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Abstract
Background: Within the emerging field of text mining and statistical natural language processing
(NLP) applied to biomedical articles, a broad variety of techniques have been developed during the
past years. Nevertheless, there is still a great ned of comparative assessment of the performance
of the proposed methods and the development of common evaluation criteria. This issue was
addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative)
contest. The aim of this contest was to assess the performance of text mining systems applied to
biomedical texts including tools which recognize named entities such as genes and proteins, and
tools which automatically extract protein annotations.

Results: The "sentence sliding window" approach proposed here was found to efficiently extract
text fragments from full text articles containing annotations on proteins, providing the highest
number of correctly predicted annotations. Moreover, the number of correct extractions of
individual entities (i.e. proteins and GO terms) involved in the relationships used for the
annotations was significantly higher than the correct extractions of the complete annotations
(protein-function relations).

Conclusion: We explored the use of averaging sentence sliding windows for information
extraction, especially in a context where conventional training data is unavailable. The combination
of our approach with more refined statistical estimators and machine learning techniques might be
a way to improve annotation extraction for future biomedical text mining applications.

Background
Experimental results related to molecular biology research
are published in the form of journal articles and stored in
biomedical literature databases such as PubMed [1]. The
amount of scientific articles is increasing dramatically.
Nonetheless, useful information in terms of functional
descriptions of proteins and genes, is still extracted from
these publications manually by human experts. The
extracted information is consequently used to build up
annotations within biological databases describing rele-

vant aspects of these proteins. These annotations are also
commonly used to automatically infer annotations to
other, sequence-related proteins, as often protein
sequence similarity can give clues to functional similarity.
This automatic sequence-based annotation in some cases
can be misleading as even the conservation of function
itself is often difficult to estimate [2,3]. As the amount of
feasible annotations using manual information extraction
is limited, it may not keep up with the pace of article pub-
lication and thus represents a severe bottleneck preventing
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knowledge gain. Current estimates are that 10% of pro-
tein sequences are annotated from original sources with
the remaining 90% being inferred from that 10%.

Efficient automatic filtering and information extraction
algorithms for biomedical literature are needed to compli-
ment manual information extraction and reduce the
human effort needed. Moreover, they could aid in main-
taining links from database annotations to article sources.
In order to speed up the annotation process, a broad vari-
ety of methods drawn from the field of text mining and
statistical natural language processing (NLP) have been
applied to common biological problems. Some tech-
niques have been applied directly to derive important
information for protein annotations [4-6]. Other
approaches have been intended to complement the anal-
ysis of microarrays [7-10] in terms of the biological back-
ground information of the analyzed genes. Attempts have
also been made to automatically extract protein interac-
tions [11] and to improve protein sequence similarity
searches [12,13]. Although a considerable number of text
mining methods applied to biomedical articles are cur-
rently available, common assessment initiatives were
missing. This has made it especially cumbersome to com-
pare the relative strengths of different techniques so as to
improve future applications.

We present a first version of our approach to extract func-
tion annotation passages from free full text articles. This
procedure produced the highest number of correct anno-
tation extractions in the BioCreative contest (task 2.1)
[14]. The BioCreative is a community wide experiment
with the purpose of assessing distinct techniques of
named entity recognition and gene tagging (tasks 1a and
1b) [15,16] as well as automatic protein annotation
extraction (tasks 2a and 2b) [14,17]http://
www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html.

BioCreative task 2.1, was concerned with the automatic
extraction of protein annotations. The evaluation was car-
ried out by expert annotation database curators from the
EBI GOA team [17,18], providing a high quality assess-
ment. In this task, the entities involved in the annotation,
a protein identifier and a Gene Ontology (GO) code were
provided. GO is a dataset containing consistent descrip-
tions of gene products in the form of controlled vocabu-
lary terms. It consists of an ontology with a directed
acyclic graph structure. Each entry may belong to one of
three categories, molecular function, biological process or
cellular component and has a unique associated GO code.
For each GO code and protein-identifier pair (entities),
given a full text article, the text passage which would be
useful to derive a GO-based protein annotation (relation-
ship) should be returned. Those text fragments should

thus contain traceable associations between the protein
entity and the GO-term entity.

In order to extract the required annotation passages, lists
of terms and word types for entities involved in the anno-
tation were compiled. For each list, a semi-heuristic scor-
ing scheme was developed, which was used to score
sentences after tagging them with the elements recovered
from each list. Those scores were then used by averaging
sentence sliding windows to score each sentence taking
into account the context of flanking sentences. The high-
est scoring sentence window was returned as the annota-
tion evidence text passage.

Materials and Methods
Gene Ontology Annotation dataset
In order to analyze the associations of proteins with GO-
terms within scientific articles we used the Gene Ontology
Annotation database (GOA) [18]. This database provides
annotations of proteins using GO-terms through associa-
tions derived from the scientific literature. For instance for
the SwissProt annotation database accession number
'O00115' (SWISS – PROT/TrEMBL entry name
DRN2_HUMAN) the GO identifier 'GO : 0003677' was
annotated using information contained in PubMed docu-
ment with the PubMed identifier 9714827. We extracted
a dataset of 560 human protein- GO-term annotations
contained in GOA and compiled the PubMed abstracts
relevant for annotation as our "training" dataset. Only
GOA database annotations with traceable author state-
ments, as provided by the GOA-TAS evidence code were
used. Traceable author statement annotations refer to
annotations in which the original experiments are tracea-
ble through the article by a corresponding author state-
ment. Those abstracts served for further statistical analysis
of the sub-tag sets of each annotation entity. This dataset
was rather noisy.

Protein entity tag set
In order to identify functional annotations for proteins,
information extraction of text passages relevant to them is
crucial. As proteins constituted one of the entities
involved in the annotation, we constructed a tool which
generates lists of sub-tag sets for a given query protein.
Each sub-tag set consisted of a list of word types and
names associated with the protein query (see table 3),
characterized by a distinct degree of relation with the orig-
inal query protein.

Among the sub-tag sets used for the protein entity class
were the original protein name, symbol or identifier, e.g.
the SwissProt accession number. In the case of this contest
the SwissProt accession number was provided as the pro-
tein query, consisting of a unique identifier for each
protein entry in the SwissProt database (e.g. O00115)
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[19]. Within textual sources, protein symbols or names
are often expressed in the form of different typographical
variants [20]. Therefore we derived another sub-tag set
containing protein variants which were generated through
a rule based pipeline of protein name processing (in the
example O00115: DNASE2, DNASE 2 and DNASE-2).
Often different names for a certain protein, (synonyms)
are obtained through cross references to other biological
databases.

We developed a database which contained cross linked
protein entries derived from several sources, including the
HUGO, OMIM, SwissProt, UniGene and LocusLink data-
bases. This database allowed us to extract all the possible
naming conventions and definitions for a query protein
based on its database identifier. All the protein symbols
and names obtained through external links were also
incorporated into a separate sub-tag set. For the example
presented above, the elements contained in this sub-tag
set included: 'deoxyribonuclease II, lysosomal', 'DNL' and
'DNL2' (from HUGO). The word types forming the gene
names also constituted a sub-tag set. For instance, in the
case of O00115 the following word types were part of this
sub-tag set: 'deoxyribonuclease', 'II', 'lysosomal'. The prag-
matic context information was also exploited as a sub-tag
set to take into account the meronymic relations (whole-
part relations) for proteins. Hence we used terms con-
tained in the Global Open Biology Ontologies (GOBO)
dataset. GOBO contains structured sets of terms related to
different aspects within the field of molecular biology. We
used the mutation event and sequence ontology tables,
and exploited them as a separate sub-tag set. The presence
of such meronymic terms might aid in disambiguating
certain protein symbols using context information. Exam-
ples of the "GOBO mutation event sub-tag set" were muta-
tion (0000128) and conformational change (0000116) and
of the "GOBO sequence ontology sub-tag set" were EST
(SO:0000345) and transcript (SO:0000673).

Gene Ontology term tag set
As already mentioned GO-terms are controlled vocabu-
lary items embedded into an ontological structure. To
determine if these terms are suitable for NLP tasks, the lex-
ical properties of GO [21] were analyzed. This analysis
revealed that most of the GO-terms were useful for NLP
approaches and some of them are even rather often
encountered in free text. Nevertheless after a closer look at
the GO-terms, we decided to construct a sub-tag scheme
by analogy to the gene/protein entity (see table 3). Some
of the GO-terms, especially those which denote more spe-
cific features, do not resemble what one would expect in
free text. Hence it would be rather cumbersome to tag
them in biomedical texts. Also certain terms within the
categories molecular function and cellular component did
not seem to correspond to natural language expressions

due to the presence of special characters such as the back-
slashes. Some terms indicated the organism source which
in principle should not form part of the term itself (e.g.
sensu Animalia). From a linguistic point of view, a signifi-
cant difference between protein symbols/names and the
GO-terms is that the former are proper nouns while the
latter can be considered to be adverbial nouns. Therefore,
the GO-terms are even more diffcult to identify in free text
as they often lack morphological characteristics which are
present in proper nouns, such as capital letters or special
characters as in the case of gene names (e.g. Greek letters).
To recover some of the GO-terms it seemed therefore cru-
cial to process them so that they would resemble their nat-
ural language (NL) variants, namely how they might be
encountered in free text. We developed for this purpose a
rule based system which modifies an input GO-term
returning several potential NL-variants. Some of the
processing steps performed by this system were minor
typographical changes (e.g. lower case conversion) and
word token substitutions by corresponding synonyms or
adjective into noun conversions (e.g. via - >through and
viral - >virus. Other processing events include acronym
expansion (e.g. ER - >endoplasmatic reticulum), collocation
shuffing and preposition insertions (e.g. of - >of the. Sam-
ple NL-variants for the GO-term ER membrane viral bud-
ding (GO:0046764) are ER membrane virus budding and
endoplasmatic reticulum membrane viral budding and for con-
densed nuclear chromosome/perocentric region
(GO:0000780) one of the NL-variants is pericentric region
of condensed nuclear chromosome. Among the resources pro-
vided by the Gene Ontology consortium were also a GO-
term synonym list and links for GO-terms to external
databases such as the MIPS database keywords [22]. These
synonyms and externally linked keywords were included
as a separate tag set. Finally the word types from which
GO-terms and the GO-term definitions (after extensive
stop word filtering) are formed, were included in two
respective tag sets, e.g. for the GO-term regulation of mitotic
recombination (GO:0000019), the word types 'regulation',
'mitotic' and 'recombination' were present in the sub-tag set
containing GO-term word types. We generated stemmed
versions for all the tag sets using the Porter Stemmer [23].

Analysis of sub-tag sets using GOA abstracts
After defining the different sub-tag sets for each entity, we
determined their utility for extracting annotation pas-
sages. Therefore we analyzed first the average number of
occurrences for each sub-tag using GOA abstracts (see fig-
ure 3). As already pointed out this dataset was not repre-
sentative enough in context of annotation text fragments
and thus did not constitute a conventional training set.
Moreover the total number of studied GOA abstracts was
small and noisy, so it did not satisfy all the needed criteria
for a representative annotation text sample. Nevertheless,
we considered that the average occurrence of each sub-tag
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reflects somehow its specificity as an evidence item. We
thus derived a heuristic weighting factor (heuristic sub-tag
score hi) associated with each sub-tag which depended on
the type of relationship it displayed with the original
query and its own average occurrence. More specific sub-
tags (e.g. the original GO-term or the gene symbol) were
given a higher weighting score than more general sub-tags
(e.g. the word types forming the GO-term or protein
name). The stemmed versions of each sub-tag were scored
lower relative to the original (unstemmed) word/s (as
stemmed versions may result in ambiguous words). In the
case of the word types forming the GO-term, GO-term
definitions and composed protein names, an extended
stop word filtering was performed. We started using sev-
eral different heuristic weights for each sub-tag. Then,
using a small set of sample articles, we adjusted the
weights until the correct text passages (which contained
the annotation) were returned as the highest scoring text
window.

Let hi be the heuristic sub-tag score (weight) for each sub-
tag i for a given entity, then hi would be calculated by:

where  is the average number of occurrences of ele-
ments of sub-tag i in GOA sentences and ei corresponds to
the relative heuristic weight used for sub-tag i, based on
domain expert estimates, the relation to the query term
and finally some adjustments based on a small sample of
full text articles containing an annotation passage. Notice
that the heuristic sub-tag weights for the GO-term entity
were in general higher than for the protein entity.

Low level document processing and instantiation of sub-
tag elements
The test set provided for task 2a consisted in full text arti-
cles from the Journal of Biological Chemistry in SGML
format. The first step consisted in previous SGML-parsing,
low-level processing and junk formatting. All the analyzed
documents were subjected to a rule-based sentence split-
ting algorithm. Section and paragraph information was
retained in the form of empty sentences (this is important
for the sliding window procedure explained later). After
performing the low-level processing, we tagged to the doc-
ument sentences the lists of word types and terms con-
tained in the sub-tag sets for each entity, using an exact
string matching algorithm. Thus only the sub-tag ele-
ments which are matched to a sentence are instantiated.
Each sentence has thus a set of GO entity and Protein
entity sub-tag elements which were encountered within
this sentence. There are also sentences with no matches to
sub-tag elements, for instance the empty sentences corre-
sponding to sections and paragraphs. In the case of the
following sentence the sub-tag it Golgi corresponding to

the sub-tag class containing GO-term forming words was
machted: Once fully glycosylated, the enzyme is phosphor-
ylated and released from membranes either in or after the trans-
Golgi compartment (<BBR RID="B12">).

Trapezoid sentence sliding window
The use of the concept sliding window spans a broad variety
of domains, such as information technology where it has
been widely used in signal processing for analysis of fre-
quent items in packet streams [24]. In bioinformatics, it
has been applied to protein sequence analysis such as the
prediction of transmembrane protein segments and to
generate protein hydropathy profiles [25]. Sliding win-
dows have also been applied within the field of natural
language processing for collocation detection [26]. In our
case we explored the use of averaging sliding windows for
information extraction tasks. We applied a trapezoid sen-
tence sliding window to extract relevant text fragments for
biomedical entities (proteins and GO-terms) using bio-
medical literature. The sliding window unit consists of
sentences.

Let L be the total number of sentences forming the trape-
zoid sliding window (window length), then the sentence
position weight wi within the window was determined by

In this way, we scored the flanking sentences comprising
the sliding window lower then the core sentences of the
window. This is based on the assumption that the flank-
ing sentences might contain contextual information use-
ful for scoring the sentences relative to the presence of a
given entity.

The average sliding sentence window entity score,  was
calculated by

where wi is the corresponding sentence position weighting
factor and L is the sentence window size. In the case of the
entity profiles, L = 5 sentences. Si is the sum of the scores
of the matching sub-tags of a given sentence, n being the
total number of matched items and hi the associated heu-
ristic sub-tag score.
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Entity profiles
The "trapezoid sliding windows" generate average entity
scores for each sentence within the document. Taking the
average sentence scores relative to the sentence number, it
is possible to generate a document entity profile for the
GO-term as well as for the protein. The higher the average
sentence score, the more likely it should be that the corre-
sponding text window contains information relative to
the entity or to items associated with the entity. These pro-
file scores were used to determine relevant text passages
for each entity. The values of the scores can hint at the
types of sub-tags being matched to the window, as high
average window scores are associated with high scoring
sub-tag matches. In general the average sentence scores for
proteins are lower then for GO-terms, this is due to the
overall weighting scheme used for the sub-tags.

Annotation profile
After calculating the average entity score for each sentence
we had to combine both resulting entity document pro-
files into a unique annotation document profile (see fig-
ure 4). The annotation profile should score every sentence
window on whether it contains suitable information for
annotating proteins with GO-terms. This was achieved
using a combining sliding window which, as for the entity
sliding windows, averages the sentence scores over a cer-
tain window size. The sliding window size used to gener-
ate the annotation profile was reduced to L = 4 sentences,
as larger windows would result in text fragments too cum-
bersome to be evaluated by the assessor. The sentence
position weights wi used in the case of the entity windows
were ignored, meaning the flanking sentences had the
same weighting as central sentences.

We therefore assumed that semantic information express-
ing the relation between two entities should be restricted
to a distance expressed in sentences.

To calculate the average annotation sentence score , the
entity profile sentence scores were used. The average

annotation score  for a given sentence window is given
by:

where L = 4 (window size), (GO) is the average entity

sentence score for the GO-term and (Protein) the aver-
age entity sentence score for the protein. The sentence
window with the the highest average annotation score A'

was returned: A' = arg max  score(  ) as the annota-
tion passage.

Results
The proposed procedure derives individual sentence
scores for each entity or class. It uses the weight scores of
matched word tokens and entity terms. Each weight score
depends on the type of tag (sub-tag) the matched token
belonged to. Every sub-tag set consist of a list of word
types or terms with a certain degree of association with
respect to the initial query entity. The weight score itself
for a given sub-tag is based on its occurrence in Gene
Ontology Annotation (GOA) [18] abstracts and addi-
tional heuristic estimates. The sentence window then
slides over the whole document generating two entity pro-
files by averaging over the summed sentence scores com-
prised in the window. This results in a protein entity profile
and a GO-term entity profile when considering the average
entity sentence score for each of the window positions.
These profiles serve as input for a second averaging proce-
dure which combines two entity-profiles to obtain a sin-
gle document annotation profile using a sentence sliding
window. The highest scoring sentence window was
returned as the annotation evidence text.

We submitted a total of 1076 text passages as candidate
predictions to provide relevant textual information for
protein-GO-term annotations. Each segment used for
annotation prediction consisted of four consecutive sen-
tences extracted from the corresponding full text article.
The curators evaluated 1050 of our submissions on
whether they were relevant as traceable annotations
(annotations which are based on concrete text segments).
The assessment included separate evaluations of the
extraction of each individual entity (proteins and GO-
terms). Three distinct evaluation categories were proposed
by the assessors. The category perfect, refers to correct pre-
dictions of the annotation textual passages, the category
general refers to predictions that are 'in principle correct'
but too general for practical use (i.e. a term belonging to
a high level within the ontology) and finally the category
low which in effect refers to a wrong prediction.

Due to the fact that a vast amount of data had to be eval-
uated, a minor fraction of submissions remained without
assessment and were returned with the label None.

Annotation extraction
We obtained the highest number of correct predictions of
annotations for task 2a, with a total of 303 correct textual
evidences (see table 1 and figure 5). This means 28.8% of
submissions were correct. Nevertheless, with respect to
precision, there were groups with a higher precision (fig-
ure 5), but they did not produce results for all the queries.
There were 69 cases were the GO-term was correct and the
protein extraction was general (6.57%). Moreover predic-
tions with correctly predicted protein entities and general
GO-term prediction constituted a total of 112 cases
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(10.67%). A sample annotation extraction which was
evaluated as correct for SwissProt accession number
0005545 (endofin) and GO-id 0005545 (phosphatidyli-
nositol binding) was:

In addition, a single point mutation in the FYVE finger
motif at cysteine residue 753 (C753S) is sufficient to abol-
ish its endosomal association. Its endosomal localization
is also sensitive to the phosphatidylinositol 3-kinase
inhib itor, wortmannin. Using in vitro liposome binding
assays, we demonstrate that Myc-tagged endofin associ-
ates preferentially with phosphatidylinositol 3-phos-
phate, whereas the C753 S point mutant was unable to do
so. We also show that endofin co-localizes with SARA but
that they are not associated in a common complex

because they failed to co-immunoprecipit ate in co-
expressing cells.

As can be observed from above the example, the protein
name and relevant word types for the GO-term are both
contained within this textual passage.

Entity extraction
With respect to the evaluation of the individual entity
extractions, we obtained a total of 594 correct evidences
for the protein entity, which corresponds to about 56% of
total submissions (see table 1). This seems a satisfactory
result, considering that we did not apply any anaphora
(the use of pronouns instead of name repetitions)
resolution algorithms and were only provided with the
protein SwissProt identifier. We extracted a total of 501
(48%) correct GO-term evidences. Our system thus per-
formed worse for GO-term extraction than protein entity
extraction. For instance, the example presented above for
annotation extraction was also extracted correctly for the
protein entity endofin and the GO-term entity phosphati-
dylinositol binding.

Annotation extraction relative to GO categories
The difficulty of predicting annotations varied with GO
category (see table 2). Also, the extraction of GO-term
entities themselves depended heavily on the associated
GO category. The highest percentage of correct predictions

Table 1: Result summary for task 2a. The table shows the percentages of evaluated evidences organized by precision categories for 
proteins (rows) versus precision categories of GO-terms (columns). The label corresponds to, high: correct prediction, general: not 
totally wrong prediction but too general to be really useful for protein annotation (for GO-terms) and that the specific protein is not 
there but a homologue from another organism or a reference to the protein family is contained (for Protein), low: means basically 
wrong. Total refers to the entity extraction (protein or GO-term) and None are not evaluated cases.

Entity evaluations GO Low GO General GO High GO None Total

Protein High 221 (21.05%) 69 (6.57%) 303 (28.85%) 1 (0%) 594 (56.47%)
Protein General 47 (4.48%) 24 (2.28%) 112 (10.67%) 0 (0%) 183 (17.43%)

Protein Low 127 (12.10%) 43 (4.10%) 86 (8.19%) 0 (0%) 256 (24.39%)
Protein None 1 (0.10%) 0 (0%) 0 (0%) 17 (1.61%) 18 (1.71%)

Total 396 (37.73%) 136 (12.95%) 501 (47.71%) 17 (1.61%) 1050 (100%)

Table 2: Entity extraction performance of GO-terms. The table shows the evaluated evidences organized by precision categories for 
the GO-term entity. The label corresponds to, high: correct prediction, general: not totally wrong prediction but too general to be 
really useful for annotations, low: means basically wrong. MF: Molecular function category, CC: Cellular Component category, BP: 
Biological Process category.

GO category Low General High None Total

MF 103 (30.29%) 40 (11.76%) 178 (52.36%) 19 (5.59%) 340
CC 52 (28.11%) 27 (14.59%) 104 (56.22%) 2 (1.08%) 185
BP 240 (43.72%) 72 (13.11%) 218 (39.71%) 19 (3.46%) 549

Table 3: Entity sub-tag scheme. The basic scheme of sub-tag list 
for the GO entity class and the protein entity class. Each sub tag 
list containd word types, names or terms with a certain relation 
to the actual query entity.

GO sub-tag set Protein sub-tag set

GO-term (original) Protein name / symbol
NL-GO-term Variants of Protein name

Externally linked terms Externally linked names
GO word tokens Protein name word tokens

GO definition tokens GOBO mutation term
GO co-occurence tokens GOBO sequence term
Page 6 of 12
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of GO-terms came from the category "Cellular Compo-
nent", followed closely by the "Molecular Function" cate-
gory. Terms belonging to the "Biological Process" category
were the most cumbersome to extract. This concurs with
previous attempts to map terms to biomedical articles
[27], that have also shown that recall was significantly
lower for terms from the Biological Process category. This
is explained by the fact that these terms are often
expressed colloquially in different ways.

The ranking of correct GO-term extraction and of correct
GO annotation extraction displays a shift in the case of the
Cellular Component and the Molecular Function groups.
The highest number of correct annotations corresponded
to the category Molecular Function instead of Cellular
Component. As word types forming Cellular Component
terms are often used in other contexts (e.g. the word type
"membrane" as part of experimental method terms like

nitrocellulose membrane), the false positive rate
increased.

Discussion
Our results were more convincing for protein entity
extraction than for GO-term extractions. This, we suggest,
is the result of two principal factors. One is the lexical
properties of protein names and symbols considered as
proper names, which, often display string features which
are easier to detect, such as capital letters and special char-
acters; while GO-terms are adverbial nouns, often lacking
such characteristics. This could explain the higher entity
extraction achieved for proteins. Another reason could be
the limited number of synonyms and natural language
variants of proteins when compared to GO-terms. In
other words, there are fewer alternatives for expressing a
protein entity in free text, while GO-terms can be reformu-
lated in a broad variety of ways, often not even in the form
of continuous text segments.

Annotation precision of GO sub-tagsFigure 1
Annotation precision of GO sub-tags. The precision of each sub-tag for the GO-term entity is displayed. GO: all GO cat-
egories, MF: Molecular Function category, CC: Cellular Component category, BP: Biological Process category. The sub-tag 
classes correspond to: 1 original GO-term, 2 natural language variants of the GO-term, 3 externally linked terms and syno-
nyms, 4 GO-term forming words, 5 GO-term definition forming words and 6 are GO-term co-occurring words in PubMed 
sentences after extended stop word filtering.
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Our system is especially useful for the extraction of molec-
ular function annotations for proteins; while in the case of
biological process annotations it could still be improved,
as the extraction of GO entities from this category is still
rather low.

Aside from increasing system speed and offering alterna-
tive sliding window sizes, among the potential refine-
ments are the use of different sub-tag scoring schemes. A
statistical analysis of the precision of each sub-tag set
revealed significant differences in sub-tag precisions
depending on GO-category (see figure 1). Thus a distinct
score for each sub-tag based on its precision and depend-
ing on the corresponding GO category might be useful.
For instance, in the case of sub-tag 4 (word types extracted
from GO-term definitions), the precision for the category
Biological Process is considerably lower than the other
two categories.

As the dataset used to derive the sub-tag scores (GOA data-
set, see material and methods section) was very noisy, it
was diffcult to perform statistically significant analysis
using common NLP methods. Among the sources of noise
encountered in this dataset were the different annotation
conventions depending on the background knowledge of
the annotator. Further, major changes in curation conven-
tions over time might have influenced the annotation
extraction criteria used for the manual annotations. The
most significant problem was the fact that the actual
annotations were performed using full length articles. As
we only had access to document abstracts, whilst the pas-
sage of text relevant for annotation extraction will often be
located in other parts of an article (e.g. tables or in the
results section), some of the abstracts might even lack the
text segments relevant for annotation. Therefore some of
the sub-tag weights used did not correlate with their
precision.

Precision of average annotation score intervalsFigure 2
Precision of average annotation score intervals. The precision of each annotation score interval is presented. Interval 1: 
> 90001, 2: 70001–80000, 3: 60001–70000, 4: 50001–60000, 5: 40001–50000, 6: 30001–40000, 7: 20001–30000, 8: 10001–
20000, 9: 5001–10000, 10: 0–5000.
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The annotation score may serve to determine the confi-
dence intervals of the distinct predictions (see figure 2).
Thus depending on the obtained annotation score it is
possible to estimate the reliability of the automated anno-
tation extraction. Correct predictions correlate with higher
annotation scores while bad predictions tend to score sig-
nificantly lower.

We believe that including contextual sentence patterns
could be useful to improve annotation extraction tech-
niques. Those patterns are based on verbs which occur in
sentences describing functional aspects of proteins. Some
initial steps have been made in this direction in the form
of the automatic extraction of sentence patterns [28], but
there was no evaluation using curator based annotations.
The sliding sentence window method proposed here was
able to score text passages based on contextual
information about whether they contain relevant infor-
mation for a given entity. Combining the window scores
allows the merging of individual entity extraction into
relation (annotation) extraction. The use of annotation
scores provided by the sliding window could provide con-

fidence intervals in terms of the precision of predicted
annotations. The optimization of the scoring scheme
based on detailed statistical analysis of each sub-tag set
might be useful to enhance this system. Also flexible win-
dows size and alternative combinations of the entity
scores might improve the performance. We believe that,
with such improvements, these preliminary steps could
lead to a method useful for real world applications. We
are also planning to apply this strategy in the context of
gene expression array data.

Conclusion
Our results demonstrate how contextual information
could be exploited to extract protein annotations using
full text articles through the use of sentence sliding
windows. Our approach was validated at the BioCreative
evaluation, which allowed additional performance com-
parison with alternative techniques. This system per-
formed better for individual entity extraction's (GO-term
and protein extraction) when compared with annotation
extraction's (Protein-GO-term relation extraction).

Average occurrences of members of each sub-tag set within GOA abstract sentencesFigure 3
Average occurrences of members of each sub-tag set within GOA abstract sentences. A) Protein name sub-tags, 
1: original gene name provided by GOA, 2: heuristic typographical variants of the gene name, 3: variants extracted from links to 
external databases, 4: word types which build up the gene names, 5: word types which build up the external linked gene names, 
6 and 7: GOBO sequence ontology and mutation event terms respectively. B) GO-sub-tags, 1: original GO-term, 2: NL-variant 
of GO-term, 3: word types which build up the GO-term, 4: word types which build up the GO-term definitions. Note that not 
all the categories are displayed in the bar diagram, co-occurring word types for GO-terms which were extracted from PubMed 
sentences have an average occurrence in GOA abstract sentences of 11.3337254243.
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Scheme illustrating the combination of the distinct entity sentence scoresFigure 4
Scheme illustrating the combination of the distinct entity sentence scores. A: Trapezoid sentence sliding window 
generates the average sentence scores for each entity using the sub-tag scores of the matched words (document entity pro-
files), B: The average sentence scores of each entity are used to generate the combined average annotation score using a sec-
ond step sliding window (document annotation profile), C: Selection of the highest combined average annotation score, D: 
Return sentences corresponding to the sentence window with the highest combined average annotation score.
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This sentence sliding window method is able to score sen-
tence windows of full text articles relative to the given
query entities such as proteins and GO terms, as well as
annotations based on those entities in cases were a stand-
ard training set is missing.
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