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Abstract
Background: Prediction of the transmembrane strands and topology of β-barrel outer membrane
proteins is of interest in current bioinformatics research. Several methods have been applied so far
for this task, utilizing different algorithmic techniques and a number of freely available predictors
exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs), on
Neural Networks (NNs) and on Support Vector Machines (SVMs). In this work, we compare the
different available methods for topology prediction of β-barrel outer membrane proteins. We
evaluate their performance on a non-redundant dataset of 20 β-barrel outer membrane proteins
of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the
first time, an effective way to combine the individual predictors, at will, to a single consensus
prediction method.

Results: We assess the statistical significance of the performance of each prediction scheme and
conclude that Hidden Markov Model based methods, HMM-B2TMR, ProfTMB and PRED-TMBB,
are currently the best predictors, according to either the per-residue accuracy, the segments
overlap measure (SOV) or the total number of proteins with correctly predicted topologies in the
test set. Furthermore, we show that the available predictors perform better when only
transmembrane β-barrel domains are used for prediction, rather than the precursor full-length
sequences, even though the HMM-based predictors are not influenced significantly. The consensus
prediction method performs significantly better than each individual available predictor, since it
increases the accuracy up to 4% regarding SOV and up to 15% in correctly predicted topologies.

Conclusions: The consensus prediction method described in this work, optimizes the predicted
topology with a dynamic programming algorithm and is implemented in a web-based application
freely available to non-commercial users at http://bioinformatics.biol.uoa.gr/ConBBPRED.

Background
Transmembrane proteins are divided to date into two
structural classes, the α-helical membrane proteins and
the β-barrel membrane proteins. Proteins of the α-helical
membrane class have their membrane spanning regions
formed by hydrophobic helices which consist of 15–35

residues [1]. These are the typical membrane proteins,
found in cell membranes of eukaryotic cells and bacterial
inner membranes [1]. On the other hand, β-barrel mem-
brane proteins, have their transmembrane segments,
formed by antiparallel β-strands, spanning the membrane
in the form of a β-barrel [2,3]. These proteins are found
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solely in the outer membrane of the gram-negative bacte-
ria, and presumably in the outer membranes of mito-
chondria and chloroplasts, a fact, perhaps, explained by
the endosymbiotic theory [4-7]. Transmembrane protein
topology prediction has been pursued for many years in
bioinformatics, mostly focusing on the α-helical mem-
brane proteins. One reason for that, is that α-helical trans-
membrane segments are more easily predicted by
computational methods, due to the easily detectable pat-
tern of highly hydrophobic consecutive residues, and the
application of simple rules as the "positive-inside rule"
[8]. On the other hand, another reason is the relative
abundance of α-helical membrane proteins compared to
that of the β-barrel membrane proteins. This discrepancy,
is present in both the total number of membrane proteins
in complete genomes, an also in the datasets of experi-
mentally solved 3-dimensional structures. Currently, the
number of structures of outer membrane proteins known
at atomic resolution raises rapidly, due to improvements
in the cloning and crystallization techniques [9]. This, for-
tunately, gave rise to an increase of the number of predic-
tion methods and the online available web-predictors.
The first computational methods that were deployed for
the prediction of the transmembrane strands were based
on hydrophobicity analyses, using sliding windows along
the sequence, in order to capture the alternating patterns
of hydrophobic-hydrophilic residues of the transmem-
brane strands [10,11]. Other approaches included the
construction of special empirical rules using amino-acid
propensities and prior knowledge of the structural nature
of the proteins [12,13], and the development of Neural
Network-based predictors to predict the location of the
Cα's with respect to the membrane [14]. The major disad-
vantages of these older methods, were the limited training
sets that they were based on, and the reduced capability to
capture the structural features of the bacterial outer mem-
brane proteins, especially when it comes to sequences not
having similarity with the proteins of the training set. Dur-
ing the last few years, other more refined methods, using
larger datasets for training, appeared. These methods,
include refined Neural Networks (NNs), [15,16], Hidden
Markov Models (HMMs) [17-21] and Support Vector
Machines (SVMs) predictors [22]. Some of these methods
are based solely on the amino acid sequence and others
use also as input evolutionary information derived from
multiple alignments. Other popular methods such as the
method of Wimley [23] and BOMP [24] do not explicitly
report the transmembrane strands, but instead they are
oriented towards genome scale discrimination of β-barrel
membrane proteins.

In this work, we evaluate the performance of the available
prediction methods to date. Using a non-redundant data-
set of 20 outer membrane β-barrel proteins, with struc-
tures known at atomic resolution, we compare each

predictor in terms of the per-residue accuracy (using the
correctly predicted residues, and the Mathews correlation
coefficient [25]) and that of the strands' prediction accu-
racy measured by the segments overlap measure (SOV)
[26]. We also report the number of the correctly predicted
topologies (i.e. when both strands localization and orien-
tation of the loops are correctly predicted). We conclude,
that the recently developed Hidden Markov Model meth-
ods HMM-B2TMR [17], ProfTMB [21] and PRED-TMBB
[20], perform significantly better than the other available
methods. We also conclude that the prediction accuracy is
affected significantly, if the full sequences (including long
N-terminal and C-terminal tails and the signal peptide)
are used for input and not only the transmembrane β-bar-
rel domain. This finding is again more profound when
referring to the NN and SVM predictors, since the regular
grammar of the HMMs maps successfully the model
topology to the proteins' modular nature. Finally, we
developed a consensus prediction method, using as input
the individual predictions of each algorithm, and we con-
clusively show that this approach performs better, in all
the measures of accuracy, compared to each individual
prediction method separately. Although consensus meth-
ods have proven to be more accurate in the past, in the
case of α-helical membrane proteins [27-29] and also for
secondary structure prediction of globular, water soluble
proteins [30-32], this is the first time that such a method
is applied to β-barrel outer membrane proteins.

Results and discussion
The results obtained from each individual algorithm, on
the test set of the 20 proteins are summarized in Table 1.
It is obvious that all of the methods perform worse for the
measures of per-segment accuracy in the case of full-
length sequences. On the other hand, for measures of per-
residue accuracy, most of the methods perform better in
the case of full-length sequences, a fact already mentioned
in [21]. This is explained, considering the fact that when
using full-length sequences, more non-transmembrane
residues are predicted correctly, thus increasing the frac-
tion of correctly predicted residues and the correlation
coefficient. Furthermore, when ranking the different
methods PRED-TMBBposterior performs better, followed
by HMM-B2TMR and ProfTMB. PRED-TMBBnbest, per-
forms slightly worse than PRED-TMBBposterior in terms
of per-residue accuracy and SOV, but is inferior to the
other top-scoring HMMs in terms of the correctly pre-
dicted topologies. In order to assess the statistical signifi-
cance of these observations and draw further safe
conclusions, we should rely on a statistical analysis of the
results obtained.

The MANOVA test (Table 2A) yields a highly significant p-
value for both the 2 independent variables (p < 10-4). This
means, that there is truly a difference in the vector of the
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Table 1: Obtained accuracy of the predictors, in a test set of 20 outer membrane proteins

METHOD TYPE SEQUENCE Qβ Cβ SOV Correctly 
predicted 
topologies

Correctly 
predicted 
barrel size

HMM-B2TMR HMM barrel 0.737 0.557 0.836 15 17
precursor 0.790 0.600 0.813 14 16

ProfTMB HMM barrel 0.734 0.537 0.818 14 17
precursor 0.777 0.575 0.784 12 16

PRED-TMBBpost HMM barrel 0.818 0.630 0.886 14 19
precursor 0.842 0.637 0.852 14 16

PRED-TMBBnbest HMM barrel 0.818 0.629 0.877 12 17
precursor 0.849 0.637 0.856 11 13

TBBPred-comb NN+SVM barrel 0.702 0.428 0.664 0 0
precursor 0.701 0.424 0.496 0 0

TBBPred-nn NN barrel 0.735 0.466 0.672 0 1
precursor 0.726 0.432 0.496 0 1

TBBPred-svm SVM barrel 0.744 0.458 0.721 1 3
precursor 0.744 0.426 0.535 0 0

B2TMPRED NN barrel 0.723 0.498 0.738 7 9
precursor 0.709 0.466 0.551 0 0

TMBETA-NET HMM barrel 0.697 0.415 0.698 3 8
precursor 0.663 0.353 0.515 0 4

BETA-TM NN barrel 0.690 0.395 0.691 1 2
precursor 0.663 0.322 0.497 0 1

PSI-PRED NN barrel 0.731 0.484 0.690 0 0
precursor 0.756 0.495 0.569 0 0

HMM-B2TMR, ProfTMB, PRED-
TMBBpost, B2TMPRED, TBBPred-nn

CONSENSUS barrel 0.819 0.641 0.924 18 20

precursor 0.849 0.660 0.874 15 18

For an explanation of the measures of accuracy see the Materials and Methods section. Abbreviations: PRED-TMBBpost: PRED-TMBB method with 
posterior decoding, PRED-TMBBnbest: PRED-TMBB method with NBest decoding, TBBPred-nn: The Neural Network module of TBBPred, 
TBBPred-svm: The SVM module of TBBPred, TBBPred-comb: TBBPred, combining the Neural Network and SVM modules. The performance of the 
best individual predictor, and the best available consensus obtained are highlighted with bold.

Table 2: Multivariate Analysis of Variance (MANOVA) using as dependent variables the vector of the 5 measures of accuracy.

A. Wilk's Λ df1 df2 F p-value

overall 0.1981 105 2029 7.59 <10-4

type 0.8455 5 414 15.13 <10-4

method 0.2582 50 1891 13.08 <10-4

type*method 0.8541 50 1891 1.33 0.0619

B.

overall 0.4511 15 1193 26.58 <10-4

type 0.8609 5 432 13.96 <10-4

hmm 0.5441 5 432 72.40 <10-4

type*hmm 0.9585 5 432 3.74 0.0025

A. Model that includes as independent variables the individual methods (11 factors), the type of the sequence (barrel/precursor) and their 
interaction term. B. Model that includes as independent variables the type of the method (HMM/not-HMM), the type of the sequence (barrel/
precursor) and their interaction term. We report the Wilk's lambda statistic (Wilk's Λ), the degrees of freedom of the numerator (df1), the 
degrees of freedom of the denominator (df2), the F statistic (F) and the corresponding p-value (p-value).
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five measured attributes across the different methods and
the type of sequence that we use as input. By including in
the model the interaction term between the two factors,
we get a marginally insignificant p-value (p = 0.0619),
indicating that some of the methods behave differently
with input sequences of different type. Examining each
one of the attributes independently (Table 3A), we
observe that the type of the input sequence does not influ-
ence significantly the effect on all the measures of per-res-
idue accuracy (correctly predicted residues and the
correlation coefficient, p-values equal to 0.9444 and
0.0224 respectively) but, instead, influences a lot the per-
segment measures such as SOV (p < 10-4), correctly pre-
dicted topologies (p = 0.0193) and correct barrel size (p =
0.0001). In all cases, the type of the method is a highly sig-
nificant factor (p < 10-4), reflecting the fact that there are
true differences in the performance of the methods. The
interaction term in the ANOVA is significant only for the
SOV measure (p = 0.0272), and marginally significant for
the correctly predicted residues (p = 0.402). However,
these results do not provide us with a clue as to which
method performs better (or worse) than the others; it
states that one or more methods depart significantly from
the mean. The ranking of the methods has to be con-
cluded by observing Table 1.

In order to discover the statistically significant differences
between the methods, we proceeded by grouping the
methods according to the type of the algorithm they uti-
lize. This way, we grouped together the HMM-based
methods (HMM-B2TMR, PRED-TMBB, ProfTMB and
BETA-TM) and the NN and SVM-based methods
(TMBETA-NET, B2TMPRED, PSI-PRED and TBBPred).

Thus, instead of having a factor with 8 levels describing
the methods, we now have a factor with 2 levels (HMM
and not HMM). The MANOVA test (Table 2B) once again
yields a statistically significant result, for both the 2 factors
(p < 10-4) and the interaction term (p = 0.0025), giving us
a clear indication that the visually observed superiority of
the HMM-based methods has a statistically significant jus-
tification. The statistically significant interaction of the 2
factors, furthermore suggests that the decrease in some of
the measured attributes when submitting full-length
sequences, is smaller (if anything) for HMM-based meth-
ods than for the NN and SVM-based ones. In fact, consid-
ering the three top-scoring HMM methods, we observe
that the per-segment measures are not influenced from
the type of the input sequence whereas the per-residue
measures are significantly increased with full-length
sequences as input, reflecting the fact that more non-
transmembrane residues are correctly predicted, as
noticed already in [21]. Considering each one of the
measures of accuracy with ANOVA (Table 3B), the type of
the method is a highly significant factor in all of the tests,
and the type of the input sequence highly significant for
the per-segment measures of accuracy. The interaction
term is highly significant for SOV (p = 0.0011) and mar-
ginally insignificant for correctly predicted residues (p =
0.052).

These findings suggest, that the HMM-based predictors
perform better, on average, than the NN and SVM-based
methods, in almost all of the measured attributes. We
should mention here, that the difference between HMM
and NN/SVM methods is larger for the measures of per-
segment accuracy than for per-residue accuracy. Even the

Table 3: Univariate Analysis of Variance (ANOVA) using each time as dependent variable each one of the 5 measures of accuracy.

Qβ Cβ SOV Correctly predicted 
topologies

Correctly predicted 
barrel size

A. F p-value F p-value F p-value F p-value F p-value

overall 15.8 <10-4 13.55 <10-4 13.33 <10-4 19.07 <10-4 27.34 <10-4

type 0 0.9444 5.25 0.0224 56.86 <10-4 5.51 0.0193 14.97 0.0001
method 31.26 <10-4 26.97 <10-4 20.25 <10-4 38.49 <10-4 54.14 <10-4

type*method 1.93 0.0402 0.96 0.4758 2.05 0.0272 1.01 0.4318 1.77 0.0645

B.

overall 27.13 <10-4 32.43 <10-4 58.18 <10-4 72.27 <10-4 123.71 <10-4

type 0.06 0.8144 3.49 0.0625 45.22 <10-4 4.33 0.0379 12.28 0.0005
hmm 77.59 <10-4 91.52 <10-4 113.97 <10-4 212.4 <10-4 358.84 <10-4

type*hmm 3.8 0.052 1.79 0.1822 10.83 0.0011 0.01 0.9428 0.1 0.7502

A. Model that includes as independent variables the individual methods (11 factors), the type of the sequence (barrel/precursor) and their 
interaction term. B. Model that includes as independent variables the type of the method (HMM/not-HMM), the type of the sequence (barrel/
precursor) and their interaction term. We report the F statistic (F) of the ANOVA test and the corresponding p-value (p-value).
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simplest and less accurate HMM-based method, BETA-
TM, that uses single sequence information compares favo-
rably to the refined NN/SVM methods that use profiles
derived from multiple alignments. As a matter of fact,
only B2TMPRED, which uses a dynamic programming
algorithm to refine the prediction, predicts more accu-
rately than BETA-TM the correct topology and/or the bar-
rel size of the proteins, but still cannot reach the accuracy
of the other HMM-based methods. Furthermore, the
HMM-based methods are not influenced significantly
whether full-length sequences or just the β-barrel
domains are submitted for prediction. Interestingly, the
NN/SVM methods, often falsely predict the signal peptide
sequences as transmembrane strands in the precursors
whereas HMMs do not. This observation is consistent
with the theory regarding the nature of HMM and NN-
based methods. Thus, it is consistent with the fact that the
regular grammar of the HMMs can capture more effec-
tively the temporal variability of the protein sequence and
map successfully the proteins' modular nature to a math-
ematical sound model. Therefore, it is not surprising that
also for α-helical membrane proteins' topology predic-
tion the best available predictors are those based on
HMMs [33]. On the other hand, NN methods are more
capable of capturing long-range correlations along the
sequence. This results to the correct identification of an
isolated strand, but since the β-barrel proteins follow strict
structural rules, the modular nature of the barrels is cap-
tured more effectively by HMMs. NNs may often falsely
predict isolated transmembrane strands in non-barrel
domains or predict strands with a non-plausible number
of residues or even barrels with an odd number of strands.
From a structural perspective, it is also of great interest to
consider that the repetitive structural domains of β-barrels
are the β-hairpins whereas the α-helical membrane pro-
teins counterparts are the isolated hydrophobic helices
often connected by loop regions of arbitrary length.

These observations, will have a significant impact not
only on isolated predictions for one or few proteins, but
also on predictions for sequences arising from genome
projects where one expects to have the precursor
sequences. Thus, predictions on such sequences will be
more reliable, when obtained from HMM-predictors
rather than NN and SVM-based ones. However, the per-
formance of even the best currently available predictors
are not as good as the predictions obtained for α-helical
membrane proteins [33]. This is somewhat expected, and
has a simple interpretation considering the grammatical
structure of the short amphipathic transmembrane β-
strands as opposed to the longer and highly hydrophobic
transmembrane α-helices [1].

One issue that was not possible to investigate statistically
is that of the use of evolutionary information in the form

of profiles derived from alignments. It is well known, that
the inclusion of information arising from alignments,
increases significantly the performance of secondary struc-
ture prediction algorithms [34]. This was exploited in the
past, in the case of α-helical membrane protein prediction
[35,36], and it was investigated thoroughly in a recent
work [37]. However, for β-barrel membrane proteins
there is not such a clear answer. The authors of the meth-
ods that use evolutionary information [15,17,21] justified
their choice showing that the inclusion of alignments as
input, improves the performance of their models up to
18%. Furthermore, we showed here that NN-based meth-
ods, using multiple alignments (B2TMPRED) perform sig-
nificantly better, compared to similar methods that are
relying on single sequences (TMBETA-NET). However, the
top scoring HMM method, PRED-TMBB, performs com-
parably to the other HMM methods that are using
evolutionary information, even though it relies on single
sequence information. This finding may be explained
considering the choice of the training scheme for PRED-
TMBB, since it is the only method trained according to the
CML criterion, and with manually curated annotations for
the transmembrane strands. However, it raises an impor-
tant question as to whether the prediction accuracy, could
be improved more by using evolutionary information, or
not. Future studies on this area will reveal if improve-
ments in the prediction could arise by combining evolu-
tionary information with appropriate choice of training
schemes, or if we have eventually reached a limit of the
predictive ability for β-barrels membrane proteins, and we
depend only on the advent of more three-dimensional
representative structures.

Comparing the performance of individual methods, one
has to keep in mind several important aspects of the com-
parison. From the one hand, the limited number of β-bar-
rel membrane proteins known at atomic resolution,
resulted in having a test set, that includes some (or all) of
the proteins used for training each individual method or
a close homologue. This does not imply that the compar-
ison of the methods is biased (regarding the ranking), but
that the absolute values of the measures of accuracy may
be influenced. Thus, when it comes to newly solved struc-
tures, we may expect somewhat lower rates in the meas-
ures of accuracy for all methods examined. On the other
hand, when comparing the results of the individual meth-
ods, as they appear in the original publications, we
observe some discrepancies. These arise, mainly due to the
fact, that when reporting results of a prediction method,
the authors usually report the measures of accuracy
obtained in the jackknife test (leave one out cross-valida-
tion test). Furthermore, the authors of the individual
methods report the measures of accuracy obtained using
as input different types of sequences, and comparing
using as observed different annotations for the transmem-
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brane strands. For instance, other authors report measures
of accuracy obtained from the β-barrel domain of the pro-
teins, others from the sequences deposited in PDB, and
others report also the results from precursor sequences. As
for the observed transmembrane strands used for compar-
isons, most of the authors used the annotations for the
strands found in PDB, and only PRED-TMBB used manu-
ally annotated segments that resemble better the part of
the strand inserted into the lipid bilayer. The last observa-
tion, partly explains the better prediction accuracy
obtained by PRED-TMBB, mainly in the measures of per-
residue accuracy (correctly predicted residues and correla-
tion coefficient).

One important result of this study is the development of
the consensus prediction method, for predicting the trans-
membrane strands of β-barrel membrane proteins. Even
though consensus prediction has been proved to be a val-
uable strategy for improving the prediction of α-helical
membrane proteins [27,29,38], no such effort has been

conducted before, for the case of transmembrane β-bar-
rels. A consensus of all of the available methods, does not
improve the prediction accuracy compared to the top-
scoring methods, indicating that there is a considerable
amount of noise in the individual predictions, originating
mainly from the low-scoring methods. However, when
using the three top-scoring HMM methods (PRED-TMBB,
HMM-B2TMR and ProfTMB) along with one or more of
the best performing NN/SVM methods (B2TMPRED, TBB-
Pred-SVM, TBBPred-NN and TBBPred-Combined) we get
impressive results, outperforming the top-scoring meth-
ods in almost all measured attributes. As it is obvious
from Tables 1 and 4, the consensus prediction method
performs better than each one of the individual predic-
tors. The improvement ranges from a slight improvement
around 1% for the correctly predicted residues and corre-
lation coefficient, up to 4% for SOV and 15% for the cor-
rectly predicted topologies. We should note that these
particular results were achieved using PRED-TMBBposte-
rior, ProfTMB, HMMB2TMR, B2TMPRED and TBBPred-

Table 4: Obtained accuracy of the consensus predictions, in the test set of 20 outer membrane proteins

METHOD TYPE SEQUENCE Qβ Cβ SOV Correctly 
predicted 
topologies

Correctly 
predicted 
barrel size

PRED-TMBB, ProfTMB, HMM-B2TMR CONSENSUS barrel 0.771 0.596 0.877 17 19
precursor 0.818 0.628 0.86 15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, B2TMPRED CONSENSUS barrel 0.790 0.616 0.896 17 19
precursor 0.832 0.641 0.865 15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, TBBPred-nn CONSENSUS barrel 0.809 0.635 0.917 18 20
precursor 0.839 0.653 0.867 15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, TBBPred-svm CONSENSUS barrel 0.809 0.629 0.906 15 19
precursor 0.847 0.658 0.882 15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, TBBPred-comb CONSENSUS barrel 0.791 0.607 0.894 17 20
precursor 0.833 0.648 0.859 15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, TBBPred-nn/svm CONSENSUS barrel 0.824 0.638 0.92 17 19
precursor 0.85 0.647 0.871 13 17

PRED-TMBB, ProfTMB, HMM-B2TMR, B2TMPRED, 
TBBPred-nn/svm

CONSENSUS barrel 0.825 0.637 0.927 17 18

precursor 0.854 0.652 0.876 15 17
PRED-TMBB, ProfTMB, HMM-B2TMR, B2TMPRED, 

TBBPred-nn
CONSENSUS barrel 0.81

9
0.64

1
0.92

4
18 20

precursor 0.84
9

0.66
0

0.87
4

15 18

PRED-TMBB, ProfTMB, HMM-B2TMR, B2TMPRED, 
TBBPred-comb

CONSENSUS barrel 0.807 0.625 0.907 17 19

precursor 0.845 0.658 0.868 15 18
PRED-TMBB, ProfTMB, HMM-B2TMR, B2TMPRED, 

TBBPred-svm
CONSENSUS barrel 0.819 0.637 0.910 15 19

precursor 0.853 0.659 0.880 14 18
PRED-TMBB, ProfTMB, B2TMPRED, TBBPred-svm/nn CONSENSUS barrel 0.829 0.642 0.923 17 18

precursor 0.851 0.648 0.861 15 16
PRED-TMBB, ProfTMB, B2TMPRED, TBBPred-svm, 

TBBPred-nn, HMM-B2TMR, TMBETA-NET, PSI-PRED, 
BETA-TM

CONSENSUS barrel 0.808 0.582 0.851 11 13

precursor 0.844 0.604 0.841 12 13

We report the consensus of all the available methods, and the ones that were obtained using the 3 top-scoring HMMs combined in various ways 
with some of the top-scoring NN/SVM methods. The best results are highlighted with bold. For abbreviations see also Table 1.
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NN, but other combinations of the aforementioned meth-
ods perform similarly (Table 4). This large improvement
in the measures of per-segment accuracy is an important
finding of this study.

However, in the web-based implementation of the con-
sensus prediction method, we allow the user to choose at
will the methods that will be used for the final prediction.
This was decided for several reasons: Firstly, for a newly
found protein, we might have larger variations on the pre-
dictions, and we could not be sure if the choice of differ-
ent algorithms will give better results or not. Secondly, the
different predictors are not sharing the same functionality
and availability. For instance, some predictors respond by
e-mail (B2TMPRED, PSIPRED), most of the others by http
(PRED-TMBB, BETA-TM, TMBETA-NET etc), and others
may be downloaded and run locally (ProfTMB,
PSIPRED), whereas one of the top-scoring methods
(HMM-B2TMR) is available as a commercial demo only,
requiring a registration procedure. These facts, forced us
not to have a fully automated server (but instead we
require the user to cut 'n paste the predictions) but also to
allow flexibility on the chosen methods, and let the user
decide alone which methods he will use. For this reason,
we also give to the users the opportunity to provide, if they
wish, custom predictions. This way, a user may choose to
use another method, that will come up in the future, or,
alternatively, to use manually edited predictions.

Conclusions
We have evaluated the currently available methods, for
predicting the topology of β-barrel outer membrane
proteins, using a non-redundant dataset of 20 proteins
with structures known at atomic resolution. By using mul-
tivariate and univariate analysis of variance, we conclude
that the HMM-based methods HMM-B2TMR, ProfTMB
and PRED-TMBB perform significantly better than the
other (mostly NN-based) methods, in both terms of per-
residue and per-segment measures of accuracy. We also
found, a significant decrease in the performance of the
methods when full-length sequences are submitted for
prediction, instead of just the β-barrel domain. However,
the HMM-based methods are more robust as they were
found largely unaffected by the type of the input
sequence. This is an important finding that has to be taken
in account, not only in the cases of single proteins' predic-
tions, but mostly in cases of predictions performed on
precursor sequences arising from genome projects.
Finally, we have combined the individual predictors, in a
consensus prediction method, that performs significantly
better even than the top-scoring individual predictor. A
consensus prediction method is for the first time been
applied for the prediction of the transmembrane strands,
of β-barrel outer membrane proteins. The consensus
method, is freely available for non-commercial users at
http://bioinformatics.biol.uoa.gr/ConBBPRED, where the
user may choose which of the individual predictors will
include, in order to obtain the final prediction.

Table 5: The non-redundant data set of 20 β-barrel outer membrane proteins used in this study.

Protein name Number of β-strands PDB ID Reference Organism

NspA 8 1P4T [67] Neisseria Meningitidis
OmpX 8 1QJ8 [68] Escherichia coli
Pagp 8 1MM4 [69] Escherichia coli

OmpA 8 1QJP [50] Escherichia coli
OmpT 10 1I78 [70] Escherichia coli
OpcA 10 1K24 [71] Neisseria Meningitidis
Nalp 12 1UYN [41] Neisseria Meningitidis

OmpLA 12 1QD5 [72] Escherichia coli
Porin 16 2POR [73] Rhodobacter capsulatus
Porin 16 1PRN [74] Rhodopseudomonas blastica
OmpF 16 2OMF [75] Escherichia coli

Osmoporin 16 1OSM [76] Klebsiella pneumoniae
Omp32 16 1E54 [77] Comamonas Acidovorans

Phosphoporin 16 1PHO [78] Escherichia coli
Sucrose porin 18 1A0S [79] Salmonella typhimurium

Maltoporin 18 2MPR [80] Salmonella typhimurium
FhuA 22 2FCP [46] Escherichia coli
FepA 22 1FEP [47] Escherichia coli
FecA 22 1KMO [48] Escherichia coli
BtuB 22 1NQE [49] Escherichia coli
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Methods
Data sets
The test set that we used has been compiled mainly with
consideration of the SCOP database classification [39]. In
particular, all PDB codes from SCOP that belong to the
fold "Transmembrane beta-barrels" were selected, and the
corresponding structures from the Protein Data Bank
(PDB) [40] were obtained. For variants of the same pro-
tein, only one solved structure was kept, and multiple
chains were removed. The structure of the β-barrel
domain of the autotransporter NalP of N. meningitidis
[41] was also included, which is not present in the SCOP
classification although it is clearly a β-barrel membrane
protein. The sequences have been submitted to a redun-
dancy check, removing chains with a sequence identity
above a certain threshold. Two sequences were considered
as being similar, if they demonstrated an identity above
70% in a pairwise alignment, in a length longer than 80
residues. For the pairwise local alignment BlastP [42] was
used with default parameters, and similar sequences were
removed implementing Algorithm 2 from [43]. The
remaining 20 outer membrane proteins constitute our test
set (Table 5).

The structures of TolC [44], and alpha-hemolysin [45],
were not included in the training set. TolC forms a
trimeric β-barrel, where each monomer contributes 4 β-
strands to the 12-strand barrel. Alpha-hemolysin of S.
aureus is active as a transmembrane heptamer, where the
transmembrane domain is a 14-strand antiparallel β-bar-
rel, in which two strands are contributed by each
monomer. Both structures are not included in the fold
"transmembrane beta-barrels" of the SCOP database. In
summary, the test set (Table 5), includes proteins func-
tioning as monomers, dimers or trimers, with a number of
transmembrane β-strands ranging from 8 to 22, and is
representative of the known functions of outer membrane
proteins to date.

In order to investigate the effect of the full sequence on the
different predictors, we conducted two sets of measure-
ments. In the first place, all proteins were submitted to the
predictors, in their full length. We chose not to remove the
signal peptides, considering the fact that completely
unannotated sequences, mostly originating from genome
projects, are most likely to be submitted to predictive
algorithms, in their pre-mature form. Of the 20 sequences
constituting our set, 4 belonging to the family of TonB-
dependent receptors, namely FhuA [46], FepA [47], FecA
[48] and BtuB [49] posses a long (150–250 residues) N-
terminal domain that acts as a plug, closing the large pore
of the barrel. This domain is present in all four of the
structures deposited in PDB. One of the proteins of our
dataset, OmpA possesses a long 158 residue C-terminal
domain falling in the periplasmic space, which is absent

from the crystallographically solved structure [50].
Finally, the Secreted NalP protein, possesses a very long,
815 residues in length, N-terminal domain that is being
transported to the extracellular space passing through the
pore formed by the autotransporter β-barrel pore-forming
domain, of which we have the crystallographically solved
structure [41]. For the second set of measurements, for all
proteins constituting our dataset we extracted only the
transmembrane β-barrel domain. In the case, of long N-,
or C-terminal domains mentioned above, we retained
only the last or first 12 residues, respectively.

Even in the structures known at atomic resolution, there is
not a straightforward way to determine precisely the trans-
membrane segments, since the lipid bilayer itself is not
contained in the crystal structures. This is the case for both
α-helical and β-barrel membrane proteins. There are,
however a lot of experimentally and theoretically derived
sources of evidence, suggesting that the lipid bilayer in
gram-negative bacteria, is generally thinner than the
bilayer of the inner membrane or those of a typical cell
membrane of an eukaryote. Thus, it is believed that the
outer membrane possesses an average thickness around
25–30 Å, a fact mainly explainable by its lipid composi-
tion, average hydrophobicity and asymmetry [51]. The
annotations for the β-strands contained in the PDB
entries, are inadequate since there are strands that clearly
extend far away from the bilayer. Some approaches have
been used in the past, to locate the precise boundaries of
the bilayer, but they require visual inspection of the struc-
tures and human intervention [23,52]. In order to have
objective and reproducible results, we used the annota-
tions for the transmembrane segments deposited in the
Protein Data Bank of Transmembrane Proteins
(PDB_TM) [53]. The boundaries of the lipid bilayer in
PDB_TM have been computed with a geometrical
algorithm performing calculations on the 3-dimensional
coordinates of the proteins, in a fully automated
procedure.

Prediction methods
The different freely available web-predictors, evaluated in
this work, along with the corresponding URLs are listed in
Table 6. OM_Topo_predict, is the first Neural Network-
based method trained to predict the location of the Cα's
with respect to the membrane [14]. Initially, the method
was trained on a dataset of seven bacterial porins known
at atomic resolution, but later it was retrained in order to
include some newly solved (non-porin) structures http://
strucbio.biologie.uni-konstanz.de/~kay/
om_topo_predict2.html. B2TMPRED is a Neural Net-
work-based predictor that uses as input evolutionary
information derived from profiles generated by PSI-
BLAST [15]. The method was trained in a non-redundant
dataset of 11 outer membrane proteins, and uses a
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dynamic programming post processing step to locate the
transmembrane strands [54,55]. HMM-B2TMR, is a pro-
file-based HMM method, that was trained for the first
time on a non-redundant set of 12 outer membrane pro-
teins [17] and later (current version) on a larger dataset of
15 outer membrane proteins [55]. This method also uses
as input profiles derived from PSI-BLAST. It was trained
according to a modified version of the Baum-Welch algo-
rithm for HMMs with labeled sequences [56], in order to
incorporate the profile as the input instead of the raw
sequence, whereas for decoding utilized the posterior
decoding method, with an additional post-processing
step involving the same dynamic programming algorithm
used in B2TMPRED [55]. We should note, that HMM-
B2TMR is the only method that currently is available as a
commercial demo only, requiring a registration proce-
dure. PRED-TMBB is a HMM-based method developed by
our team [19]. Initially, it was trained on a set of 14 outer
membrane proteins [19] and later on a training set of 16
proteins [20]. It is the only HMM method trained accord-
ing to the Conditional Maximum Likelihood (CML) crite-
rion for labeled sequences, and uses as input single
sequences. The prediction is performed either by the
Viterbi, the N-best algorithm [57] or "a-posteriori" with
the aid of a dynamic programming algorithm used to
locate both the transmembrane strands and the loops. In
this work, we chose to use both N-best and "a-posteriori"
decoding, and treat them as different predictors. This was
done, since the two alternative decoding algorithms, fol-
low an entirely different philosophy, and in some cases
yield different results. BETA-TM, is a simple HMM
method trained on 11 non-homologous proteins using
the standard Baum-Welch algorithm [58]. It also operates
on single sequence mode, and the decoding is performed
with the standard Viterbi algorithm. ProfTMB is the last
addition to the family of profile-based Hidden Markov
Models [21]. It also uses as input evolutionary informa-
tion, derived from multiple alignments created by PSI-
BLAST. It is trained using the modified Baum-Welch algo-
rithm for labeled sequences whereas the decoding is
performed using the Viterbi algorithm. Its main difference
with HMM-B2TMR, PRED-TMBB, BETA-TM and other
previously published, but not publicly available HMM
predictors [18], is the fact that it uses different parameters
(emission probabilities) for strands having their N-termi-
nal to the periplasmic space, and other for those having
their N-terminal to the extracellular space. Furthermore, it
uses different states for the modeling of inside loops (peri-
plasmic turns) with different length. TMBETA-NET is a
Neural Network based predictor using as input single
sequence information [16]. This method uses a set of
empirical rules to refine its prediction, in order to elimi-
nate non-plausible predictions for TM-strands (for
instance a strand with 3 residues). TBBpred is a predictor
combining both NNs and SVMs [22]. The NN-based mod-

ule also uses evolutionary information, derived from mul-
tiple alignments, whereas the SVM-predictor uses various
physicochemical parameters. The user may choose one of
the methods, or combine them both. The authors of the
method have shown, that combining the predictions
obtained by NNs and SVMs, improves significantly the
prediction accuracy [22]. For the evaluation of the per-
formance and for the Consensus Prediction, we chose to
use all three options, in order to investigate which one
performs better. Finally, we evaluated the prediction of
the transmembrane strands, obtained from a top-scoring
general-purpose secondary structure prediction algo-
rithm. This was done, in order to investigate systematic
differences in the prediction of the transmembrane β-
strands, but also because experimentalists continuously
use such algorithms in deciphering assumed topologies
for newly discovered β-barrel membrane proteins [59-61].
For this purpose, we have chosen PSI-PRED, a method
based on Neural Networks, using multiple alignments
derived from PSI-BLAST for the prediction, that has been
shown to perform amongst the top-scoring methods for
secondary structure prediction [62]. Other, equally suc-
cessful methods such as PHD [63], perform similarly but
they are not considered here.

Measures of accuracy
For assessing the accuracy of the prediction algorithms
several measures were used. For the transmembrane
strand predictions we report the well-known SOV (meas-
ure of the segment's overlap), which is considered to be
the most reliable measure for evaluating the performance
of secondary structure prediction methods [26]. We also
report the total number of correctly predicted topologies
(TOP), i.e. when both the strands' localization and the
loops' orientation have been predicted correctly, and the
correctly predicted barrel size (BS), i.e the same with the
correctly predicted topologies, but allowing for one strand
mismatch [20]. As measures of the per residue accuracy,
we report here both the total fraction of the correctly pre-
dicted residues (Qβ) in a two-state model (transmem-
brane versus non-transmembrane), and the well known
Matthews Correlation Coefficient (Cβ) [25].

Statistical analysis
The measures of accuracy mentioned earlier are the
dependent variables that we wish to compare. We treat
each prediction on each protein as an observation, and as
independent variables we use the type of the submitted
sequences (TYPE) that could be either the full precursor
sequence or the transmembrane barrel domain only, a
factor with two categories, and the individual predictive
method (METHOD), which has 11 categories. Further-
more we tried to group the methods to those based on a
Hidden Markov Model and those that were not. This fac-
tor (HMM) was evaluated later, in order to assess the
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impact of the type of the prediction method. The formal
way to assess the overall statistical significance is to per-
form a two-way multivariate analysis of variance
(MANOVA) [64]. For the evaluation of the statistical sig-
nificance we evaluated the Wilk's lambda, but the results
are not sensitive to this choice since other similar meas-
ures (Hotelling-Lawley trace, Roy largest root e.t.c) gave
similar results. A statistical significant result, for both the
2 factors (TYPE, METHOD), will imply that the vector of
the measured attributes varies significantly across the lev-
els of these factors. We also included into the models, the
interaction term between the two factors
(TYPE*METHOD or TYPE*HMM). This was necessary in
order to investigate, the potential differences of the
dependent variables in the various combinations of the
independent variables. For instance, a significant interac-
tion of TYPE with HMM, will indicate that the effect of the
input sequence will be different on the two types of
methods.

Having obtained a significant result from the MANOVA
test, we could use a standard 2-way analysis of variance
(ANOVA) for each of the dependent variables, in order to
be able to confirm which one of the measured attributes,
varies significantly across the two factors. In the ANOVA
models, we also included the interaction terms. In all
cases, statistically significant results were declared those
with a p-value less than 0.05. We report for the ANOVA
and MANOVA models, the test statistic and the corre-
sponding p-value, for the fitted models (including the
interaction term).

The consensus prediction method
In order to produce a combined prediction, we have two
alternatives: One is to use some kind of ensemble Neural
Network, or, alternatively, to summarize the individual
predictions using a consensus method. Ensemble Net-
works show a number of significant advantages over the
consensus methods [65,66], but suffer for the limitation
that each individual predictor has to be available, every
time that a request is made. Since we are dealing with
web-based predictors, and we do not have the option to
have local copies of each predictor installed, this could be
disastrous, thus, the consensus method is the only availa-
ble and reliable solution.

Suppose we have an amino acid sequence of a protein
with length L, denoted by:

x = x1, x2,..., xL,

and for each residue i we have the prediction of the jth pre-
dictor (j = 1, 2, ..., 7)

where,

Thus, we can define a per-residue score Si by averaging
over the independent contributions of each predictor:

Table 6: The available predictors, used for predicting the transmembrane strands of β-barrel outer membrane proteins.

Method Reference Type TM 
Strands

TM Strands + 
Orientation

Discrimination URL

B2TMPRED [15] NN x - - http://gpcr.biocomp.unibo.it/cgi/predictors/outer/
pred_outercgi.cgi

HMM-B2TMR (1) [17] HMM x x - http://gpcr.biocomp.unibo.it/biodec/ (1)
OM_Topo_predict (2) [14] NN x x - http://strucbio.biologie.uni-konstanz.de/~kay/

om_topo_predict2.html (2)
PRED-TMBB [19, 20] HMM x x x http://bioinformatics.biol.uoa.gr/PRED-TMBB/

ProfTMB [21] HMM x x x http://cubic.bioc.columbia.edu/services/proftmb/
TBBpred [22] NN+SVM x - x http://www.imtech.res.in/raghava/tbbpred/
BETA-TM [58] HMM x x - http://dblab.sejong.ac.kr:8080/barrel/index.html

TMBETA-NET [16] NN x - - http://psfs.cbrc.jp/tmbeta-net/
PSI-PRED [62] NN - - - http://bioinf.cs.ucl.ac.uk/psipred/

We list the name of the predictor, the reference paper, the type of the method (HMM, NN or SVM), whether it predicts the transmembrane 
strands, the full topology (TM strands+orientation) and if they are capable of discriminating between β-barrel membrane proteins from non-β 
barrel membrane proteins.
(1) HMM-B2TMR is available as a commercial demo only.
(2) The OM_Topo_predict web server was not operational, at the time when this research was conducted.
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This way, we can obtain a consensus prediction score for
the whole sequence,

This score is capable of yielding inconsistent predictions,
such as a strand with 3 residues for example. For this rea-
son it is then submitted to a dynamic programming algo-
rithm, to locate precisely the transmembrane strands. The
algorithm is essentially the same used by [19], with the
major difference being the fact that it considers only two
states (transmembrane vs. non-transmembrane). It opti-
mizes the predicted topology, according to some
predefined parameters, imposed by the observed struc-
tures. We also force the algorithm to consider as valid only
topologies with an even number of transmembrane
strands, as those observed in the crystallographically
solved structures. Having determined the number of the
transmembrane strands, the final choice of the topology is
based on the consideration of the length of the predicted
loops. As it has already been mentioned for the 3-dimen-
sional structures, the periplasmic loops have significantly
lower length than the extracellular ones, thus by
comparing the total length of the two alternative topolo-
gies, we decide for the final orientation of the protein.
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