  additional col-
umns within that field. This procedure is iterated k times
within the thus emerging fields. In the end, for each of the

-long k-sub-fields, the forward and backward val-
ues are simultaneously available and are used to calculate
the corresponding values for the EM update. The time
complexity of this algorithm for one Baum-Welch itera-
tion and a given training sequence of length L is O(kLMT-

max + L(T + E)), since k forward and 1 backward algorithms
have to be invoked, and the memory complexity is

. For k = log(L), this amounts to a time require-
ment of O(log(L)LMTmax + L(T + E)) and a memory

requirement of O(log(L)M), since  = e.

Baum-Welch training using the new algorithm

It is not trivial to see that the quantities  and 

of Equations 1 and 2 can be calculated in an even more
memory-sparse way as both, the forward and the corre-
sponding backward probabilities are needed at the same
time in order to calculate the terms

 in  and

 in  of Equations 1 and 2.

A calculation of these quantities for each sequence posi-
tion using a memory-sparse implementation (that would
memorise only M values at a time) both for the forward
and backward algorithm would require L-times more
time, i.e. significantly more time. Also, an algorithm along
the lines of the Hirschberg algorithm [9,10] cannot be
applied as we cannot halve the dynamic programming
table after the first recursion.

We here propose a new algorithm to calculate the quanti-

ties  and  which are required for Baum-

Welch training. Our algorithm requires O(M) memory
and O(LMTmax (T + E)) time rather than O(log(L)M)
memory and O(log(L{LMTmax + L(T + E)) time.

The trick for coming up with a memory efficient algorithm
is to realise that

•  and  in Equations 1 and 2 can be inter-

preted as a weighted sum of probabilities of state paths
that satisfy certain constraints and that

• the weight of each state path is equal to the number of
times that the constraint is fulfilled.

For example,  in the numerator in Equation 1 is the

weighted sum of probabilities of state paths for sequence
X that contain at least one i → j transition, and the weight
of each such state path in the sum is the number of times
this transition occurs in the state path.

We now show how  in Equation 1 can be calcu-

lated in O(M) memory and O(LMTmax) time. As the super-
fix n is only there to remind us that the calculation of

 is based on the transition and emission probabil-

ities of iteration n and as this index does not change in the

calculation of , we discard it for simplicity sake in the

following.

Let ti, j (Xk, l) denote the weighted sum of probabilities of
state paths that finish in state l at sequence position k of
sequence X and that contain at least one i → j transition,
where the weight for each state path is equal to its number
of i → j transitions.

Theorem 1: The following algorithm calculates ti, j (X) in
O(M) memory and O(LMTmax) time. ti, j (X) is the
weighted sum of probabilities of all state paths for
sequence X that have at least one i → j transition, where
the weight for each state path is equal to its number of i →
j transitions.

The algorithm starts with the initialisation

and proceeds via the following recursion

and finishes with
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Proof:

(1) It is obvious that the recursion requires only O(M)
memory as the calculation of all f(Xk+1, m) values with m
∈ {1, ..M} requires only access to the M previous f(Xk, n)
values with n ∈ {1, ..M}. Likewise, the calculations of all
ti, j(Xk+1, m) values with m ∈ {1, ..M} refer only to M ele-
ments ti, j(Xk, n) with n ∈ {1, ..M}. We therefore have to
remember only a thin "slice" of ti, j and f values at
sequence position k in order to be able to calculate the ti, j
and f values for the next sequence position k + 1. The time
requirement to calculate ti, j is O(LMTmax): for every
sequence position and for every state in the HMM, we
have to sum at most Tmax terms in order to calculate the
backward and forward terms.

(2) The f(Xk, m) values are identical to the previously
defined forward probabilities and are calculated in the
same way as in the forward algorithm.

(3) We now prove by induction that ti, j(Xk, l) is equal to
the weighted sum of probabilities of state paths that have
at least one i → j transition and that finish at sequence
position k in state l, the weight of each state path being
equal to its number of i → j transitions.

Initialisation step (sequence position k = 0): ti, j(X0, m) = 0
is true as the sum of probabilities of state paths that finish
in state m at sequence position 0 and that have at least one
i → j transition is zero. Induction step k → k + 1: We now
show that if Equation 3 is true for sequence position k, it
is also true for k + 1. We have to distinguish two cases:

(i) case m = j:

The first term, see right hand side of 5, is the sum of prob-
abilities of state paths that finish at sequence position k +
1 and whose last transition is from i → j. The second term,
see 6, is the sum of probabilities of state paths that finish
at sequence position k + 1 and that already have at least

one i → j transition. Note that the term in 6 also contains
a contribution for n = i. This ensures that the weight of
those state path that already have at least one i → j transi-
tion is correctly increased by 1. The sum, ti, j(Xk+1, m), is
therefore the weighted sum of probabilities of state paths
that finish in sequence position k + 1 and contain at least
one i → j transition. Each state path's weight in the sum is
equal to its number of i → j transitions.

(ii) case m ≠ j:

The expression on the right hand side is the weighted sum
of probabilities of state paths that finish in sequence posi-
tion k + 1 and contain at least one i → j transition.

We have therefore shown that if Equation 3 is true for
sequence position k, it is also true for sequence position k
+ 1. This concludes the proof of theorem 1.  �

It is easy to show that ei(y, X) in Equation 2 can also be cal-
culated in O(M) memory and O(LMTmax) time in a similar
way as ti, j(X). Let ei(y, Xk, l) denote the weighted sum of
probabilities of state paths that finish at sequence posi-
tion k in state l and for which state i reads letter y at least
once, the weight of each state path being equal to the
number of times state i reads letter y. As in the calculation
of ti, j(X) we again omit the superfix n as the calculation of
ei(y, X) is again entirely based on the transition and emis-
sion probabilities of iteration n.

Theorem 2: ei(y, X) can be calculated in O(M) memory
and O(LMTmax) time using the following algorithm. ei(y,
X) is the weighted sum of probabilities of state paths for
sequence X that read letter y in state i at least once, the
weight of each state path being equal to the number of
times letter y is read by state i.

Initialisation step:

Recursion:

P X f X End f X n T

t X t X End

t

L L
n

M

n End

i j i j L

i j

( ) ( , ) ( , )

( ) ( , )

,

, ,

,

= =

= =

=
∑

1

(( , )

( , )

( , )

,

,

, ,

X n T

f X i T

t X n T

Ln
M

n End

L i End

i End kn
M

n End

=

=

∑

∑
+





 1

1









≠

=

End j

End j

( )4

t X m f X i T E xi j k k i j j k, ,( , ) ( , ) ( ) ( )+ += +1 1 5

t X n T E Xi j k
n

M

n j j k, ,( , ) ( ) ( )
=

+∑
1

1 6

t X m t X n T E xi j k i j k n m m k
n

M

, , ,( , ) ( , ) ( )+ +
=

= ∑1 1
1

f X m
m Start

m Start

e y X mi

( , )

( , , )

0

0

1

0

0

=
=
≠





=

Page 5 of 8
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:231 http://www.biomedcentral.com/1471-2105/6/231
Termination step:

Proof: The proof is strictly analogous to the proof of the-
orem 1.

The above theorems have shown that ti, j(X) and ei(y, X)
can each be calculated in O(M) memory and O(LMTmax)
time. As there are T transition parameters and E emission
parameters to be calculated in each Baum-Welch iteration,
and as these T + E values can be calculated independently,
the time and memory requirements for each iteration and
a set of training sequences whose sum of sequence lengths
is L using our new algorithm are

• O(M) memory and O(LMTmax (T + E)) time, if all param-
eter estimates are calculated consecutively

• O(M(T + E)) memory and O(LMTmax) time, if all param-
eter estimates are calculated in parallel

• more generally, O(Mc) memory and O(LMTmax (T + E -
c)) time for any c ∈ {1,..., (T + E)}, if c of T + E parameters
are to be calculated in parallel

Note that the calculation of P(X) is a by-product of each ti,
j(X) and each ei(y, X) calculation, see Equations 4 and 7,
and that T is equal to the number of free transition param-
eters in the HMM which is usually smaller than the
number of transitions probabilities. Likewise, E is the
number of free emission parameters in the HMM which
may differ from the number of emission probabilities
when the probabilities are parametrised.

Discussion and Conclusion
We propose the first linear-memory algorithm for Baum-
Welch training. For a hidden Markov model with M states,

T free transition and E free emission parameters, and an
input sequence of length L, our new algorithm requires
O(M) memory and O(LMTmax (T + E)) time for one Baum-
Welch iteration as opposed to O(log(L)M) memory and
O(log(L)LMTmax + L(T + E)) time using the checkpointing
algorithm [11-13], where Tmax is the maximum number of
states that any state is connected to. Our algorithm can be
generalised to pair-HMMs and, more generally, n-HMMs
that analyse n input sequences at a time in a straightfor-
ward way. In the n-HMM case, our algorithm reduces the
memory and time requirements from O(log(L)Ln-1 M)
memory and O(log(L)Ln MTmax + Ln(T + E)) time to O(Ln-

1 M) memory and O(Ln MTmax (T + E))) time. An added
advantage of our new algorithm is that a reduced time
requirement can be traded for an increased memory
requirement and vice versa, such that for any c ∈ {1,..., (T
+ E)}, a time requirement of Ln MTmax c incurs a memory
requirement of Ln-1 M(T + E - c). For HMMs, our novel
algorithm renders the memory requirement completely
independent of the sequence length. Generally, for n-
HMMs and all T + E parameters being estimated consecu-
tively, our novel algorithm reduces the memory require-
ment by a factor log(L) and the time requirement by a
factor log(L)/(T +E) + 1/(MTmax). For all hidden Markov
models whose number of states does not depend on the
length of the input sequence, this thus amounts to a sig-
nificantly reduced memory requirement and – in cases
where the number of free parameters and states of the
model (i.e. T + E) is smaller than the logarithm of
sequence lengths – even to a reduced time requirement.

For example, for an HMM that is used to predict human
genes, the training sequences have a mean length of at
least 2.7·104 bp which is the average length of a human
gene [14]. Using our new algorithm, the memory require-
ment for Baum-Welch training is reduced by a factor of
about 28 ≈ e* In (2.7·104) with respect to the most mem-
ory-sparse version of the checkpointing algorithm.

Our new algorithm makes use of the fact that the numer-
ators and denominators of Equations 1 and 2 can be
decomposed in a smart way that allows a very memory-
sparse calculation. This calculation requires only one uni-
directional scan along the sequence rather than one or
more bi-directional scans, see Figure 1. This property gives
our algorithm the added advantage that it is easier to
implement as it does not require programming tech-
niques like recursive functions or checkpoints.

Baum-Welch training is only guaranteed to converge to a
local optimum. Other optimisation techniques have been
developed in order to find better optima. One of the most
successful methods is simulated annealing (SA) [1,15]. SA
is essentially a Markov chain Monte Carlo (MCMC) in
which the target distribution is sequentially changed such
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that the distribution gets eventually trapped in a local
optimum. One can give proposal steps a higher probabil-
ity as they are approaching locally better points. This can
increase the performance of the MCMC method, espe-
cially in higher dimensional spaces [16]. One could base
the candidate distribution on the expectations such that
proposals are more likely to be made near the EM updates
(calculated with our algorithm). There is no need to
update all the parameters in one MCMC step, modifying
a random subset of parameters yields also an irreducible
chain. The last feature makes SA significantly faster than
Baum-Welch updates as we need to calculate expectations
only for a few parameters using SA. In that way, our algo-
rithm could be used for highly efficient parameter train-
ing: using our algorithm to calculate the EM updates in
only linear space and using SA instead of the Baum-Welch
algorithm for fast parameter space exploration.

Typical biological sequence analyses these days often
involve complicated hidden Markov models such as pair-

HMMs or long input sequences and we hope that our
novel algorithm will make Baum-Welch parameter train-
ing an appealing and practicable option.

Other commonly employed methods in computer science
and Bioinformatics are stochastic context free grammars
(SCFGs) which need O(L2 M) memory to analyse an input
sequence of length L with a grammar having M non-termi-
nal symbols [1]. For a special type of SCFGs, known as
covariance models in Bioinformatics, M is comparable to
L, hence the memory requirement is O(L3). This has
recently been reduced to O(L2 log(L)) using a divide-and-
conquer technique [17], which is the SCFG analogue of
the Hirschberg algorithm for HMMs [9]. However, as the
states of SCFGs can generally impose long-range correla-
tions between any pair of sequence positions, it seems
that our algorithm cannot be applied to SCFGs in the gen-
eral case.

Authors' contributions
The algorithm is the result of a brainstorming session of
the authors on the Genome campus bus back to Cam-
bridge city centre on the evening of the 17th February
2005. Both authors contributed equally.

Acknowledgements
The authors would like to thank one referee for the excellent comments. 
I.M. is supported by a Békésy György postdoctoral fellowship. Both authors 
wish to thank Nick Goldman for inviting I.M. to Cambridge.

References
1. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence

analysis.  Cambridge University Press; 1998. 
2. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D: Hidden

Markov models in biology: Applications to protein
modelling.  J Mol Biol 1994, 235:1501-1531.

3. Eddy S: HMMER: Profile hidden Markov models for biological
sequence analysis.  2001 [http://hmmer.wustl.edu/].

4. Meyer IM, Durbin R: Comparative ab initio prediction of gene
structures using pair HMMs.  Bioinformatics 2002,
18(10):1309-1318.

5. Meyer IM, Durbin R: Gene structure conservation aids similar-
ity based gene prediction.  Nucleic Acids Research 2004,
32(2):776-783.

6. Viterbi A: Error bounds for convolutional codes and an ass-
ymptotically optimum decoding algorithm.  IEEE Trans Infor
Theor 1967:260-269.

7. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from
incomplete data via the EM algorithm.  J Roy Stat Soc B 1977,
39:1-38.

8. Baum LE: An equality and associated maximization technique
in statistical estimation for probabilistic functions of Markov
processes.  Inequalities 1972, 3:1-8.

9. Hirschberg DS: A linear space algorithm for computing maxi-
mal common subsequences.  Commun ACM 1975, 18:341-343.

10. Myers EW, Miller W: Optimal alignments in linear space.
CABIOS 1988, 4:11-17.

11. Grice JA, Hughey R, Speck D: Reduced space sequence
alignment.  CABIOS 1997, 13:45-53.

12. Tarnas C, Hughey R: Reduced space hidden Markov model
training.  Bioinformatics 1998, 14(5):4001-406.

13. Wheeler R, Hughey R: Optimizing reduced-space sequence
analysis.  Bioinformatics 2000, 16(12):1082-1090.

Pictorial description of the new algorithm for pair-HMMsFigure 1
Pictorial description of the new algorithm for pair-
HMMs. This figure shows a pictorial description of the dif-
ferences between the forward-backward algorithm (a) and 
our new algorithm (b) for the Baum-Welch training of a pair-
HMM. Each large rectangle corresponds to the projection of 
the three-dimensional dynamic programming matrix 
(spanned by the two input sequences X and Y and the states 
of the HMM) onto the sequence plane. (a) shows how the 
numerator in Equation 1 is calculated at the pair of sequence 
positions indicated by the black square using the standard 
forward and backward algorithm. (b) shows how our algo-
rithm simultaneously calculates a strip of forward values f(Xk, 
Yq, m) and a strip of ti, j(XkYq, m) values at sequence position k 
in sequence X in order to estimate ti, j in Equation 1.

(a)

(b)

b

f

f

ti,j
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://hmmer.wustl.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12376375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12376375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3382986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9088708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9088708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327


BMC Bioinformatics 2005, 6:231 http://www.biomedcentral.com/1471-2105/6/231
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

14. International Human Genome Sequencing Consortium: Initial
sequencing and analysis of the human genome.  Nature 2001,
409:860-921.

15. Kirkpatrick S, Gelatt CD Jr, Vecchi MP: Optimization by Simu-
lated Annealing.  Science 1983, 220:671-680.

16. Roberts GO, Rosenthal JS: Optimal scaling of discrete approxi-
mations to Langevin diffusions.  J R Statist Soc B 1998,
60:255-268.

17. Eddy S: A memory-efficient dynamic programming algorithm
for optimal alignment of a sequence to an RNA secondary
structure.  BMC Bioinformatics 2002, 3:18.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background:
	Results:
	Conclusion

	Background
	Methods and results
	Baum-Welch training
	Baum-Welch training using the forward and backward algorithm
	Baum-Welch training using the checkpointing algorithm
	Baum-Welch training using the new algorithm


	Discussion and Conclusion
	Authors' contributions
	Acknowledgements
	References

