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Abstract
Background: Our approach to Task 1A was inspired by Tanabe and Wilbur's ABGene system
[1,2]. Like Tanabe and Wilbur, we approached the problem as one of part-of-speech tagging, adding
a GENE tag to the standard tag set. Where their system uses the Brill tagger, we used TnT, the
Trigrams 'n' Tags HMM-based part-of-speech tagger [3]. Based on careful error analysis, we
implemented a set of post-processing rules to correct both false positives and false negatives. We
participated in both the open and the closed divisions; for the open division, we made use of data
from NCBI.

Results: Our base system without post-processing achieved a precision and recall of 68.0% and
77.2%, respectively, giving an F-measure of 72.3%. The full system with post-processing achieved a
precision and recall of 80.3% and 80.5% giving an F-measure of 80.4%. We achieved a slight
improvement (F-measure = 80.9%) by employing a dictionary-based post-processing step for the
open division. We placed third in both the open and the closed division.

Conclusion: Our results show that a part-of-speech tagger can be augmented with post-
processing rules resulting in an entity identification system that competes well with other
approaches.

Background
This paper describes the methods we used to accomplish
entity identification (also known as named entity recogni-
tion) in the molecular biology domain. Entity identifica-
tion in this domain has been a subject of interest since
Fukuda et al.'s seminal paper on the PROPER/KEX system
[4]. The subject is of interest to biologists because it is a
necessary first step in many kinds of applications that are
of interest to them, including information extraction,
information retrieval, and bibliometrics. It is of interest to

linguists and computer scientists because it seems to be
more difficult than entity identification in "general Eng-
lish" domains [1]. In this paper, we show that a stochastic
POS tagger performs well as an entity identification sys-
tem in the molecular biology domain. Like Tanabe and
Wilbur [1,2], we approached the molecular biology entity
identification problem as a part-of-speech (POS) tagging
task, adding to the standard POS tag set one or more gene
tags for genes and gene products. Our system replaces the
Brill tagger with an HMM-based part-of-speech tagger.
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Our experience suggests that the Brill tagger is susceptible
to specific kinds of performance problems that we hoped
to avoid. However, we did not rigorously compare the
performance of the two taggers. The main difference
between the two systems is our focus on tailoring the post-
processing steps for the BioCreAtIvE task. Specifically, we
found that understanding the BioCreAtIvE annotation
policies for building the corpora and performing error
analysis allowed us to create post-processing rules that
were effective in increasing performance.

The goal of BioCreAtIvE Task1A is to assess the ability of
an automated system to identify mentions of genes in text
from biomedical literature. The corpus used for Task1A
consists of sentences drawn from Medline abstracts and is
divided into three sets: training, devtest, and official test.
Table 1 shows the number of sentences and entities for the
three subsets. Also shown is the distribution of the lengths
(in words) of the gene mentions. Task1A has two divi-
sions: open and closed. The open division permits systems
to use external data resources such as online dictionaries
or databases while the closed division does not.

Results
Overall
We did five rounds of cross-validation, training on four
subsets of the data and testing on a fifth using a combined
corpus consisting of the training and devtest data. We
evaluated our results using the scoring software provided
with the BioCreAtIvE data. The resulting average precision
and recall were 68.0 and 76.6 with no post-processing (i.e.
just based on the output of the tagger). The resulting aver-
age precision and recall with post-processing was 82.0 and
81.1, respectively. The averaged results of the cross-valida-
tion runs are shown in Figure 1A. The results for official
test are shown in Figure 1B. The term-level score compar-
ison between cross-validation and official scores are
shown in Table 2. That both sets of results show the same
trends shows that our system did not over-train on the
devtest corpus and that it performs consistently.

Term-level precision and recall
Term-level scores (i.e., for performance on full gene
names, analogous to the strict metric of Olsson et al. [5])
were obtained using the BioCreAtIvE scoring software. We
evaluated performance both with and without post-
processing. Without performing post-processing, average
precision and recall were 68.0 and 76.6. When post-
processing was applied, average precision and recall were
82.0 and 81.1. Post-processing improved both the preci-
sion and the recall, having a much larger effect on preci-
sion than on recall. This tendency is reasonable because
our algorithms focus on repairing or removing gene men-
tions found by the base system and concentrate less on
finding new gene mentions that were mistakenly tagged
with POS tags such as NN or NNS. A dictionary-based
post-processing is introduced to help increase recall.
However, the dictionary-based approach increased our F-
measure by only 0.5%.

Baseline, and normalizing for the difficulty of the task
As a baseline for understanding the difficulty of the task,
we measured the performance achieved by simply assign-
ing each word the most frequent tag seen with that word
in the training set. This baseline strategy achieved an aver-
age precision of 39.0 and an average recall of 40.5. For
official test the score achieved precision of 41.3 and recall
of 43.4. These results are considerably worse than even
our without-post-processing results.

Per-token precision and recall
We then determined the results on a per-word basis. This
is equivalent to Olsson et al.'s protein name parts metric [5].
In this analysis a true positive is a single word that is
tagged as GENE both in the gold standard and by our sys-
tem. As would be expected, performance on single words
is better than the term-level results, with an average preci-
sion of 88.3 and average recall of 78.7 without post-
processing, and an average precision of 92.5 and average
recall of 77.8 with post-processing. Post-processing
yielded a 4% improvement in precision, which was less
improvement than was seen for full gene names. Recall
actually degraded somewhat. These data are consistent

Table 1: BioCreAtIvE Data Sets

Set Number of 
Sentences

Number of 
Entities

1 word 2 words 3 words 4 words > 4 words

training 7500 8876 46.1% 25.7% 14.9% 6.6% 6.6%
devtest 2500 2975 46.6% 23.9% 15.1% 6.7% 7.7%

official test 5000 5949 46.1% 26.7% 14.3% 6.2% 6.7%

This table shows the BioCreAtIvE data including the ratio for the word length, which shows same tendency among sets.
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with our findings that many of our post-processing steps
correct the boundaries of gene mentions at the term level.

Per-token performance on unknown words
We use the phrase unknown word to describe a word that
was not previously seen in the training corpora. We used
the per-token precision and recall metrics described above
to evaluate the performance of our system on unknown
words. The cross-validation average precision was 81.3
and average recall was 75.9 without post-processing. Aver-
age precision was 82.3 and average recall was 77.6 with

post-processing. Post-processing yielded little improve-
ment in performance for unknown words. In the compar-
ison with overall per-token precision and recall (for both
known and unknown words), the precision is 10% and
7% worse for with and without post-processing,
respectively.

In order to better characterize the effect of unknown
words on the performance of our system, we analyzed
false positives that are one word in length. The percentage
of false positives that are one word long is 40% and 43%
for our system without post-processing and with post-
processing, respectively. These ratios are similar to the
ratio of one-word gene mentions in the corpus given in
Table 1. Table 3 shows the effectiveness of post-processing
on one-word false positives with respect to the number of
times the words corresponding to the false positives were
seen in the training data. This table shows that 12.3% of
one-word false positives that correspond to unknown
words were corrected while 85.2% of one-word false pos-
itives that correspond to a word that had been seen twice
or more in the training data were corrected. After post-
processing is complete, 93% of the remaining one-word
false positives correspond to unknown words or words
that have been seen only once. This suggests that the lexi-
con contained in the training data is very important for
being able to successfully apply our post-processing steps.
We believe that a larger training set covering a larger lexi-
con would help improve the performance of our system.

Effect of term length on performance
Figure 2A shows the effect of term length on performance
for the cross-validation. Figure 2B shows the effect of term
length on performance for the official test. Both figures
show the same trends:

1. Recall and precision tend to be better for shorter gene
mentions. However precision tends to degrade slightly for
gene mentions that are only one word long. As length in
words increases there is no drastic drop in performance
until length in words reaches five.

2. Post-processing is effective on all gene mentions of any
length. However, it seems that improvement in
performance is greater for longer gene mentions. This is
probably due to lexicon-based post-processing that cor-
rects boundaries.

Overall effects of post-processing
The main effect of rule-based and lexicon-based post-
processing is an increase in precision. In cross-validation
for full gene names, average precision increased from 68.0
to 82.0, and average recall increased from 76.6 to 81.1. In
the official test, precision increased from 68.0 to 80.3
(closed division) and 80.0 (open division) and recall

Precision and RecallFigure 1
Precision and Recall. Figure 1A shows the precision and 
recall for the cross validation data. Figure 1B shows the pre-
cision and recall for the official test data. The expression "w/
o post-p" is used as "without post-processing".

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

P
re

ci
si

on

W/o post-p

With post-p

Baseline

Unknown, w/o post-p

Unknown, with post-p

Token, w/o post-p

Token, with post-p

A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

P
re

ci
si

on

W/o post-p

Closed Division

Open Division

Baseline

Unknown, w/o post-p

Unknown, Closed

Unknown, Open

Token, w/o post-p

Token, Closed

Token, Open

B

Page 3 of 9
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S4
increased from 77.1 to 80.5 (closed division) and 81.8
(open division). On the level of individual token (includ-
ing unknown words), post-processing had a much
smaller, and not always positive, effect.

The main effect of dictionary-based post-processing is an
increase in recall. Recall in the open division is increased
by 1.3% from the closed divison recall. Table 4 shows the
individual post-processing effects in our cross-validation
testing. It shows that removing rule-based post-processing
or removing the lexicon-based post-processing from the
post-processing steps has nearly the same effect. Remov-
ing the abbreviation rules from the post-processing has
the least effect, which indicates that it may be less impor-
tant for the system's overall performance.

Discussion
The results of this study raised four questions that we
believe should be addressed in the near future – two gen-
eral to the entire effort, and two specific to our system.

First, it would have been useful to have an estimate of the
upper bound on accuracy for any entity identification sys-
tem trained on the BioCreAtIvE corpus, which is a func-
tion of how consistent and correct that data is. Assessing
the inter-reviewer reliability for this corpus and/or an
assessment of the corpus by independent human judges

would be very helpful in understanding the difficulty of
the task. Our guess is that an F-measure of 80 is probably
within seven points of the upper limit.

Another important question that arises from this effort is
to determine the effect of training corpus size on perform-
ance. This could be achieved by training on successively
bigger percentages of the training corpus. If performance
flattens off before the entire corpus is used then simply
increasing corpus size may not be useful. However, if the
performance has not yet flattened off (or worsened), then
there is hope that our system can be improved simply by
training on more data.

There are two aspects specific to our system that we would
like to explore. The first has to do with deciding which
POS tagger is used. A head-to-head competition between
the TnT tagger, the Brill tagger, and perhaps others would
help determine whether or not the choice of tagger is an
important decision. We would look at both the raw per-
formance of each tagger as well as the performance of
post-processing rules applied to the results of each tagger.
TnT would have an unfair advantage since the error anal-
ysis was performed on its output. Additional error analy-
sis could be done on the output of the other systems. It
may also be useful to combine the outputs of multiple
taggers as well.

Table 2: The term-level score comparison between the cross-validation and official test

Label Precision Recall F-measure

Cross-validation No post-processing 68.0% 76.5% 72.0%
With post-processing 82.0% 81.1% 81.6%

Official Test No post-processing 68.0% 77.2% 72.3%
With post-processing 80.3% 80.5% 80.4%
With post-processing, dictionary 80.1% 81.8% 80.9%

This table shows the term-level scores about the cross-validation data and official test.

Table 3: Performance on one-word false positives

Occurrences without post-p with post-p corrected % corrected

0 818 717 101 12.3%
1 162 95 67 41.4%

2+ 440 65 375 85.2%

Total 1420 877 543 38.2%

85% of one-word false positives that correspond to a word, which was seen twice or more times, were corrected with post-processing 
procedures.
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The second aspect has to do with the use of dictionaries.
Our system used a simple algorithm to exploit a single
data resource from the NCBI. It would be informative to
have head-to-head competitions between multiple data
resources (and various combinations of them) as well as
compare algorithms for making use of these resources.
Our study suggests that this would be helpful for improv-
ing recall at least modestly.

Conclusion
The POS-tagging-based approach that we took from the
ABGene system worked reasonably well. Post-processing
rules, which included pattern-based rules, rules that used
abbreviation recognition heuristics, and lexicon-based
rules, worked well to increase both precision and recall.

The overall F-measure rose from 72.3 (without post-
processing) to 80.4 (closed division) on the official test.
Our use of domain-specific dictionaries was less effective,
giving an increase of only 0.5 in F-measure to 80.9(open
division) compared to the post-processing without dic-
tionaries approach. Our conclusion is that either much
more sophisticated algorithms that make use of dictionar-
ies need to be employed, or the dictionaries themselves
are not sufficient.

Methods
The POS tagger
Past experience with the ABGene system in our lab sug-
gested that the POS-tagging-based approach to entity
identification is workable in the molecular biology
domain. Previous experiments with the TnT Trigrams 'n'
Tags POS tagger, using the GENIA corpus for cross-valida-
tion, showed good results with no post-processing of the
output. The TnT system is a stochastic POS tagger,
described in detail in Brants (2000). It uses a second-order
Markov model with tags as states and words as outputs.
Smoothing is done with linear interpolation of unigrams,
bigrams, and trigrams, with λ estimated by deleted inter-
polation. Unknown words are handled by learning tag
probabilities for word endings. As a POS tagger, the sys-
tem has been tested on two languages, viz. English and
German. It is publicly available at http://www.coli.uni-
sb.de/~thorsten/tnt/. We were impressed by its availabil-
ity on a variety of platforms, its intuitive interface, and the
stability of its distribution, which installed easily and
never crashed. For the official test we trained TnT on both
the training corpus and devtest corpus and then tested it
on the official test set. Performance of this system on the
official test data, calculated by the BioCreAtIvE scoring
software, was P = 68.0, R = 77.1, and F-measure = 72.3.

Choosing the tag set
Each token in the task1A corpus is labeled with a POS tag
or a gene tag. Because the default tagging seemed overly
simplistic, we hypothesized that expanding the gene tag
set to incorporate boundary information would improve
performance. We tested the following gene tag sets:

Tag set 1: BioCreAtIvE default gene tag set
The default gene tag set contains two gene tags: 'NEW-
GENE' and 'NEWGENE1'. The latter tag is used when two
gene mentions are immediately next to each other in the
text. Approximately 1.1% of the gene mentions in the
training and devtest sets are tagged with the 'NEWGENE1'
tag. This scheme has two obvious potential disadvantages:
one of the tags is under represented and there is no
semantic difference between two tags.

Example: the/DT dnHLH/NEWGENE protein/NEWGENE
Id1/NEWGENE1 inhibits/VBZ

Effect of term length on performanceFigure 2
Effect of term length on performance. Figure 2A shows 
the effect of term length for the cross validation data. Figure 
2B shows the effect of term length for the official test data.
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Tag set 2: Detailed boundary information
This tag set contains four gene tags: 'GENE_BEGIN',
'GENE_INSIDE', 'GENE_END', and 'GENE_ONEWORD'.
These tags incorporate boundary information for multi-
word gene mentions and identify single word gene
mentions.

Example: androgen/GENE_BEGIN receptor/GENE_END
(AR/GENE_ONEWORD)

Example: Syn/GENE_BEGIN 5/GENE_INSIDE locus/
GENE_END

Tag set 3: Simplified boundary information
This tag set is a simplified version of tag set 2. It contains
two tags: 'GENE_BEGIN' and 'GENE_INSIDE'. Tokens
that were tagged 'GENE_END' are now tagged
'GENE_INSIDE' and tokens that were tagged
'GENE_ONEWORD' are now tagged 'GENE_BEGIN'.

Example: androgen/GENE_BEGIN receptor/
GENE_INSIDE (AR/GENE_BEGIN)

Example: Syn/GENE_BEGIN 5/GENE_INSIDE locus/
GENE_INSIDE

Tag set 4: Simplest tag set
This tag set is a simplified version of tag set 1. Tokens that
were tagged 'NEWGENE' or 'NEWGENE1' are all tagged
'GENE'. Thus, there is only one gene tag in this set: 'GENE'

Example: the/DT dnHLH/GENE protein/GENE Id1/
GENE inhibits/VBZ

For each tag set we modified the training corpus to com-
ply with the tag set and then trained TnT. We tested the
four models on the devtest set. The result of this experi-
ment is shown in Table 5. The differences in performance
between the four tag sets are very small. The two tag sets
that incorporated boundary information performed the
worst. This may be because larger tag sets are sometimes
harder to learn because there are fewer examples for each

tag. We speculate that tag sets two and three could possi-
bly outperform the others if we had more training data.
However, because the simplest tagging scheme performed
the best, we used this scheme for all subsequent experi-
ments described below.

Abbreviations
There are many instances in the corpora in which a full
gene name is immediately followed by an appositive
parenthesized symbol or abbreviation. In many cases, the
tagger would recognize either the full gene name or the
symbol/abbreviation, but not both. In order to correct
these cases we implemented Schwartz and Hearst's [6]
algorithm to recognize abbreviations and their appositive
long forms, such as Insulin-like growth factor 1 (IGF-1). In
this example, the long form is Insulin-like growth factor 1
and the abbreviation is IGF-1. We developed a number of
rules that we applied to long form/abbreviation pairs
found by the Schwartz and Hearst algorithm:

Rule 1
If the last word of the long form was tagged as a gene, then
we changed any non-gene tags in the long form and
abbreviation to GENE. For example, if a long form/abbre-
viation pair contained the tag sequence JJ NN NN GENE
(NNP), then we changed the tags to GENE GENE GENE
GENE (GENE). Conversely, if the last word of the long
form was not tagged as GENE, then we changed the tags on
the other words (and on the abbreviation) to non-GENE
tags.

Rule 2
If the long form contained any word that was tagged as
GENE and that did occur in the training data but never
with a GENE tag, or if it contained one of a small set of
stop words such as virus and cancer, then all tags on words
in the long form (and the abbreviation) were changed to
non-GENE tags.

Table 4: The effect of the post-processing procedures on overall system performance.

CV Average All PP No PP No rule No abbreviation No lexicon

Precision 82.0% 68.0% 74.2% 81.0% 73.1%
Recall 81.1% 76.6% 80.1% 79.8% 79.8%
F-mesure 81.6% 72.0% 77.0% 80.4% 76.3%

Delta-F base -9.5% -4.5% -1.2% -5.2%

This table shows the effects of each post-processing procedures in comparison with the all post-processing results. For example, No rule column 
shows the results without rule-based post-processing, that shows 4.5% lower score than All Post-processing in F-measure.
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Rule 3
If the last word was one of a small list of gene keywords
such as protein and factor derived from the BioCreAtIvE
specification, then all tags in the long form (and the
abbreviation) were changed to GENE.

Rule 4
This rule applies only to the open division. If one of the
previous rules did not tag the long form and the
abbreviation with GENE, then apply the following. If the
abbreviation was more than three characters long and was
tagged as GENE, then we double-checked it against data
from NCBI (see Section Dictionary-based post-processing
below). If the abbreviation was found in the NCBI data,
then we changed all tags on the long form to GENE.

Rule-based post-processing
We applied a number of simple, pattern-based rules to fix
cases where the BioCreAtIvE task definition specified that
a different boundary for the gene name than the one
returned by the raw tagger output.

• If a word is tagged GENE and is followed by a one of 41
gene keywords such as gene and sequence, then the tag on
the keyword is changed to GENE.

• Y-box/GENE sequence/NN -> Y-box/GENE sequence/
GENE

• If a word is tagged GENE and is followed by a number,
Roman numeral, or Greek letter, then the number/
numeral/letter is tagged GENE.

• ROR/GENE alpha/NN -> ROR/GENE alpha/GENE

• If a word is tagged GENE and it is followed by parenthe-
sized material that is five characters or longer, then the
parenthesized material is tagged with GENE.

• hTAF/GENE (II/CD)/SYM -> hTAF/GENE (II/CD)/
GENE

• If a word is composed of the characters A, C, G, T, U, 3',
or 5' and is four or more characters long such as 5'-

TGACGTCA-3', then its tag is changed to GENE unless the
word is followed by box or boxes. In the latter case the
words are tagged NN.

• A word is tagged GENE if it matches one of the following
patterns:

• The word starts with the character p and is followed by
two or more digits, e.g. p53, and p69/71.

• The word starts with pp or gp and is followed by two or
more digits, e.g. pp43, pp85, gp27, and gp120 × 41.

• The word starts with sup and is followed by two or more
digits, e.g. sup35 and sup45.

• A term is tagged NN if it contains the word virus and
matches one of the following patterns:

• The last or second-to-last word of the term contains
virus, e.g. type I herpes simplex virus, adenovirus, reovirus
RNAs, and rotavirus genome.

• The term ends with virus type followed by a digit or
Roman numeral, e.g. human immunodeficiency virus type 1,
and T-cell lymphotropic virus type I.

• If a word contains hyphen and the characters preceding
the hyphen are capitalized letters or digits and the mate-
rial following the hyphen is a gene keyword such as
mutant, then it is tagged GENE, e.g. SH2-mutant, and ANP-
receptor. This rule is applied only if the material preceding
the hyphen is between 3 and 9 characters long.

• If a words length has less than two characters and con-
tains digits, Greek letters or roman numerals, then it is
tagged NN.

• ... alpha/GENE ... -> ... alpha/NN ...

• If the word mutation is followed by a word tagged GENE,
then the word is tagged NN.

Table 5: The results of choosing GENE tag set

Tag Set 1 Tag Set 2 Tag Set 3 Tag Set 4

Precision 67.9% 67.0% 66.4% 68.9%
Recall 77.2% 78.2% 77.2% 77.3%
F-measure 72.2% 72.1% 71.4% 72.9%
Delta F -0.62% -0.72% -1.43% base

This table shows the results of difference from the Tag Set 4, which is our choice.
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• Syn/GENE mutations/GENE -> Syn/GENE mutations/
NN

Lexicon-based post-processing
Examination of how instances of word types are tagged in
the training and devtest corpora's lexicon revealed effec-
tive post-processing rules. For the lexicon-based post-
processing steps, tag set 2, which has detailed boundary
information, is used. We use the phrase ambiguous type in
this section to refer to word types that are labelled in the
corpora as both gene and as non-gene. For example,
tokens of the ambiguous type binding are tagged as JJ, NN,
and GENE_INSIDE. Correctly tagging tokens of ambigu-
ous types is a difficult task.

Boundary correction
The POS tagger's output sometimes contains boundary
errors such as the following:

Output: IgG/GENE_BEGIN binding/GENE_END

Gold Standard: IgG/GENE_ONEWORD binding/NON-
GENE

Problem: Right boundary is wrong.

Output: regulator/GENE_BEGIN virF/GENE_END

Gold Standard: regulator/NONGENE virF/
GENE_ONEWORD

Problem: Left boundary is wrong.

We used a small set of rules to correct boundaries of multi-
word gene mentions that had a high likelihood of being
incorrectly tagged. We used the training and devtest data
to find ambiguous types that have zero or low probability
(less than 3%) of having the GENE_BEGIN or
GENE_END tag in a multi-word gene name. For all multi-
word gene mentions output by the tagger, we check the
first word to see if it is on a list of words known not to be
tagged GENE_BEGIN. If the word is found on the list,
then we change its tag to a non-gene tag and check the
next word, iterating until a word not on the list is encoun-
tered or until each word in the gene mention has been
examined. A similar process is applied to the right edge of
the multi-word gene mention using the list of words
known not to be tagged as GENE_END. The following
lines show the POS counts in the training corpus for the
words binding and regulator.

binding: JJ = 192, NN = 80, GENE_INSIDE = 71

regulator: NN = 22, GENE_END = 3, GENE_INSIDE = 1,
GENE_ONEWORD = 1

The ambiguous type binding never appears in the training
or devtest corpora with the tag GENE_END. This suggests
that in unseen sentences that it will not likely appear as
the last word of a gene mention. The following examples
demonstrate how the boundary correction post-process-
ing step would change two gene mentions that mistakenly
include the word binding.

Output: IgG/NEWGENE binding/NEWGENE

Boundary Correction: IgG/NEWGNE binding/NN

Output: regulator/NEWGENE virF/NEWGNE

Boundary Correction: regulator/NN viF/NEWGENE

Single-word false positive correction
We applied a similar process to detect single-word false
positives output by the POS tagger using a list of ambigu-
ous types that were observed in the training and devtest
data to have a zero or very low probability (less than 5%)
of being tagged GENE_ONEWORD. For example, the
words pathway and estrogen are ambiguous types that are
seldom if ever tagged as GENE_ONEWORD. The word
pathway never occurs in the corpora tagged as
GENE_ONEWORD while the word estrogen is tagged
GENE_ONEWORD in one (or 4.5%) of 22 occurrences.
The following lines show the POS counts in the training
corpus for the words pathway and estrogen.

pathway: NN = 65, GENE_END = 8, GENE_INSIDE = 1

estrogen: NN = 14, GENE_BEGIN = 5, GENE_INSIDE = 2,
GENE_ONEWORD = 1

For tokens of ambiguous types that have a low probability
of being tagged GENE_ONEWORD, we change the tag to
NN.

Dictionary-based post-processing in the open division
We employed a dictonary-based post-processing step that
uses NCBI LocusLink symbols database for the open divi-
sion. LocusLink database used for this research has
279,007 symbols that include official symbols or other
aliases that are used to refer to a given gene. Table 6 shows
the count of symbol per species. Our goal was to improve
recall without a decrease in precision. Our approach was
to examine previously unseen words that were tagged as
nouns and were four or more characters in length. If such
a word matched a LocusLink symbol, then we tagged it as
GENE. If we did not find it in a LocusLink symbol field,
then we queried the NCBI website through Entrez using
the nucleotide database and restricting our search to the
gene name field. If Entrez returned any items, then we
tagged the word as GENE.
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