
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Bayesian coestimation of phylogeny and sequence alignment
Gerton Lunter*1, István Miklós2, Alexei Drummond3, Jens Ledet Jensen4 and 
Jotun Hein1

Address: 1Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK, 2MTA-ELTE Theoretical Biology and Ecology 
Group, Pázmány Péter sétány 1/c 1117 Budapest, Hungary, 3Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, 
UK and 4Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 530, DK-8000 Aarhus C, Denmark

Email: Gerton Lunter* - lunter@stats.ox.ac.uk; István Miklós - miklosi@ramet.elte.hu; 
Alexei Drummond - alexei.drummond@zoology.oxford.ac.uk; Jens Ledet Jensen - jlj@imf.au.dk; Jotun Hein - hein@stats.ox.ac.uk

* Corresponding author    

Abstract
Background: Two central problems in computational biology are the determination of the alignment and
phylogeny of a set of biological sequences. The traditional approach to this problem is to first build a
multiple alignment of these sequences, followed by a phylogenetic reconstruction step based on this
multiple alignment. However, alignment and phylogenetic inference are fundamentally interdependent, and
ignoring this fact leads to biased and overconfident estimations. Whether the main interest be in sequence
alignment or phylogeny, a major goal of computational biology is the co-estimation of both.

Results: We developed a fully Bayesian Markov chain Monte Carlo method for coestimating phylogeny
and sequence alignment, under the Thorne-Kishino-Felsenstein model of substitution and single nucleotide
insertion-deletion (indel) events. In our earlier work, we introduced a novel and efficient algorithm,
termed the "indel peeling algorithm", which includes indels as phylogenetically informative evolutionary
events, and resembles Felsenstein's peeling algorithm for substitutions on a phylogenetic tree. For a fixed
alignment, our extension analytically integrates out both substitution and indel events within a proper
statistical model, without the need for data augmentation at internal tree nodes, allowing for efficient
sampling of tree topologies and edge lengths. To additionally sample multiple alignments, we here
introduce an efficient partial Metropolized independence sampler for alignments, and combine these two
algorithms into a fully Bayesian co-estimation procedure for the alignment and phylogeny problem.

Our approach results in estimates for the posterior distribution of evolutionary rate parameters, for the
maximum a-posteriori (MAP) phylogenetic tree, and for the posterior decoding alignment. Estimates for the
evolutionary tree and multiple alignment are augmented with confidence estimates for each node height
and alignment column. Our results indicate that the patterns in reliability broadly correspond to structural
features of the proteins, and thus provides biologically meaningful information which is not existent in the
usual point-estimate of the alignment. Our methods can handle input data of moderate size (10–20 protein
sequences, each 100–200 bp), which we analyzed overnight on a standard 2 GHz personal computer.

Conclusion: Joint analysis of multiple sequence alignment, evolutionary trees and additional evolutionary
parameters can be now done within a single coherent statistical framework.
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Background
Two central problems in computational biology are the
determination of the alignment and phylogeny of a set of
biological sequences. Current methods first align the
sequences, and then infer the phylogeny given this fixed
alignment. Several software packages are available that
deal with one or both of these sub-problems. For exam-
ple, ClustalW [1] and T-Coffee [2] are popular sequence
alignment packages, while MrBayes [3], PAUP* [4] and
Phylip [5] all provide phylogenetic reconstruction and
inference. Despite working very well in practice, these
methods share some problems. First, the separation into a
multiple-alignment step and a phylogenetic inference
step, is fundamentally flawed. The two inference prob-
lems are mutually dependent, and alignments and phyl-
ogeny should ideally be co-estimated, a point first made
by Sankoff, Morel and Cedergren [6]. Indeed, a proper
weighting of mutation events in multiple sequences
requires a tree, which in turn can only be determined if a
multiple alignment is available. For instance, ClustalW
and T-Coffee compute their alignments based on a neigh-
bour-joining guide tree, biasing subsequent phylogenetic
estimates based on the resulting alignment. Moreover, fix-
ing the alignment after the first step ignores the residual
uncertainty in the alignment, resulting in an overconfi-
dent phylogenetic estimate.

This leads on to the second issue, which is that heuristic
methods are used to deal with insertions and deletions
(indels), and sometimes also substitutions. This lack of a
proper statistical framework makes it very difficult to
accurately assess the reliability of the alignment estimate,
and the phylogeny depending on it.

The relevance of statistical approaches to evolutionary
inference has long been recognised. Time-continuous
Markov models for substitution processes were intro-
duced more than three decades ago [7]. Inference meth-
ods based on these have been considerably improved
since then [8], and now have all but replaced older parsi-
mony methods for phylogeny reconstruction. With align-
ments, progress towards statistically grounded methods
has been slower. The idea to investigate insertions and
deletions in a statistical framework was first considered by
Bishop and Thompson [9]. The first evolutionary model,
termed the TKF91 model, and corresponding statistical
tools for pairwise sequence alignment were published by
Thorne, Kishino and Felsenstein [10]. Its extension to
multiple sequences related by a tree has been intensively
investigated in the last few years [11-17], and has recently
also been extended to RNA gene evolution [18]. Current
methods for statistical multiple alignment often computa-
tionally demanding, and full maximum likelihood
approaches are limited to small trees. Markov chain

Monte Carlo techniques can extend these methods to
practical problem sizes.

Statistical modelling and MCMC approaches have a long
history in population genetic analysis. In particular, coa-
lescent approaches to genealogical inference have been
very successful, both in maximum likelihood [19,20] and
Bayesian MCMC frameworks [21,22]. The MCMC
approach is especially promising, as it allows the analysis
of large data sets, as well as nontrivial model extensions,
see e.g. [23]. Since divergence times in population genet-
ics are small, alignment is generally straightforward, and
genealogical inference from a fixed alignment is well-
understood [20,24-26]. However, these approaches have
difficulty dealing with indels when sequences are hard to
align. Indel events are generally treated as missing data
[27], which renders them phylogenetically uninformative.
This is unfortunate as indel events can be highly informa-
tive of the phylogeny, because of their relative rarity com-
pared to substitution events. Statistical models of
alignment and phylogeny often refer to missing data. Not
all of these can be integrated out analytically (e.g. tree
topology), and these are dealt with using Monte Carlo
methods. The efficiency of such approaches depend to a
great extent on the choice of missing data. In previous
approaches to statistical alignment, the sampled missing
data were either unobserved sequences at internal nodes
[28], or both internal sequences and alignments between
nodes [13], or dealt exclusively with pairwise alignments
[29,30]. In all cases the underlying tree was fixed. In [31]
we published an efficient algorithm for computing the
likelihood of a multiple sequence alignment under the
TKF91 model, given a fixed underlying tree. The method
analytically sums out all missing data (pertaining to the
evolutionary history that generated the alignment), elim-
inating the need for any data augmentation of the tree.
This methodology is referred to in the MCMC literature as
Rao-Blackwellization [32]. As a result, we can treat indels in
a statistically consistent manner with no more than a con-
stant multiplicative cost over existing methods that ignore
indels.

The only missing ingredient for a full co-estimation pro-
cedure is an alignment sampler. Unfortunately, there
exists no Gibbs alignment sampler that corresponds to the
analytic algorithm referred to above. In this paper we
introduce a partial importance sampler to resample align-
ments, based on a proposal mechanism built on a partial
score-based alignment procedure. This type of sampler
supports the data format we need for efficient likelihood
calculations, while still achieving good mixing in reason-
able running time (see Results).

We implemented the likelihood calculator and the align-
ment sampler in Java, and interfaced them with an
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existing MCMC kernel for phylogenetics and population
genetics [22]. We demonstrate the practicality of our
approach on an analysis of 10 globin sequences.

Results
Definition of the TKF model
The TKF91 model is a continuous-time reversible Markov
model describing the evolution of nucleotide (or amino
acid) sequences. It models three of the main processes in
sequence evolution, namely substitutions, insertions and
deletions of characters, approximating these as single-char-
acter processes. A sequence is represented as a string alter-
natingly consisting of links and characters connected by
these links. This string both starts and terminates with a
link. Insertions and deletions are modeled through a
time-continuous birth-death process of links. When a new
link is born, its associated character (by convention, its
right neighbour) is chosen from the equilibrium distribu-
tion of the substitution process. (The original TKF91
model used a simple substitution process, the Felsenstein-
81 model [27]. It is straightforward to replace this by more
general nucleotide or amino acid substitution models
[33].) When a link dies, its associated character dies too.
The leftmost link of the sequence has no corresponding
character to its left, and is never deleted. For this reason it
is called the immortal link.

Since subsequences evolve independently, it is sufficient
to describe the evolution of a single character-link pair. In
a given finite time span, this pair evolves into a finite sub-
sequence of characters and links. Since insertions origi-
nate from links, only the first character of this descendant
subsequence may be homologous to the original charac-
ter, while subsequent ones will have been inserted and
therefore not be homologous to ancestral characters. The
model as applied to pairwise alignments was solved ana-
lytically in [10], see also [34]. Conceptually, the model
can be trivially extended to trees, but the corresponding
algorithms for likelihood calculations have been devel-
oped only recently [11,12,14-16].

Because the TKF91 model is time reversible, the root
placement does not influence the likelihood, an observa-
tion known as Felsenstein's "Pulley Principle" [27]).
Although the algorithms we developed are not manifestly
invariant under changes in root placement, in fact they
are. We have used time reversibility to check correctness of
our implementations.

Computing the likelihood of a homology structure
The concept of homology structure [31], also known as
effective alignment [35], refers to an alignment of
sequences at leaves without reference to the internal tree
structure, and without specifying the ordering of exchang-
able columns (see below for more details). We derived a

linear-time algorithm that computes the likelihood of
observing a set of sequences and their homology struc-
ture, given a phylogeny and evolutionary parameters,
under the TKF91 model [31]. By definition, this likeli-
hood is the sum of the probabilities of all evolutionary
scenarios resulting in the observed data. It was previously
shown that such evolutionary scenarios can be described
as a path in a multiple-HMM ([13,28]), and the likeli-
hood can thus be calculated as the sum of path probabil-
ities over all such paths, in time polynomial in the
number of states. However, this straightforward calcula-
tion is infeasible for practical-sized biological problems,
since the number of states in the HMM grows exponen-
tially with the number of sequences [16]. Since our algo-
rithm does not feature this exponential blow-up of
Markov states, we termed it the one-state recursion. In con-
trast to previous approaches [13,28], the one-state recur-
sion relieves us from the need to store missing data at
internal tree nodes, allowing us to change the tree topol-
ogy without having to resample this missing data. This
enables us to consider the tree as a parameter, and effi-
ciently sample from tree space. The concept of homology
structure referred to above is key to our algorithm, and we
will presently define this concept more precisely. Let A1,
A2, ...Am be sequences, related by a tree T with vertex set V.

Let  denote the jth character of sequence Ai, and let 

denote its k long prefix. A homology structure  on A1, ...,
Am is an equivalence relation ~ on the set of all the charac-

ters of the sequences, C = { }, specifying which charac-

ters are homologous to which. The evolutionary indel
process generating the homology structure on the
sequences imposes constraints on the equivalence rela-
tions that may occur. More precisely, the equivalence rela-
tion ~ has the property that a total ordering, <h, exists on
C such that

(Here, a = h b is equivalent to: a �h b and b �h a.) In par-
ticular, these conditions imply that the characters consti-
tuting a single sequence are mutually nonhomologous.
The ordering <h corresponds to the ordering of columns of
homologous characters in an alignment. Note that for a
given homology structure, this ordering may not be
unique (see Fig. 1). This many-to-one relationship of
alignment to homology structure is the reason for intro-
ducing the concept of homology structure, instead of
using the more common concept of alignment.

The one-state recursion, which calculates the likelihood of
a homology structure, is a convolution of two dynamic
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programming algorithms. The top-level algorithm
traverses the prefix set of the multiple alignments repre-
senting the homology structure (see Figure 2). This repeat-
edly calls on a reverse traversal algorithm on the
phylogenetic tree, which sums out the likelihood contri-
butions of substitutions and indels under the TKF91
model. See [31] for full details.

A partial Metropolized independence sampler
Because our algorithm does not require the phylogenetic
tree to be augmented with missing data, proposing

changes to the evolutionary tree is easy, and mixing in tree
space is very good. The drawback however is that without
data augmentation, it is unclear how to perform Gibbs
sampling of alignments, and we have to resort to other
sampling schemes. One straightforward choice would be
a standard Metropolis-Hastings procedure with random
changes to the alignment, but we expect slow mixing from
such an approach. Another general approach is
Metropolized independence sampling. Its performance
depends on the difference between the proposal distribu-
tion and the target distribution, and this will inevitably
become appreciable with growing dimension of the prob-
lem, as measured by the number and length of the
sequences to be aligned. We therefore opted for a partial
Metropolized independence sampler [36], where we partly
defy the "curse of dimensionality" by resampling only a
segment of the current alignment. Above increasing the
acceptance ratio, this method has the added advantage of
being a more efficient proposal scheme, since the time
complexity of the algorithm is proportional to the square
of the window size, and so leads to an effective increase in
mixing per processor cycle. Metzler et al. [29] followed a
parallel approach, using a partial Gibbs sampler, and
showed that this resulted in faster mixing compared to a
full Gibbs sampling step. Since the realignment step may
change the window length (measured in alignment col-
umns), to have a reversible Markov chain we need all win-
dow sizes to have positive proposal probability. We chose
a geometric length distribution, but other distributions
can be considered equally well.

The proposal algorithm
The proposal algorithm is as follows. A window size and
location is proposed, the alignment of subsequences
within this window is removed, and a new alignment is
proposed by a stochastic version of the standard score-
based progressive pairwise alignment method. First,
dynamic programming (DP) tables are filled as for a deter-
ministic score-based multiple alignment, starting at the
tree tips and working towards the root, aligning sequences

Alignments and homology structureFigure 1
Alignments and homology structure. (Left:) Two alignments representing the same homology structure. A "homology 
structure" is defined as the set of all homology relationships between residues from the given sequences; residues are homolo-
gous if they appear in the same alignment column. Our recursion includes contributions from all alignments compatible with a 
given homology structure (itself represented by a single alignment). (Right:) Due to the evolutionary process acting on the 
sequences, homology relationships (arrows) will never 'cross' as depicted. This restriction on the equivalence relation ~ is cod-
ified by <h (see text).
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Dynamic programming table traversalFigure 2
Dynamic programming table traversal. The multiple 
alignment prefixes (represented by o symbols) traversed by 
the one-state recursion, when the input is the homology 
structure of Fig. 1. (For clarity, the vectors are plotted in two 
dimensions instead of the actual three.) The homology struc-
ture is represented by the graph, and each directed path on 
this graph uniquely corresponds to an alignment that is com-
patible with the homology structure.
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and profiles. We used linear gap penalties, and a similarity
scoring matrix that was obtained by taking the log-odds of
a probabilistic substitution matrix. The underlying phyl-
ogeny was used to define divergence times, and served as
alignment guide tree. After filling the DP tables, we
applied stochastic traceback. The probabilities for the
three possible directions at each position was taken to be
proportional to exp(αs), where s is the deterministic score
and α is a scale parameter (see Fig. 3). The set of paths that
emerged in this way then determined the multiple align-
ment. All possible alignments can be proposed in this
manner, and the proposal as well as the back-proposal
probabilities can be calculated straightforwardly.

Correctness of the sampler
There are two problems with the proposal sampler intro-
duced above. First, we propose alignments instead of
homology structures. We need the latter, since the algo-
rithm derived in this paper calculates the likelihood of the
homology structure, not the particular alignment.
Although it would be conceptually and (for the sampler)
computationally simpler to use alignments, we are not
aware of any efficient algorithm that can calculate such
alignment likelihoods. The second problem is that calcu-
lating the proposal probability of a particular alignment is
not straightforward. Any choice of window size and loca-
tion may result in the same proposal alignment. To
calculate the true proposal probability of particular align-

ments, we need to sum over all possible windows, which
is prohibitively expensive.

Fortunately, we can solve both problems efficiently. We
can sample alignments uniformly inside a homology
structure, and at the same time sample homology struc-
tures according to their posterior probabilities. As biolog-
ically meaningful questions refer to homologies and not
particular alignments, it seems reasonable to impose a
simple uniform distribution over alignments within
homology structures. The second problem is solved by
not calculating an alignment proposal probability, but the
proposal probability of the combination of an alignment
and a resampling window. For a proposal of alignment X2
and window w from a current alignment X1, we use the
following Metropolis-Hastings ratio:

where H1 and H2 are homology structures corresponding
to the alignments X1 and X2 respectively, |H1| and |H2| are
their cardinalities (i.e. the number of alignments
representing these homology structures), and T is the pro-
posal probability. Using this ratio, the Markov chain will
converge to the desired distribution π(X) = π(H)/|H|,
since the detailed balance condition is satisfied. Indeed,

where the final equality holds because of the symmetry of
the left-hand side. The cardinality of a homology struc-
ture, |H1|, is the number of possible directed paths in the
graph spanned by the one-state recursion; in other words,
the number of permutations of alignment columns that
result in alignments compatible with the given homology
structure (see Fig. 2). This number can be calculated
straightforwardly using a dynamic programming algo-
rithm that traverses the one-state recursion graph [31,37].

Discussion
The one-state recursion provides a method for calculating

the likelihood L = Pr{A, |T, Q, λ, µ} of observing the
sequences with their homology structure (loosely,
"alignment") given the tree and model parameters. Here

A are the amino acid sequences,  is their homology
structure, T is the tree including branch lengths, Q is the
substitution rate matrix, and λ, µ are the amino acid inser-
tion and deletion rates. To demonstrate the practicality of
the new algorithm for likelihood calculation we under-
took a Bayesian MCMC analysis of ten globin protein
sequences (see Additional file: 1). We chose to use the

Generating the proposal alignmentFigure 3
Generating the proposal alignment. This figure illus-
trates the stochastic sequence aligner. In the deterministic 
fill-in process, the three scores are s1, s2 and s3, hence the 
value in this cell is max{s1, s2, s3}. In the stochastic traceback 
phase, the three neighbor cells are choosen with probabili-
ties proportional to exp(αsi), where α > 0 is a scaling param-
eter. The chosen traceback path corresponds to the 
proposed alignment in the usual way.
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standard Dayhoff rate matrix to describe the substitution
of amino acids. As initial homology structure we used the
alignment computed by T-Coffee. We co-estimated
homology structures, the parameters of the TKF91 model,
and the tree topology and branch lengths. To do this we
sampled from the posterior,

where Z is the unknown normalising constant. We chose
the prior distribution on our parameters, f (T, λ, µ), so that
T was constrained to a molecular clock, and λ = µL/(L + 1)
to make the expected sequence length under the TKF91
model agree with the observed lengths; here L is the geo-
metric average sequence length. All other parameters were
sampled under uniform priors. We assume a molecular
clock to gain insight into the relative divergence times of
the alpha-, beta- and myoglobin families. In doing so we
incorporate insertion-deletion events as informative

events in the evolutionary analysis of the globin family.
The posterior density h is a complicated function defined
on a space of high dimension. We summarise the infor-
mation it contains by computing the expectations, over h,
of various statistics of interest. We estimate these expecta-
tions by using MCMC to sample from h. Marginalizations
for continuous variables can be done in a straightforward
manner; see for example Figure 4, which depicts the mar-
ginal posterior density of the µ parameter for two inde-
pendent MCMC runs, showing excellent convergence.

For alignments, the maximum a-posteriori alignment is
very hard to estimate from an MCMC sample run, as there
are typically far too many plausible alignments contribut-
ing to the likelihood. Indeed, we found that almost all
alignments in a moderately long MCMC run (50000 sam-
ples) were unique. However, it is possible to reconstruct a
reliable maximum posterior decoding [38] alignment from
such a moderate long sampling run. This alignment uses

Posterior distribution of deletion rate µFigure 4
Posterior distribution of deletion rate µ. Estimated posterior densities of the deletion rate µ sampled according to h (see 
text), for two independent runs, suggesting excellent convergence. The sampled mean is 0.0207; the 95% highest posterior 
density (HPD) interval was estimated to be (0.0121, 0.0316).
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the posterior single-column probabilities, which can be
estimated much more reliably since many alignments
share particular columns, to obtain an alignment that
maximizes the product of individual column posteriors.
This alignment can be obtained by a simple dynamic pro-
gramming algorithm [39], see Fig. 5. It is hard to visualise
alternative suboptimal alignments, but the individual
posterior column probabilities clearly reveal the more and
less reliable regions of the alignment. We found that the
reliable alignment regions broadly correspond to the
alpha helical structure of the globin sequences.

Figure 6 depicts the maximum a posteriori (MAP) estimate
of the phylogenetic relationships of the sequences. This
example exhibits only limited uncertainty in the tree
topology, however we observed an increased uncertainty
for trees that included divergent sequences, such as bacte-
rial and insect globins (results not shown).

The estimated time of the most recent common ancestor
of each of the alpha, beta and myoglobin families are all
mutually compatible (result not shown), suggesting that
the molecular clock hypothesis is at least approximately
valid. Analysis of a four sequence dataset demonstrate
consistency in µ estimates between MCMC and previous
ML analyses [16] (data not shown). Interestingly, the cur-
rent larger dataset supports a lower value of µ. This is
probably due to the fact that no indels are apparent within
any of the subfamilies despite a considerable sequence
divergence. The indel rate estimated by the current
cosampling procedure is greater than the estimate on a
fixed multiple alignment [31] (0.0207 vs. 0.0187), but
this discrepancy is not significant for the current dataset.
It should be stressed that the two MCMC analyses of the
globin data set presented here are purely illustrative of the
practicality of the algorithm described, and no novel bio-
logical results were obtained. The two MCMC runs of 5
million states each required less than 12 hours of CPU

Maximum posterior decoding alignment, and column reliabilitiesFigure 5
Maximum posterior decoding alignment, and column reliabilities. The maximum posterior decoding alignment of ten 
globins (human, chicken and turtle alpha hemoglobin, beta hemoglobin, myoglobin and bean leghemoglobin). Posterior proba-
bilities for aligned columns were estimated as their rate in the Markov chain. Common alpha helices are indicated with 'α' sym-
bols under the alignment. A broad correspondence between peaks in the posterior alignment reliability and the position of 
conserved secondary structure is apparent.
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GV-LTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQ--NNPDLQAHAGKVFKLTYEAAIQLQVNGAVASDATLKSLGSVHVSK-GVVDAHF-PVVKEAILKTIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMK---DAA 
      αααααααααα     ααααααααααααααα αααααα ααα           αααααααααααααααα          αααααααααααααα      αααααααααααααααααα     αααααααααααααααααα
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time each on a 2.0 GHz G5 Apple Macintosh running OS
X, using an unoptimised implementation of the algo-
rithm. From these runs we sampled 50000 states each. The
estimated number of independent samples (estimated
sample size, ESS) for the posterior probabilities was 250
and 240, respectively (see [22] for methods), while for the
indel rate µ the ESSs were calculated at 5400 and 4000.
We expect analyses of data sets of around 50 sequences to
be readily attainable with only a few days computation.

Conclusion
In this paper we present a new cosampling procedure for
phylogenetic trees and sequence alignments. The underly-
ing likelihood engine uses recently introduced and highly

efficient algorithms based on an evolutionary model (the
Thorne-Kishino-Felsenstein model) that combines both
the substitution and insertion-deletion processes in a
principled way [31]. We show that the proposed method
is applicable to medium-sized practical multiple align-
ment and phylogenetic inference problems.

One motivation for using a fully probabilistic model, and
for using a co-estimation procedure for alignments and
phylogeny, is that this makes it possible to assess the
uncertainties in the inferences. Fixing either the alignment
or the phylogeny leads to an underestimate of the uncer-
tainty in the other, and score-based methods give no
assessment of uncertainty whatsoever.

Maximum a-posteriori phylogenyFigure 6
Maximum a-posteriori phylogeny. The maximum a posteriori tree (black) relating the ten globins of Fig. 5, and 95% confi-
dence intervals of the node heights (grey boxes). Most of the tree's topology is well determined, with the exception of the 
myoglobin sub-tree. Alpha and beta chain sub-families both support the traditional ordering of birds, turtles and mammals, 
while the three myoglobin sequences support an unconventional phylogeny, as previously observed by Hedges and Poling [41]. 
However, the posterior probability for the topology of the myoglobin subtree is smaller than that for the remaining topology. 
The marginal posterior probability (estimated from the MCMC chain) for the monophyly of human and chicken myoglobin is 
83.1%, followed by the conventional grouping of turtle and chicken at 11.9%. The third topologlcal arrangement of myoglobin 
occurred the remaining 5% of the time, suggesting significant homoplasy in this sub-family.
Page 8 of 10
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We show that the confidence estimates so obtained can
contain biologically meaningful information. In the case
of the multiple alignment of globin sequences, peaks in
the posterior column reliabilities correspond broadly to
the various conserved alpha helices that constitute the
sequences (see Fig. 5). In the case of the tree estimate, the
non-traditional phylogeny supported by the myoglobin
subtree coincided with a significant polyphyly, as indi-
cated by the posterior tree topology probabilities, and
graphically represented by significantly overlapping 95%
node height confidence boxes (see Fig. 6). It is clear that
such confidence information significantly contributes to
the usefulness of the inference.

At the heart of the method lies a recently introduced algo-
rithm, termed the "indel peeling algorithm", that extends
Felsenstein's peeling algorithm to incorporate insertion
and deletion events under the TKF91 model [31]. This
renders indel events informative for phylogenetic
inference. Although incurring considerable algorithmic
complications, the resulting algorithm is still linear-time
for biological alignments (see also Figure 1). Moreover,
our approach allows efficient sampling of tree topologies,
as no data is presented at internal nodes.

We also developed a method for sampling multiple align-
ments, which is applicable for the data augmentation
scheme we used for the efficient likelihood calculations.
By combining the two samplers, we can co-sample align-
ments, evolutionary trees and other evolutionary
parameters such as indel and substitution rates. The
resulting samples from the posterior distribution can be
summarized in traditional ways. We obtained maximum
a-posteriori estimates of alignment, tree and parameters,
and augmented these with estimates of reliability.

As was already mentioned in [10], it would be desirable to
have a statistical sequence evolution model that deals
with 'long' insertions and deletions, instead of single
nucleotides at a time. For score-based algorithms, this is
analogous to the contrast between linear and affine gap
penalties. It is clear that the extension of the model to
include long indels would result in considerable improve-
ments, but the algorithmic complexities are considerable.
We have made progress on a full likelihood method for
statistical sequence alignment under such an evolutionary
model [17], but the generalization of this method seems
nontrivial. We believe that here too, Markov chain Monte
Carlo approaches, combined with data augmentation,
will be essential for practical algorithms. However, we
also believe that in certain restricted but biologically
meaningful situations, such as highly conserved proteins,
the TKF91 model is reasonably realistic for the co-estima-
tion procedure presented here to be of practical interest.

Availability and requirements
The BEAST package (AJ Drummond and A Rambaut),
which includes the algorithm described in this paper, is
available from http://evolve.zoo.ox.ac.uk/beast, with full
installation and requirement details. The data set used in
this paper is avaliable (see Additional file: 1)
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