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Abstract
Background: Alignment of RNA secondary structures is important in studying functional RNA
motifs. In recent years, much progress has been made in RNA motif finding and structure alignment.
However, existing tools either require a large number of prealigned structures or suffer from high
time complexities. This makes it difficult for the tools to process RNAs whose prealigned
structures are unavailable or process very large RNA structure databases.

Results: We present here an efficient tool called RSmatch for aligning RNA secondary structures
and for motif detection. Motivated by widely used algorithms for RNA folding, we decompose an
RNA secondary structure into a set of atomic structure components that are further organized by
a tree model to capture the structural particularities. RSmatch can find the optimal global or local
alignment between two RNA secondary structures using two scoring matrices, one for single-
stranded regions and the other for double-stranded regions. The time complexity of RSmatch is
O(mn) where m is the size of the query structure and n that of the subject structure. When applied
to searching a structure database, RSmatch can find similar RNA substructures, and is capable of
conducting multiple structure alignment and iterative database search. Therefore it can be used to
identify functional RNA motifs. The accuracy of RSmatch is tested by experiments using a number
of known RNA structures, including simple stem-loops and complex structures containing
junctions.

Conclusion: With respect to computing efficiency and accuracy, RSmatch compares favorably
with other tools for RNA structure alignment and motif detection. This tool shall be useful to
researchers interested in comparing RNA structures obtained from wet lab experiments or RNA
folding programs, particularly when the size of the structure dataset is large.

Background
Ribonucleic acid (RNA) plays various roles in the cell.
Many functions of RNA are attributable to their structural
particularities (herein called RNA motifs). RNA motifs
have been extensively studied for noncoding RNAs
(ncRNAs), such as transfer RNA (tRNA), ribosomal RNA

(rRNA), small nuclear RNA (snRNA), small nucleolar
RNA (snoRNA), etc. [1]. More recently, small interfering
RNA (siRNA) and microRNA (miRNA) have been under
intensive studies [2]. Less well characterized are the struc-
tures in the un-translated regions (UTRs) of messenger
RNAs (mRNAs) [3]. However, biochemical and genetic
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studies have demonstrated a myriad of functions associ-
ated with the UTRs in mRNA metabolism, including RNA
translocation, translation, and RNA stability [4-6].

RNA structure determination via biochemical experi-
ments is laborious and costly. Predictive approaches are
valuable in providing guide information for wet lab exper-
iments. RNA structure prediction is usually based on ther-
modynamics of RNA folding or phylogenetic
conservation of base-paired regions. The former uses ther-
modynamic properties of various RNA local structures,
such as base pair stacking, hairpin loop, and bulge, to
derive thermodynamically favourable secondary struc-
tures. A dynamic programming algorithm is used to find
optimal or suboptimal structures. The most well-known
tools belonging to this group are MFOLD [7] and RNA-
Fold in the Vienna RNA package [8,9]. Similar tools have
been developed in recent years to predict higher order
structures, such as pseudoknots [10]. On the other hand,
RNA structure prediction using phylogenetic information
infers RNA structures based on covariation of base-paired
nucleotides [11-14]. It is generally believed that methods
using phylogenetic information are more accurate. How-
ever, their performance critically depends on the high
quality alignment of a large number of structurally related
sequences.

Tools that align biosequences (DNA, RNA, protein), such
as FASTA and BLAST, are valuable in identifying homolo-
gous regions, which can lead to the discovery of func-
tional units, such as protein domains, DNA cis elements,
etc. [15,16]. However, their success is more evident in the
study of DNAs and proteins than of RNAs. This is mainly
because the sequence similarity among DNAs and pro-
teins can usually faithfully reflect their functional rela-
tionship, whereas additional structure information is
needed to study the functional conservation among
RNAs. Therefore, it is necessary to take into account both
structural and sequential information in comparing RNA
sequences.

Several tools are available that carry out RNA alignment
and folding at the same time (Table 1). The pioneer work
by Sankoff [17] involves simultaneous folding and align-
ing of two RNA sequences, and has huge time and space
complexity (Table 1). FOLDALIGN [18] improves the
Sankoff's method by (1) scoring the structure solely based
on the number of base pairs, instead of the stacking ener-
gies; and (2) disallowing branch structures (junctions).
Dynalign [19] reduces the time complexity by restricting
the maximum distance allowed between aligned nucle-
otides in two structures. By taking into account local sim-
ilarity, stem energy and covariations, Perriquet et al. [20]
proposed CARNAC for pairwise folding of RNA
sequences. Ji et al. [21] applied a graph-theoretical

approach, called comRNA, to detect the common RNA
secondary structure motifs from a group of functionally or
evolutionally related RNA sequences. One noticeable
advantage of comRNA is its capability to detect pseudo-
knot structures. In addition, algorithms using derivative-
free optimization techniques, such as genetic algorithms
and simulated annealing, have been proposed to increase
the accuracy in structure-based RNA alignment [22-24].
For example, Notredame et al. [22] presented RAGA to
conduct alignment of two homologous RNA sequences
when the secondary structure of one of them was known.
As shown in Table 1, most of these methods suffer from
high time complexities, making the structure-based RNA
alignment tools much less efficient than sequence-based
alignment tools.

Tools that search for optimal alignment for given struc-
tures include RNAdistance [25], rna_align [26], and RNA-
forester [27]. RNAdistance uses a tree-based model to
coarsely represent RNA secondary structures, and com-
pares RNA structures based on edit distance. In a similar
vein, rna_align [26] models RNA secondary structures by
nested and/or crossing arcs that connect bonded nucle-
otides. With the crossing arcs, rna_align is able to align
two RNA secondary structures, one of which could con-
tain pseudoknots. RNAforester extends the tree model to
forest model, which significantly improves both time and
space complexities (Table 1). In addition, methods using
Stochastic Context Free Grammars (SCFGs) have been
developed to compare two RNA structures. Original SCFG
models [28,29] require a prior multiple sequence align-
ment (with structure annotation) for the training purpose,
thus their applicability is limited to RNA types for which
structures of a large number of sequences are available,
such as snoRNA and tRNA [28,30]. However, Rsearch [31]
and stemloc [32], both based on SCFG, are capable of
conducting pair-wise structure comparisons with no
requirement for pre-alignment. Rsearch uses RIBOSUM
substitution matrices derived from ribosomal RNAs to
score the matches in single-stranded (ss) and double-
stranded (ds) regions. stemloc uses "fold envelope" to
improve efficiency by confining the search space involved
in calculations. The time and space complexities of these
two tools are also listed in Table 1. Furthermore, pattern-
based techniques such as RNAmotif, RNAmot and PatS-
earch [3,33,34] have been used in database searches to
detect similar RNA substructures. These tools represent
RNA structures by a consensus pattern containing both
sequence and structure information. One important
advantage of these pattern-based tools is the ability of
dealing with pseudoknots.

We present here a computationally efficient tool, called
RSmatch, capable of both globally and locally aligning
two RNA secondary structures. RSmatch does not require
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any prior knowledge of structures of interest. It can
uncover structural similarities by means of direct aligning
at the structure level. We demonstrate its application to
database search and multiple alignment. We compared
RSmatch with three widely used tools, PatSearch [35],
stemloc [32] and Rsearch [31], demonstrating that
RSmatch is faster or achieves comparable or higher accu-
racy than the existing tools when applied to a number of
known RNA structures, including simple stem-loops and
complex structures containing junctions.

Implementation
Secondary structure decomposition
RSmatch models RNAs by a structure decomposition
scheme similar to the loop model commonly used in the
algorithms for RNA structure prediction [36,37]. With this
model, pseudoknots are not allowed. Our method differs
from the loop decomposition methods in that it com-
pletely decomposes an RNA secondary structure into units
called circles (Figure 1A). When the secondary structure is
depicted on a plane, a circle is defined as a set of nucle-
otides that are reachable from one another without cross-
ing any base pair. As shown in Figure 1A, all circles are
closed or ended by a base pair except the first circle (circle
one in the Figure 1A), which always contains the 5'-most
and the 3'-most bases. Various types of RNA structures,
such as bulge, loop, and junction can be represented by
circles, as shown in Figure 1A.

Circles of an RNA structure can be organized as a hierar-
chical tree according to their relative positions in the sec-
ondary structure, where each tree node corresponds to a
circle (Figure 1B). This tree organization is informative to
deduce the structural relationship among circles and
reflects the structure particularities of the given RNA sec-
ondary structure. If two circles reside on the same lineage
(path) in the tree, the circle appearing higher in the tree is
called an ancestor of the other, and the latter is a descend-
ent of the former. As a result, in the context of the hierar-
chical tree, two distinct circles fall into one of the
following two categories, in the order of decreasing close-
ness: (i) the two circles maintain an ancestor/descendent
relationship, or (ii) they share a common ancestor in the
tree. For example, in Figure 1B, circle 2 is an ancestor of
circle 5, whereas circle 6 does not have ancestor/descend-
ent relationship with circle 5 since they are not on the
same lineage. The double-stranded region or stem of a
structure is decomposed into a set of "degenerated" cir-
cles, each containing only two base pairs. As such, a stem
of n bases in length will result in n - 1 consecutive degen-
erated circles. Since a base pair may have two associated
circles; we name one circle "the parent circle" and the
other "the child circle" according to their positions in the
hierarchical tree. For example, for the boxed C-G base pair
in Figure 1A, circle 2 is its parent circle and circle 6 is its
child circle.

Table 1: Performance comparison of RNA secondary structure tools

Tool Name Running Time Space Requirement Reference

Sankoffa O(N6) O(N4) [17]
FOLDALIGNb O(N4) O(N4) [18]

RAGAc O(M2N3) O(M2N2) [22]
rna_alignd min{O(MN3), O(M3N)} O(MN2) [26]
Dynaligne O(M3N3) O(M2N2) [19]
stemlocf O(LM) N/A [32]
Rsearchg O(M3N) O(M3) [31]

RNAforesterh O(|F1||F2|deg(F1)deg(F2)(deg(F1) + deg(F2))) O(|F1||F2|deg(F1)deg(F2)) [27]
CARNACi O(N6), O(N2) O(N4), O(N2) [20]
comRNAj O(MN) N/A [21]

a N is the average sequence length;
b N is the average length of a given set of RNAs;
c M and N are the lengths of the two given sequences;
d M and N are the two sequence lengths;
e M is the maximum distance allowed to match two nucleotides and N is the length of the shorter sequence;
f L and M are the two RNA sequence lengths; only valid in extreme cases;
g M is the query length and N is the subject sequence length;
h |Fi| is the number of nodes in forest Fi and deg(Fi) is the degree of Fi;
i N is the sequence length, theoretical time complexity of O(N6) could be significantly reduced to around O(N2) by pre-processing of the sequences, 
as noted by the authors [20].
j M is the maximum number of stems examined and N is the number of total sequences under analysis. The comRNA's average run-time can be 
significantly improved by carefully chosen parameters, as noted by the authors [21].
Page 3 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:89 http://www.biomedcentral.com/1471-2105/6/89
RNA structure decomposition (A-B) and Partial structure determination (C-E)Figure 1
RNA structure decomposition (A-B) and Partial structure determination (C-E). (A) A hypothetical RNA secondary 
structure is decomposed into a set of circles. (B) The circles are organized into a hierarchical tree. As shown, circle 8 contains 
only one pair of bases that are bonded with each other; therefore it corresponds to a loop. Circle 7 contains two pairs of bases 
that are bonded with each other respectively and also contains a single base (nucleotide C); therefore circle 7 corresponds to 
a bulge. Circle 6 corresponds to a stem of length two since it does not contain any single base. Circle 2 contains more than 
two pairs of bonded bases; therefore it corresponds to a junction. (C) A hypothetical RNA secondary structure is used to illus-
trate how partial structures are determined. (D) The partial structure for the single base G in boldface is shown. (E) The partial 
structure for the base pair C-G in boldface consists of two parts, a parent structure and a child structure. The base pair itself is 
included in the child structure.
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Structure alignment formalization
Given an RNA secondary structure, we consider two types
of structure components, single bases and base pairs, in the
secondary structure. To integrate both sequence and struc-
ture information, we introduce two constraints among the
structure components: precedence constraint and hierarchy
constraint. The precedence constraint is defined based on
the precedence order among structure components and
the hierarchy constraint specifies the inter-component
relationship in the context of the hierarchical tree
described above. The precedence order is determined by
the 3' bases of individual structure components: the one
with its 3' base closer to the RNA sequence's 5'-end pre-
cedes the other. For example, in Figure 1A, the single base
component U (marked as the 11th nucleotide) in circle 5
precedes the base pair component C-G (boxed) in circle 6.

To capture the inter-component relationship within the
hierarchical tree context, we need to map each structure
component to a circle in the tree. It is obvious that each
single base can be mapped to a unique circle. However, a
base pair could be mapped to two alternate circles: one
parent circle and one child circle. To resolve this ambigu-
ity, we always require mapping to the parent circle. The
inter-component relationship is then reduced to the inter-
circle relationship of three types: (i) ancestor/descendent,
(ii) common ancestor, and (iii) identical circle.

Given two RNA secondary structures A and B, where A,
referred to as the query structure, has m structure compo-
nents {A1, A2, ..., Am} and B, referred to as the subject
structure, has n structure components {B1, B2, ..., Bn}, the
structure alignment between A and B is formalized as a
conditioned optimization problem based on the above
two constraints: given a scoring scheme consisting of two
matrices, one for matching two single bases and the other
for matching two base pairs, find an optimal alignment
between the two sets of structure components such that
the aforementioned precedence and hierarchy constraints
are preserved for any two matched component pairs (Ai,
Bi) and (Aj, Bj). In other words, the two structure con-
straints between Ai and Aj must be respectively equivalent
to that between Bi and Bj. This formalization has an
implicit biological significance in that a single stranded
region in one structure, if not aligned to a gap as a whole,
will always align with a single stranded region in the other
structure. This alignment requirement is important
because single stranded regions are usually treated as
functional units in binding to specific proteins.

Algorithmic framework
A dynamic programming algorithm is employed in
RSmatch. As with sequence alignment, the structure align-
ment could be either global or local. The difference lies
only in the setup of initialization conditions; the algorith-

mic framework is the same since both global and local
alignments must preserve the two constraints described
above.

A scoring table is established with its rows/columns corre-
sponding to the structure components of the two given
RNA secondary structures. We organize the rows/columns
in such a way that the precedence and hierarchy con-
straints are combined and easy to follow in the course of
alignment computation. Specifically, we sort the structure
components of each structure according to the precedence
order defined above. It is straightforward that this arrange-
ment of rows/columns makes the precedence constraint
automatically preserved. However, preservation of the
hierarchy constraint is much more complicated and can
only be accomplished in the derivative analysis for each
cell (entry) in the scoring table. We will discuss the deri-
vation when filling in the scoring table.

Each cell of the scoring table represents an intermediate
comparison between two partial structures corresponding
to the cell's row and column components (either single
base or base pair) respectively. The partial structure with
respect to a structure component c (single base or base
pair) is a set of structure components Sc such that for any
component a ∈ Sc, the following three structure con-
straints between c and a must be satisfied: (i) a precedes c;
(ii) by the hierarchy constraint, a is not an ancestor of c;
and (iii) c itself is included in Sc.

Furthermore, since a base pair could appear in two circles,
its corresponding partial structure could be divided into
two smaller substructures: parent structure and child struc-
ture. Formally, given a base pair component c, the parent
structure of c is the set of structure components Pc ⊆ Sc
(excluding c itself) such that for any component a ∈ Pc, a's
3'-base is always 5' upstream of c's 5'-base; the child struc-
ture of c is the set of structure components Lc ⊆ Sc (includ-
ing c) such that for any component a ∈ Lc, a's 5'-base is
always 3' downstream of c's 5'-base. It can be shown that
Pc ∪ Lc = Sc and Pc ∩ Lc = φ. Examples of partial structures
are given in Figure 1C–1E. As shown in Figure 1C, for a
base pair, its child and parent structures together consti-
tute the whole partial structure for the base pair.

As we will see in the following discussions, the concept of
a partial structure and its byproducts (parent structure and
child structure) form the kernel of our algorithmic frame-
work. We can solve the RNA structure alignment problem
progressively by aligning small structures and expanding
each of them one structure component at a time until all
structure components are covered.
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Preliminaries
Cells in the scoring table are processed row by row from
top to bottom and from left to right within each row. By
considering the row/column components, we have three
types of cells: (i) a cell corresponding to two single bases;
(ii) a cell corresponding to one single base and one base
pair; and (iii) a cell corresponding to two base pairs. For
(i), each cell stores the score of aligning the partial struc-
tures corresponding to the cell's row and column compo-
nents respectively. For (ii) and (iii), we need to consider
alignments involving the partial and child structures
induced by the base pair components. Notice that the par-
ent structures of the base pair components are excluded. It
can be shown that each parent structure Pc of component
c can always be considered as the partial structure Sx of
some other component x, which means we only need to
consider child and partial structures in the alignment
computation. Consequently, the above three types of cells
have one, two and four alignment scores respectively.

A scoring scheme is required to score the match of two
structure components. We define the scoring scheme as a
function g(a, b) where a and b represent two structure
components that are matched with each other. Another
important aspect of the alignment algorithm is to penalize
the match involving gap(s). In the course of computation,
one structure component (single base or base pair) could
match with a gap or a whole small structure (parent or
child structure) could match with a large gap. Intuitively,
the larger the gap is, the heavier the penalty will be. In our
implementation, we set an atomic penalty value, denoted
as u, for the smallest gap equivalent to a single base. The
penalty value for a large gap is proportional to its size in
terms of the number of bases matched with the gap.

Let A* be a small structure in the query RNA structure A
and B* a small structure in the subject RNA structure B.
The score obtained by aligning the two structures A* and

B*, denoted as f(A*, B*), is ,

where G represents the total number of gaps in aligning
A* and B*.

Initialization
We assume that the row components (a's) are from the
query RNA structure A and the column components (b's)
from the subject RNA structure B. We focus on global
alignment here; initializations for local alignment can be
derived similarly. The initialization conditions deal with
the cases where at least one of the structures under
alignment is an empty structure φ. This is equivalent to
setting up the 0th row/column in the scoring table. As dis-
cussed above, each base pair component has two small
structures to be considered: a child structure and a partial

structure. Thus, the aforementioned three types of cells
have one, two and four initialization scores respectively.

For a given structure component x (single base or base
pair), let Sx represent its partial structure. If x is a base pair,
we also use Lx to represent its child structure. We have f(φ,
φ) = 0. Furthermore, for any structure components a and
b, f(Sa, φ) = |Sa|·u, f(φ, Sb) = |Sb|·u, if a and b are base pairs,
f(La, φ) = |La|·u and f(φ, Lb) = |Lb|·u where |·| represents
the cardinality of the respective set.

Filling in the scoring table
The simplest cell type is the one whose row (column,
respectively) component is a single base a (single base b,
respectively). Let ap denote the structure component that
precedes a by precedence order established before. For-
mally, in matching the partial structure Sa with the partial
structure Sb there are only three possibilities: (i) a is
aligned with b; (ii) a is aligned with a gap; and (iii) b is
aligned with a gap. Thus the score of matching Sa with Sb
can be calculated by Equation (1).

The second cell type is the one formed by one single base
and one base pair. There are actually two symmetric sub-
types where either a or b is a base pair. Since the analysis
is identical, we only focus on the former case where a is a
base pair. As discussed before, besides the partial structure
Sa we have to consider the child structure La for the base
pair a. Thus, for this type of cells, we have to compute two
alignment scores.

By the principle of dynamic programming, the smaller
size problem needs to be solved before the larger size
problem. Thus we first find the structure alignment
between the child structure La and the partial structure Sb.
There are only two possibilities: (i) the single base compo-
nent b is aligned with a gap; and (ii) the base pair a is
aligned with a gap (see Figure 2A). Therefore we have

In aligning the partial structure Sa with the partial struc-
ture Sb, to preserve precedence and hierarchy constraints
simultaneously, there are only three possibilities: (i) the
single base b matches with a gap; (ii) the partial structure
Sb matches with the child structure La; (iii) the partial
structure Sb matches with the parent structure Pa (see Fig-
ure 2B). Thus,
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Optimal structure alignment derivationFigure 2
Optimal structure alignment derivation. (A) Structure alignment between the child structure La in the query and the par-
tial structure Sb in the subject. The substructures enclosed by dashed lines are to be inserted/deleted and the substructures 
enclosed by solid lines are to be matched. (B) Structure alignment between the partial structure Sa in the query and the partial 
structure Sb in the subject. The substructures enclosed by dashed lines are to be inserted/deleted and the substructures 
enclosed by solid lines are to be matched.
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For the third cell type, a is a base pair and b is a base pair.
We need to compute four alignment scores because each
base pair corresponds to two structures: one child struc-
ture and one partial structure. While aligning the child
structure La with the child structure Lb, it is clear that

since both a and b are the last components in the respec-
tive child structures by precedence order. Equation (5)
gives the alignment score between the partial structure Sa
and the child structure Lb.

The first case corresponds to that b is aligned with a gap. If
b does not match with a gap, it can be shown that, to pre-
serve both precedence and hierarchy constraints, the sec-
ond and third cases in Equation (5) cover all possible
situations. Similarly, we can calculate the score of aligning
the child structure La and the partial structure Sb as shown
in Equation (6).

In aligning the partial structure Sa with the partial struc-
ture Sb, there are five possibilities: (i) the parent structure
Pa is matched with the parent structure Pb and the child
structure La is matched with the child structure Lb; (ii) the
child structure La is matched with gaps; (iii) the child
structure Lb is matched with gaps; (iv) the parent structure
Pa is matched with gaps; and (v) the parent structure Pb is
matched with gaps. Therefore

Data sets
All experiments (unless otherwise specified) were carried
out on a Linux system with two 2.4 GHz Intel processors
and 3 GB memory. A human UTR structure database was
constructed as follows. We downloaded 19,986 human
RefSeq mRNA sequences (January 2004 version) from
National Center for Biotechnology Information (NCBI).
Each RefSeq sequence containing UTR regions, as indi-
cated by RefSeq's GenBank annotation, was processed to
extract its 5'UTR and 3'UTR sequences. For each UTR
sequence, we took a 100 nt subsequence at every 50th
nucleotide position from 5' to 3', making consecutive sub-
sequences overlap with one another on a 50 nt segment.
Subsequences shorter than 100 nt, e.g. at the 3' end, were
also kept. Using the Vienna RNA package's RNAsubopt
function with setting "-e 0", we then folded all obtained
sequences to form the structure database. For any given
RNA sequence, the setting "-e 0" resulted in multiple RNA
structures all having the minimum free energy. The final
database contained ~575,000 RNA secondary structures.

The structural patterns of a histone 3'UTR stem-loop struc-
ture (HSL3) and an iron responsive element (IRE) were
used in this study, based on their specifications in the
UTRdb database [3]. Three tools, PatSearch [38], stemloc
[39] and Rsearch [40], were employed for comparison
purposes. The efficiency of these tools was measured by
CPU running time. The performance of each program was
assessed by specificity and sensitivity. Specificity was cal-
culated as TP/(TP + FP) and sensitivity as TP/(TP + FN),
where TP was the number of true positives, FP the number
of false positives, and FN the number of false negatives.

To test the applicability of RSmatch to complex structures,
we downloaded RNA families from Rfam [1]. We only
chose those families that had more than 10 seed RNAs
and its consensus sequence length is no longer than 250
nucleotides. We had 64 families in the final data set. For
each family, we randomly selected one member RNA as
the query RNA and obtained its structure from Rfam. We
then randomly chose 10 subject RNAs in the same family.
Here we intentionally introduced noise by extending each
subject RNA sequence with its adjacent sequences at both
3' and 5' ends to make the total length three times its orig-
inal one.

Results
Studies of stem-loop structures in UTRs
Using our proposed algorithm, we first studied RNA
motifs in UTR regions of human mRNA sequences. A well-
known fact is that the accuracy and efficiency of RNA fold-
ing programs will decrease significantly when the
sequences to be folded become very long. Satisfactory per-
formance is usually obtained when the sequences have
moderate lengths, i.e. one hundred nucleotides. Thus, we
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used a moving window scheme to get subsequences of
100 nt and folded them using the Vienna RNA package
(see Implementation). In the RSmatch package, this sub-
sequence length is a user-defined parameter.

Since the nucleotide conservation in the single-stranded
region of an RNA sequence may differ from that in the
double-stranded region, we used two scoring matrices,
one for substitutions among single bases and the other
among base pairs. This type of scoring scheme was also
used in other studies [31,41]. Theoretically, the scoring
matrix for single bases is a 4 × 4 table for all types of sub-
stitutions of single nucleotides, and the one for base pairs
is a 16 × 16 table for all types of substitutions of base
pairs. However since we used the Vienna RNA package,
only six types of base pairs were observed in our studies,
i.e. Watson-Crick base pairs A-U, U-A, G-C, C-G, and wob-
ble base pairs G-U and U-G. Values used in the two matri-
ces were empirically chosen so as to conform to the
general understanding of the sequence and structure con-
servation of RNA motifs, as follows. (1) Mutations in the
double-stranded region may not be detrimental to RNA's
function if the mutated sequence still preserves the same
secondary structure. Therefore base pair substitutions
were rewarded with a positive score, instead of a penalty.
(2) A sequence in the single-stranded region may be
important for RNA's function, such as binding to proteins,
and thus mismatches were penalized. To process gaps we
used an arbitrary function u × l, where u was the atomic
penalty value for a gap that is one single base long and l is
the length of the gap in terms of the number of bases
matched with the gap. In our experiments otherwise
stated explicitly, the u was empirically set to -6 and chang-
ing the u value did not change the qualitative conclusion
made in the paper provided that the absolute value of u
was greater than any positive score in the scoring matrices.
Users can freely change the u value when applying
RSmatch to their own data set.

We tested our program with a query sequence containing
an iron response element (IRE). The IRE motif is a bipar-
tite stem-loop structure containing ~30 nucleotides. Two
alternative types of IREs have been found, which differ in
the middle region [3]. Type I has a bulge, whereas type II
has a small internal loop. IREs have been found in both 5'
and 3' UTRs of genes that are involved in iron homeosta-
sis in higher eukaryotic species. They interact with iron
regulatory proteins (IRPs) and play a role in RNA stability
and translation. Using a subsequence in the 3'UTR of
transferrin receptor (NM_003234) that contains an IRE
motif, we searched the UTR structure database described
in Implementation. A list of top hits is shown in Figure 3.
The best hit of the search is the query structure itself, as
expected. Other regions of the same mRNA and regions of
other RNAs are also found to have homologous structures

with the query. As clearly shown in the result, the region
containing the IRE motif, which is from about the 30th
nucleotide to about the 60th nucleotide of the query
structure, has been located by the RSmatch program, indi-
cating that a local optimal alignment has been achieved.
Among the top 10 hits, several sequences are known to
have IREs, such as several regions in the 3'UTR of transfer-
rin receptor (NM_003234) and the 5'UTR of solute carrier
family 40 protein (NM_014585). Other top hits have not
been shown so far to have IREs. It is not known if some of
them are novel IRE-containing RNAs and the definitive
answer will await wet lab validation. The output shows
detailed alignment and related information, including the
numbers of bases in the single-stranded and double-
stranded regions, and the percentages of identity in single-
stranded and double-stranded regions.

RSmatch can also accept pattern-based RNA structures
(sometimes called descriptors) to search a structure data-
base. Since a pattern-based search method has an intrinsic
primitive scoring scheme by using degenerate bases, we
used simplified binary matrices as the equivalent to score
an alignment. In the matrices, the match of a pair of struc-
ture components (single bases or base pairs), including
those containing degenerated bases, was given a score of
1, a mismatch was penalized by a score of -1, and the
atomic gap penalty u was set to -3. To allow variability in
single-stranded and/or double-stranded regions for a
structure pattern, we introduced a wildcard "n (lower
case)" to represent optional single base component ("n")
and base pair component ("n-n"). The meaning of "n" is
identical to the IUB code "N" except that the matching
score for both structure components "n" and "n-n" is
always zero regardless of whether they are aligned with a
structure component or a gap. Two RNA motifs were used
to test our method, namely a histone 3'UTR stem-loop
structure (HSL3) and IRE. HSL3, which resides in the
3'UTR region of histone mRNAs, has a typical stem loop
structure with two flanking tails (Figure 4A). Both the
stem and the flanking sequences are important to bind
with a stem-loop binding protein (SLBP), which controls
the pre-mRNA processing and stability of histone mRNAs
[42]. In contrast to the HSL3 motif, IRE is relatively flexi-
ble in length and in nucleotide composition in its stem
region (Figure 4B). We compared our program with PatS-
earch [35], a widely used tool that searches a sequence
database for sequence and structure patterns.

Using the HSL3 motif and UTR sequence database, PatS-
earch found 55 hits whose locations were presented in
Table 2. Among them, one is a false positive
(NM_014372, ring finger protein 11, Table 2). Therefore
the specificity (98.2%) of PatSearch is very high. This is
attributable to the precise specification of the HSL3 pat-
tern. However, if a pattern description is too precise, it
Page 9 of 20
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Database search with an RNA structure containing an IRE motifFigure 3
Database search with an RNA structure containing an IRE motif. A structure element (from base 3,451 to base 
3,550) in the 3'UTR of human transferrin receptor (NM_003234) was used as a query to search the UTR structure database. 
(A) The output from RSmatch showing the top 11 hits. The six columns in the ''Hits'' section are, from left to right, rank, align-
ment score, region in the query, name of the hit, region in the hit, and annotation of the hit respectively. (B) A pairwise align-
ment of the query structure and a hit structure (NM_003234:3401-3500), which is the region from base 3,401 to base 3,500 of 
transferrin receptor (NM_003234). The sequence length is shown after "Query" on the first line: a 31 nt long query sequence 
containing 7 nt in ss region and 24 nt in ds region. Numbers after "Identity" on the second line are percentages of identity of 
secondary structure (100%), and primary sequence (54%). The latter is further decomposed into two numbers indicating the 
sequence identity in ss region (71%) and ds region (50%) respectively. The number of gaps in the overall alignment is shown 
after "Gap", followed by the number of gaps in ss region and ds region, both shown in parenthesis. The same format is used for 
nucleotide mismatches. Alignments of both structure and sequence are given, where "|" indicates identical nucleotides in either 
ss region or ds region, and ":" indicates identical secondary structures with different sequences. RNA structures are presented 
as follows: nested parentheses are used for base pairs and dots are used for nucleotides in ss regions. (C) The RNA structures 
corresponding to the query and the subject (hit) structure in (B). (D) Scoring matrices and the gap penalty used in the search. 
T and U are used interchangeably in this study.
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may lead to the "overfitting" problem. This problem pre-
vents the tool from finding slightly divergent structures,
thus lowering the tool's sensitivity. Indeed, several histone
genes were not detected by PatSearch, including two his-
tone genes (histone H4c NM_003542 and histone H4

NM_003548) which were found by RSmatch among its
top 33 hits. Several other histone genes appeared among
the top 184 hits of RSmatch (Table 2). This indicates that
by gaining specificity, PatSearch loses sensitivity for HSL3.
Since RSmatch gives a score to each alignment, different

The two pattern-based RNA structures used in this studyFigure 4
The two pattern-based RNA structures used in this study. (A) Histone 3'-UTR (HSL3) motif. (B) Iron Response Ele-
ment (IRE) motif. A wildcard, represented by a lowercase letter n, is allowed to appear in a motif. When matching the motif 
with an RNA secondary structure, the wildcard in the motif can be instantiated into zero or one nucleotide in the secondary 
structure at no cost. Wildcards are used in places where the length of a region, either single-stranded or double-stranded, is 
variable. For example, the 5' flanking tail of HSL3 can be 4 or 5 nt long, and the lower part of the stem region of IRE can be 2 
to 8 nt long.
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Table 2: HSL3 motifs found by RSmatch and PatSearcha,b

RefSeq ID Location by PatSearchc Score of RSmatch Location by RSmatch Annotation

NM_002105 551–572 16 549–574 Hs H2A histone family, (H2AFX)
NM_003493 454–475 16 452–478 Hs histone 3, H3 (HIST3H3)
NM_003495 342–363 16 341–366 Hs histone 1, H4i (HIST1H4I)
NM_003509 445–466 16 444–469 Hs histone 1, H2ai (HIST1H2AI)
NM_003512 521–542 16 520–542 Hs histone 1, H2ac (HIST1H2AC)
NM_003517 413–434 16 412–437 Hs histone 2, H2ac (HIST2H2AC)
NM_003518 408–429 16 407–432 Hs histone 1, H2bg (HIST1H2BG)
NM_003519 429–450 16 428–450 Hs histone 1, H2bl (HIST1H2BL)
NM_003520 425–446 16 424–449 Hs histone 1, H2bn (HIST1H2BN)
NM_003522 406–427 16 405–427 Hs histone 1, H2bf (HIST1H2BF)
NM_003525 413–434 16 413–434 Hs histone 1, H2bi (HIST1H2BI)
NM_003526 414–435 16 413–435 Hs histone 1, H2bc (HIST1H2BC)
NM_003527 442–463 16 441–466 Hs histone 1, H2bo (HIST1H2BO)
NM_003528 476–497 16 475–500 Hs histone 2, H2be (HIST2H2BE)
NM_003530 443–464 16 442–467 Hs histone 1, H3d (HIST1H3D)
NM_003535 454–475 16 453–478 Hs histone 1, H3j (HIST1H3J)
NM_003537 445–466 16 444–469 Hs histone 1, H3b (HIST1H3B)
NM_003539 343–364 16 342–367 Hs histone 1, H4d (HIST1H4D)
NM_003546 340–361 16 339–364 Hs histone 1, H4l (HIST1H4L)
NM_005320 753–774 16 752–777 Hs histone 1, H1d (HIST1H1D)
NM_005325 733–754 16 732–757 Hs histone 1, H1a (HIST1H1A)
NM_021052 494–515 16 493–516 Hs histone 1, H2ae (HIST1H2AE)
NM_021059 483–504 16 483–504 Hs histone 2, H3c (HIST2H3C)
NM_021062 407–428 16 406–431 Hs histone 1, H2bb (HIST1H2BB)
NM_021063 463–484 16 462–484 Hs histone 1, H2bd (HIST1H2BD)
NM_021064 470–491 16 469–494 Hs histone 1, H2ag (HIST1H2AG)
NM_021066 414–435 16 413–435 Hs histone 1, H2aj (HIST1H2AJ)
NM_021968 331–352 16 330–355 Hs histone 1, H4j (HIST1H4J)
NM_170610 413–434 16 412–437 Hs histone 1, H2ba (HIST1H2BA)
NM_175055 428–449 16 427–450 Hs histone 3, H2bb (HIST3H2BB)
NM_003542 N/Ac 14 365–390 Hs histone 1, H4c (HIST1H4C)
NM_003548 N/A 14 371–396 Hs histone 2, H4 (HIST2H4)
NM_021058 457–478 14 455–481 Hs histone 1, H2bj (HIST1H2BJ)
NM_003510 436–457 12 435–456 Hs histone 1, H2ak (HIST1H2AK)
NM_003511 446–467 12 445–466 Hs histone 1, H2al (HIST1H2AL)
NM_003514 463–484 12 462–483 Hs histone 1, H2am (HIST1H2AM)
NM_003516 510–531 12 509–530 Hs histone 2, H2aa (HIST2H2AA)
NM_003523 411–432 12 412–435 Hs histone 1, H2be (HIST1H2BE)
NM_003529 439–460 12 440–462 Hs histone 1, H3a (HIST1H3A)
NM_003536 449–470 12 448–469 Hs histone 1, H3h (HIST1H3H)
NM_005319 709–730 12 708–729 Hs histone 1, H1c (HIST1H1C)
NM_005322 766–787 12 767–787 Hs histone 1, H1b (HIST1H1B)
NM_021018 444–465 12 445–466 Hs histone 1, H3f (HIST1H3F)
NM_175054 389–410 12 388–409 Hs histone 4, H4 (HIST4H4)
NM_175065 425–446 12 424–445 Hs histone 2, H2ab (HIST2H2AB)
NM_033445 472–493 10 471–492 Hs histone 3, H2a (HIST3H2A)
NM_003513 452–473 8 454–476 Hs histone 1, H2ab (HIST1H2AB)
NM_003521 N/A 8 421–441 Hs histone 1, H2bm (HIST1H2BM)
NM_003524 401–422 8 400–420 Hs histone 1, H2bh (HIST1H2BH)
NM_003533 453–474 8 452–472 Hs histone 1, H3i (HIST1H3I)
NM_003534 N/A 8 442–462 Hs histone 1, H3g (HIST1H3G)
NM_003540 N/A 8 348–368 Hs histone 1, H4f (HIST1H4F)
NM_003541 331–352 8 330–350 Hs histone 1, H4k (HIST1H4K)
NM_003543 N/A 8 349–369 Hs histone 1, H4h (HIST1H4H)
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cutoffs can be used for selecting top hits (Table 3). It
seems that newly detected true positives are heavily out-
numbered by false positives as RSmatch relaxes its cutoff
value. However, with some properly chosen cutoff, i.e. 12,
RSmatch could still achieve a comparable specificity with
PatSearch. One possible explanation of getting high false
positives for RSmatch could be that, with respect to the
particular case of the HSL3 motif, its secondary structure
conformation might be too pervasive in RNA sequences to
be used as a discriminative feature. This could point out a
problem concerning RSmatch's current scoring matrices,
which need to be fine tuned to improve the tool's specifi-
city. Good tuning could be achieved by setting up the
scoring matrices through learning from a training data set.
One interesting observation, however, was that RSmatch
and PatSearch agreed perfectly upon the HSL3 locations
for almost all of the true positives they found.

Using the IRE motif, we performed further comparisons
between RSmatch and three other tools: PatSearch [43],
stemloc [32] and Rsearch [31]. We used default parame-
ters for Rsearch; for stemloc, the fold envelope was set to
1000. Instead of using the large UTR structure database
described in Implementation we constructed a small test
data set to expedite the comparison process. First, we used
PatSearch to search human UTR sequences for IRE motifs.
Then for each hit sequence we selected its corresponding

mRNA's 3' or 5' UTR sequence. Following the same
folding process as discussed in Implementation, we
folded these UTR sequences to form the test data set.
Totally, PatSearch found 27 hits, among which 9 were
known true positives. Therefore PatSearch's specificity was
~33%. These hits were from 23 distinct mRNA sequences.
We assumed that PatSearch had a 100% sensitivity. We
extracted the 5' and 3' UTR sequences from the 23 distinct
mRNAs and obtained 46 UTR sequences. We then folded
the 46 UTR sequences to get a small test data set, which
contained 1196 structures. Using a known IRE-containing
structure (NM_000032), which was one of the 9 true pos-
itives found by PatSearch, as the query, we searched the
small test data set. Table 4 shows the results we obtained.
Since Rsearch accepts sequences only, it was tested using
only the primary sequence information in the test data set.

Except for the IRE-containing structure NM_001098,
which was one of the 9 true positives found by PatSearch,
and the query itself (NM_000032), all tools agreed on the
IRE locations for the other seven true positives without
salient discrepancy. It was found that NM_001098 was
not properly folded to exhibit the existence of the IRE
motif. RSmatch has the best specificity by ranking all
seven true positives within its top 8 hits with only one
false positive (NM_032484). Rsearch is close to RSmatch
by ranking all seven true positives within its top 8 hits

NM_003545 N/A 8 352–372 Hs histone 1, H4e (HIST1H4E)
NM_170745 441–462 8 440–460 Hs histone 1, H2aa (HIST1H2AA)
NM_003531 435–456 4 438–459 Hs histone 1, H3c (HIST1H3C)
NM_003532 438–459 4 441–459 Hs histone 1, H3e (HIST1H3E)
NM_005323 701–722 -4 705–721 Hs histone 1, H1t (HIST1H1T)
NM_021065 436–457 -10 314–335 Hs histone 1, H2ad (HIST1H2AD)
NM_005321 761–782 -41 85–116 Hs histone 1, H1e (HIST1H1E)
NM_014372 1345–1366 -42 1381–1389 Hs ring finger protein 11 (RNF11)

aItems listed here include those found by PatSearch and those found by RSmatch using cutoff value of 8 that are related to histone genes.
bRSmatch gets 33 hits at cutoff value of 14 and gets 184 hits at cutoff value of 8.
cmRNAs that are not detected to have the HSL3 motif by PatSearch are marked with "N/A".

Table 3: Performance of RSmatch in the HSL3 experimenta

Cutoff Score Selected Hitsb True Positives Specificity Sensitivityc

14 33 33 100.0% 53.2%
12 47 45 95.7% 72.6%
10 69 46 66.7% 74.2%
8 184 56 30.4% 90.3%

aPatSearch has a specificity of 98.2% and sensitivity of 87.1%.
bHits whose scores are greater than or equal to the cutoff value used in this study are selected.
cAssume there are 62 mRNA structures containing the HSL3 motif, which include all histone mRNAs found by RSmatch and PatSearch.

Table 2: HSL3 motifs found by RSmatch and PatSearcha,b (Continued)
Page 13 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:89 http://www.biomedcentral.com/1471-2105/6/89
with one false positive (NM_003672). In contrast,
stemloc gives five false positives within its top 10 hits. Set-
ting different cutoff values yields different specificity and
sensitivity for each tool. The point of balanced specificity
and sensitivity appears at the cutoff value of 8 for all three
tools. With this cutoff value, the specificity of RSmatch
and Rsearch tied at 7/8 × 100% = 87.5%. This is better
than the specificity of PatSearch (33%) and the specificity
of stemloc (~50%). The sensitivity of RSmatch, Rsearch
and stemloc is 87.5%, 87.5% and 50% respectively. It is
worth noting that RSmatch runs ~30% faster than
Rsearch; it took Rsearch 34 seconds to search the whole
data set of 1196 structures while RSmatch used only 23
seconds. Consequently, RSmatch would be suitable for
analyzing large data sets. It should also be pointed out
that RSmatch permits wildcards in database searching and
structure matching, which are not supported by Rsearch
or stemloc.

Performance on complex structures
We further tested how accurate RSmatch is for complex
structures. To this end, we downloaded RNA structures

and sequences from the Rfam database (see Implementa-
tion). We used 64 RNA structure families, each of which
has more than 10 seed sequences and has the consensus
sequence length less than 250 nucleotides. For each RNA
structure family, we randomly selected a structure and
searched against 10 randomly selected sequences belong-
ing to the same family. To reflect real world scenarios, we
extended RNA sequences at both 5' and 3' ends so that the
length of a subject sequence is three times that of the orig-
inal one. To ensure that the folded structures are long
enough to fully contain the structure being investigated,
we required the moving window size to be 1.5 times the
length of the query RNA sequence. Furthermore, to
include suboptimal structures, we used all structures with
free energy within 1.5 kcal/mol above the minimum one.
Compared with HSL3 and IRE, the 64 query structures we
used were much more complex, with average length of
~120 nt and more than 70% of them comprised of nested
loops and conjunctions.

To assess the accuracy, we used a measure called structure
coverage, denoted as p, which is calculated by the

Table 4: IRE experiment results

True Positive RefSeq ID Location by PatSearch RSmatch Rsearch stemloc

Location Score Rank Location Score Rank Location Score Rank

x NM_000032a 13–35 - - - - - - - - -
x NM_014585 203–229 202–231 21 1 202–231 34.11 1 202–226 13.021 5
x NM_003234 3479–3511 3484–3506 19 2 3480–3510 31.42 2 3486–3503 15.936 2
x NM_003234 3883–3913 3887–3909 17 3 3876–3925 27.80 6 3889–3906 10.914 7
x NM_003234 3950–3976 3952–3974 17 3 3952–3974 25.50 10 3954–3971 10.476 9
x NM_003234 3996–4024 3999–4021 17 3 3999–4022 28.53 4 4042–4048 1.149 25
x NM_000146 19–41 20–40 16 6 7–51 27.84 5 17–41 8.574 12

NM_032484 2353–2376 2358–2373 13 7 2355–2377 22.26 11 2354–2375 16.411 1
x NM_003234 3429–3461 3434–3456 13 7 3433–3458 26.40 8 3436–3453 6.218 15

NM_018992 2182–2205 2186–2202 12 9 2186–2202 18.43 19 2186–2202 11.459 6
NM_003449 2160–2180 2163–2178 11 10 2160–2180 26.27 9 2161–2181 13.198 4
NM_002081 3449–3469 3452–3467 11 10 3446–3472 20.47 17 3450–3470 8.290 14
NM_173649 1371–1398 1431–1446 7 12 1372–1398 18.83 18 1376–1396 8.493 13
NM_033337 1202–1226 1253–1257 5 13 1202–1227 21.52 14 1202–1227 4.540 18
NM_001234 1106–1130 1157–1161 5 13 1106–1131 21.52 15 1106–11331 4.540 19
NM_153706 174–194 108–119 5 13 171–198 17.49 20 219–234 4.400 20
NM_003607 6892–6914 6851–6854 4 16 6892–6914 21.98 12 6930–6950 10.827 8
NM_002086 82–102 126–129 4 16 94–117 16.48 22 101–125 2.833 22
NM_012256 2594–2617 2571–2574 4 16 2536–2570 20.76 16 2590–2606 1.770 24

x NM_001098 1–23 17–19 3 19 1–23 30.67 3 3–20 14.185 3
NM_006731 4439–4465 4487–4489 3 19 4442–4462 21.65 13 4443–4460 9.920 10
NM_003672 2556–2576 2592–2594 3 19 2547–2587 26.44 7 2558–2574 9.049 11
NM_018234 2038–2058 2176–2178 3 19 2035–2061 14.11 24 2046–2058 4.986 16
NM_024076 1799–1822 1816–1818 3 19 1800–1821 15.00 23 1832–1850 4.876 17
NM_000877 3274–3294 3336–3338 3 19 3275–3293 13.81 25 3302–3321 3.182 21
NM_003675 2–27 27–31 3 19 1–29 16.74 21 21–31 1.980 23
NM_032323 1924–1944 1990–1992 3 19 1925–1943 12.43 26 1928–1948 0.678 26

aNM_000032 is used as the query structure for RSmatch, Rsearch, and stemloc. Thus there is no value (shown as "-").
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Performance comparison of Rsearch and RSmatch and alignments of two 5S rRNAsFigure 5
Performance comparison of Rsearch and RSmatch and an alignment of two 5S rRNAs. (A) Performance compari-
son for 64 RNA families. Different colors are applied to represent structures of different sizes. Each point corresponds to one 
alignment between a query structure and a subject structure. The x-axis is the percent of coverage by Rsearch and y-axis is the 
percent of coverage by RSmatch. (B) Performance comparison of 5S rRNA. A 5S rRNA was randomly chosen as the query 
structure and ten others as the subject sequences. The median value of the ten structure coverage values was then calculated. 
This process was repeated 100 times to generate 100 points for the graph. Therefore, each point represents one particular 
query structure. An example alignment of two 5S rRNA was shown: (C) the query structure is X07545/505-619; (D) the sub-
ject RNA is X02729; and (E) the detailed alignment by RSmatch.
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following formula: p = |Qalign|/max(|Q|, |Salign|), where
|Qalign| and |Salign| are the lengths of aligned portion of
query RNA and subject RNA, respectively, and |Q| is the
length of query RNA sequence. As shown in Figure 5A,
even though Rsearch has slightly more points clustered
around high coverage (90–100%), the overall difference
between RSmatch and Rsearch is not significant. In addi-
tion, the difference between RSmatch and Rsearch do not
seem to be related to structure size or complexity. This
result indicates that RSmatch has the ability to process
complex structures.

We also selected 5S rRNA for further detailed tests. 5S
rRNA has a length of ~120 nt, which contains several types
of RNA structures, including hairpin, internal loop, bulge,
and junction. There are 602 sequences in the 5S rRNA
family, allowing us to carry out a thorough analysis. We
randomly chose one 5S rRNA as query structure and ten
others as subject sequences for alignment. This process
was repeated 100 times. The performance comparison of
Rsearch and RSmatch is shown in Figure 5B. For 5S rRNA,
RSmatch outperforms Rsearch in discovering the

complete structure more frequently. An exemplary align-
ment is shown in Figure 5C–5E.

Running efficiency
By dynamic programming, the running time of comput-
ing an alignment equals the number of writing operations
needed to fill the scoring table. Thus the time complexity
of RSmatch is O(mn), where m (n, respectively) is the
number of structure components in the query (subject,
respectively) RNA structure. To test the scalability, we
downloaded the seed sequences for 5S rRNA family from
Rfam and randomly selected one annotated structure as
the query while folding the rest sequences to prepare the
structure database as discussed above (Figure 6). We plot-
ted the RSmatch running time versus the database size.
The program was run 10 times and the result is shown in
Figure 6. The nearly perfect linear growth of the running
time gives an empirical proof that the algorithm's time
complexity is bounded by O(nm).

Multiple structure alignment and iterative database search
We also extended RSmatch algorithm to conduct multiple
structure alignment. An example using IRE is shown in
Figure 7. While the alignment algorithm is the same, the
multiple alignment function uses a position-specific scor-
ing matrix (PSSM, Figure 7C). For a given set of structures,
the multiple alignment function first identifies the best
alignment of two structures, and builds a PSSM. The PSSM
is then used to search for the closest structure in the rest of
the set. A flowchart of multiple structure alignment is
shown in Figure 7A. If the alignment score of a structure
to the PSSM is above a cutoff (user-defined), it is selected
and its structure is used to update the PSSM. This step is
iteratively conducted until no structures have alignment
score above the cutoff. In a sense, this method employs an
implicit guided hierarchical tree using the average value
for joining nodes. As an example, from our human UTR
database we selected 6 IRE-containing structures and ran-
domly chose other 6 none-IRE structures to form a small
dataset and run RSmatch against it. The output is shown
in Figure 7B. The final result is in Stockholm format for
multiple structure alignment. Conceivably, when the
given set of structures is a large database, the multiple
structure alignment function of RSmatch in effect con-
ducts iterative search for finding similar structures.

Discussion and conclusions
The work presented here is intended to provide an effi-
cient tool to directly perform structure alignment and
search of RNA secondary structure databases. Its capability
to carry out multiple structure alignment and iterative
database search can potentially be used to uncover RNA
motifs ab initio. For example, one can use an RNA struc-
ture of interest to search an RNA structure database, and

CPU time versus database sizeFigure 6
CPU time versus database size. From the 5S rRNA fam-
ily, a randomly picked 5S rRNA was used as the query to 
search a structure database obtained by folding the rest seed 
sequences in the family. The program was run 10 times, and 
the average running time of each time is shown as a circle in 
the graph.
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Multiple structure alignment and iterative database searchFigure 7
Multiple structure alignment and iterative database search. (A) Flowchart of multiple structure alignment and itera-
tive database search. Step (1a) accepts a query structure to start an iterative database search; step (1b) processes a small data-
base for multiple structure alignment; step (2) derives a profile from the seed alignment; step (3) uses the profile to conduct 
search; and step (4) updates the profile with new alignment. (B) Multiple structure alignment of several IRE structures. (C) 
PSSM of the multiple alignment of IRE in (B). Each column in the PSSM corresponds to the position of a structure component, 
either single base or base pair. Position of a single base is represented by the nucleotide number and position of a base pair is 
represented by two nucleotide numbers connected by a dash. For each column, the scores of individual structure components 
in that position are listed in rows where "-" means not applicable.
Page 17 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:89 http://www.biomedcentral.com/1471-2105/6/89
build PSSM iteratively to build an RNA motif, as demon-
strated for IRE in this study (Figure 7).

RSmatch bears similarities to rna_align and RNAforester
in that the structural particularities are either explicitly
captured using hierarchical tree/forest structures or
implicitly represented using arc-annotated structures.
However, RSmatch differs from rna_align and RNAfor-
ester in two major aspects. First, RSmatch keeps structural
consistence by only allowing single bases matched with
single bases and base pairs matched with base pairs
whereas rna_align and RNAforest do not impose this
restriction. Second, RSmatch keeps the integrity of single-
stranded regions by matching one with another, instead
of breaking a single-stranded region into pieces and align-
ing them with different single-stranded regions. In addi-
tion, RSmatch has less time and space complexities than
the other two tools.

The concept of circles introduced in this paper is reminis-
cent of the "k-loop" described in the classic RNA structure
prediction paper [44]. The difference is that the circles can
reflect the inter-base-pair relationship by focusing on two
base-pairs at a time while the "k-loop" cannot. By organ-
izing all circles into a hierarchy tree, we can capture the
overall structural particularity. It should also be pointed
that there is a major difference between the hierarchy tree
introduced here and the parse trees of SCFG [28]. The
hierarchy tree is constructed from circles and aims to
obtain the panorama of the secondary structure of RNA at
a higher level than that of the SCFG parse tree, while
detailed information is still available within each circle in
the tree. With the introduction of partial structures, this
two-level structure modeling (intra- and inter- circles)
allows us to develop an efficient algorithm that runs at
time O(mn) as we have shown in the paper.

Our program takes full advantage of structure prediction
techniques. It separates RNA folding from structure align-
ment. Simultaneous RNA folding and alignment is
believed to be the optimal solution for both finding the
right structure and locating homologous sub-structures of
RNAs [17]. Unfortunately, it is computationally prohibi-
tive for even a moderate number of RNAs. Some
improvements have been proposed, but extensive com-
puting time still makes them infeasible for database
searches [18,19]. By separating the process into two steps,
we greatly enhanced the computing efficiency, making it
possible to process a large-scale pre-folded RNA structure
database for homologous motifs. However, a drawback of
using pre-folded RNAs is that the prediction tools may not
produce correct RNA structures, as observed in our exper-
iments. It is estimated that the RNA folding programs
solely based on thermodynamic properties of RNA can
correctly predict RNA structures with about 70% of chance

[45]. Secondly, higher complex structures, such as pseu-
doknots, cannot be predicted in most commonly used
programs, including the Vienna RNA package used in this
study. A solution to removing the first drawback is to
choose suboptimal structures in addition to the optimal
one to increase the chance of obtaining correct structures.
It has been reported that using suboptimal structures
whose thermodynamic free energies are within 2% of that
of the optimal one can greatly improve the structure pre-
diction of RNA [44]. In our IRE experiments, we found
that the predicted structure for NM_001098/1–23 did not
exhibit the existence of an IRE motif. By relaxing the free
energy range, we finally detected the IRE motif from one
suboptimal structure whose free energy was 1.7 kcal/mol
higher than the optimal one. Because of the computing
efficiency of our program, an increase of the number of
RNA structures does not impose big burden on database
searching (data not shown). The cost will be at the data-
base building stage, which is however done only once.

The moving window approach we used to extract and fold
subsequences was aimed to make the folding process
more accurate and efficient. This is because RNA folding
programs are known to have pronounced difficulties in
correctly predicting large RNA structures. Furthermore,
predicting the structure for a long sequence takes much
longer time than predicting structures for its subse-
quences. Another advantage of using the moving window
method is that small motifs falling in the overlapped
subsequences could be folded twice, increasing the chance
of their being detected.

Pattern-based tools, such as PatSearch and RNAmotif, use
descriptions of an RNA structure as queries to search a
sequence database for similar structures. This type of
search does not take into consideration the context of a hit
sequence, which could influence the (sub)structure of the
sequence. For example, as shown in our experimental
results, PatSearch can achieve a satisfactorily high specifi-
city when the structure of a pattern is not flexible and its
description is relatively precise, such as the HSL3 motif.
However, the sensitivity of PatSearch is low with rigid pat-
tern descriptions. For relatively flexible structures, such as
IREs, the specificity of PatSearch drops because it does not
take into account the context in which a motif is located.
On the other hand, using folded RNA structures, the pro-
posed RSmatch tool overcomes these shortcomings with a
high specificity, thus complementing the pattern-based
tool. However, as also shown in our experimental results,
the error existing in folding an RNA sequence
(NM_001098) can lower the sensitivity of RSmatch. We
suspect that the inaccuracy introduced by RNA folding
could be a bottleneck for our technique in achieving a very
high sensitivity.
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Our scoring matrices for single-stranded and double-
stranded regions and the gap penalty assignment are very
primitive in the sense that they are not based on any prob-
abilistic model or learned from any training data set. One
interesting observation in our HSL3 experiment was that
RSmatch did find most HSL3 sites correctly. However, the
scoring scheme seemed not acute enough to filter out
many false positives. Part of the problem is that there are
not enough motifs that can be used to construct optimal
scoring matrices. In fact, we also tested the matrices
(RIBOSUM) proposed by Klein and Eddy, which were
built upon small subunit ribosomal RNAs. We did not
find any discernible difference in our HSL3 experiment, in
which both matrices were used (data not shown). Another
related question is whether different types of RNA, such as
tRNA, rRNA, and UTRs, need their own scoring matrices.
It is conceivable that large highly structured RNAs, such as
rRNA, may be able to tolerate more mutations than short
RNA motifs that occur in UTR regions. If so, using differ-
ent scoring matrices for different types of RNAs will be
warranted. Furthermore, it is possible that the mutation
rate is different for nucleotides in different regions of an
RNA motif. Therefore, PSSM might be more suitable in
these cases. To this end, the iterative search function of
RSmatch, which searches a database using PSSM, can be
applied.

Motivated by the statistical methods of assessing results in
sequence alignment [46], we tried to develop scores of our
database search with known probabilistic distributions.
The score distribution seemed close to be normal (data
not shown). However since our scoring scheme is still at
its preliminary stage and much is to be learned about the
RNA structure database presented in the paper, we only
presented search results in terms of ranking. More elabo-
rate statistical assessment of the search results will be
developed in the future.

Availability and requirements
The RSmatch package has been implemented in Java and
Perl and is freely available for academic use at http://
exon.umdnj.edu/software/RSmatch or http://
aria.njit.edu/rnacenter/RSmatch.
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