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Abstract
Background: As a reversible and dynamic post-translational modification (PTM) of proteins,
phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes.
Although many studies have been contributed on the molecular mechanism of phosphorylation
dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated.

Results: In this work, we present a novel, versatile and comprehensive program, PPSP (Prediction
of PK-specific Phosphorylation site), deployed with approach of Bayesian decision theory (BDT).
PPSP could predict the potential phosphorylation sites accurately for ~70 PK (Protein Kinase)
groups. Compared with four existing tools Scansite, NetPhosK, KinasePhos and GPS, PPSP is more
accurate and powerful than these tools. Moreover, PPSP also provides the prediction for many
novel PKs, say, TRK, mTOR, SyK and MET/RON, etc. The accuracy of these novel PKs are also
satisfying.

Conclusion: Taken together, we propose that PPSP could be a potentially powerful tool for the
experimentalists who are focusing on phosphorylation substrates with their PK-specific sites
identification. Moreover, the BDT strategy could also be a ubiquitous approach for PTMs, such as
sumoylation and ubiquitination, etc.

Background
Protein phosphorylation, as one of the most common
post-translational modifications (PTM), is reversibly and
transiently performed by protein kinases (PKs). It plays
crucial regulatory roles in a variety of biological cellular
processes, including transcription [1], translation [2],
mitosis/cell cycle [3], neurite outgrowth [4,5] and signal
transductions [6], etc. Many previous researches have con-
tributed to increase our knowledge on phosphorylation.
However, the intrinsic features of phosphorylation

dynamics are still cryptic and remain to be dissected. Bio-
chemically, the catalytic site of a PK hydrolyzes adenosine
triphosphate (ATP) and transfers a phosphate moiety to
the acceptor residue (S/T, Y in eukaryotes) in the sub-
strate. Each PK only modifies a defined subset of sub-
strates specifically to ensure signaling fidelity, and defects
of PK function often induce a variety of diseases and can-
cers [7].
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There is an extensively-adopted hypothesis that PKs phos-
phorylate their substrates at the specific sites (consensus
sequence) flanking with canonical motif [8-10]. To date,
the consensus motifs of ~30 PKs have been reported [11].
However, there is still a large number of PKs with their
specific target motifs remained to be identified. Therefore,
elucidating PK-specific phosphorylation sites on the sub-
strates is the foundation of understanding the molecular
mechanism of substrates specificity and important for the
biomedical drug design. However, it has been described
that only consensus motif is not enough for providing the
specificity of PK recognition in vivo [12]. There are numer-
ous mechanisms have been proposed to contribute specif-
icity for PKs, such as co-complex of PKs with their
substrates, subcellular co-localization, interacting
through modular docking sites, phosphopeptide-binding
mechanisms, etc [12-17]. In a cell, protein kinase usually
forms a tight complex with its target either through a third
scaffold protein, or by recognizing and binding short
sequence of the substrate, known as a docking site
[12,18]. Moreover, phosphopeptide-binding domains
(PBDs) are also important to achieve substrate specificity.
Numerous PBDs (PTB, WW, SH2, SH3, FHA, MH2,
WD40, Polo-box, and 14-3-3, etc) bind the phosphor-
ylated forms of specific proteins, with recognizing distinct
peptides surrounding the phosphorylated sites (pS/T, or
pY) [14-17,19]. However, how these mechanisms achieve
the additional specificity for PKs beyond phosphorylated
motifs is still elusive, and there are very few computa-
tional studies published on this area [13,16,19]. In addi-
tion, many docking sites and PBDs still remain to be
dissected. Thus, in this work, we focus on the prediction
of PK-specific phosphorylation sites based on profiles/fea-
tures of the surrounding primary sequences, as previously
described [8-10].

Conventional experimental identifications of PK-specific
phosphorylation sites on substrates in vivo and in vitro
have provided the foundation of understanding the mech-
anisms of phosphorylation dynamics. However, these
experiments are often time-consuming and expensive.
And the enzymatic activity of the PKs are usually dimin-
ished or impeded in vitro, hampering on the studies of
phosphorylation greatly. Recently, phospho-proteomic
studies with mass spectrometry (MS) approaches have
generated numerous data in yeast [20], mouse [21], and
human [8], etc. But in these cases, it's still difficult to dis-
tinguish the PK-specific sites on the substrates. With
regard of this, it is of note that the in silico prediction of
PK-specific phosphorylation sites is in urgent need for the
further experimental manipulation. To address this ques-
tion, several excellent predictors have been implemented
and reported [13,22-25]. For example, NetPhos has
employed the consensus-motif-based approaches imple-
mented in the artificial neural networks (ANNs) algo-

rithm [22]. The enhanced version, NetPhosK can predict
PK-specific phosphorylation sites for ~17 PKs [23].
Another online tool Scansite [13] has constructed the
motif profiles of phosphorylation sites for ~20 PKs, and
could predict their target sites, respectively. Previously, we
have reported a web server GPS, which has been imple-
mented in GPS (Group-based phosphorylation Predicting
and Scoring) algorithm [26,27]. GPS could predict ~70
kinds of PK-specific phosphorylation sites, and gain excel-
lent performance on several PK groups, especially for
kinase Aurora-B. Recently, a novel and excellent web tool
of KinasePhos has been incorporated with HMM (Hidden
Markov Models) algorithm and constructed for phospho-
rylation sites predicting of 18 PK-specific groups [24,25].

In this study, we present a novel, convenient and compre-
hensive program, PPSP (Prediction of PK-specific Phos-
phorylation site), implemented in an algorithm of
Bayesian decision theory (BDT). An online PPSP web serv-
ice has been also constructed, accurately predicting PK-
specific phosphorylation sites for 68 PK groups. The pre-
diction performances of PPSP are satisfactory on several
well-studied PKs and comparable with the other existing
tools NetPhosK, Scansite, KinasePhos and GPS. Moreover,
PPSP also provides the accurate prediction for many novel
PKs, such as TRK, mTOR, SyK, and MET/RON, etc. Obvi-
ously, PPSP is more accurate and powerful. Therefore, we
propose that PPSP could be useful and insightful for fur-
ther experimental design. In addition, the prediction
results of PPSP combined with delicate experiments veri-
fications will propel our understanding of the mecha-
nisms of phosphorylation into a new phase.

Implementation
Preparation of training data set
Firstly, we obtained the data set of phosphorylation sites
from Phospho.ELM (Ver 2.0, Sep. 2004) [28] and filtered
the phosphorylation sites without information of PKs.
There were ~1,400 sites preserved. We also manually
curated the recent literature and acquired ~660 items
(Before Nov. 2004). These newly curated data has been
submitted to Phospho.ELM for further integration. The
two data sets were integrated, and the redundant items
were removed if two items exactly pinned point to the
same phosphorylation site from one protein sequence.
Then the total training data set contained >2,000 non-
redundant positive data with very few homologous sites
(see additional file 1).

Since there were several PKs with too few known phos-
phorylation sites, we clustered them into distinct sub-
groups based on sequence homology. For example, eight
ribosomal protein S6 kinases (RSK1, Q15418; RSK3,
Q15349; RSK2, P51812; MSK1, O75676; MSK1, O75582;
RSK4, Q9UK32; S6K1, P23443; STK14B, Q9UBS0) are
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homologous with high similarity, so we clustered these
PKs into a unique PK group of S6K (Ribosomal protein S6
kinase, or RSK). In total, we have enabled 68 PK grouped.

Although Swiss-Prot also curates a huge amount of phos-
phorylation sites, we have found ~69% of the annotation
to be ambiguous (7,924 of 11,520) (see additional file 2).
There are only 842 items to be kinase-specific sites, and
only 18 PKs with not less than ten sites (see additional file
3). Phospho.ELM has been constructed based on the
rationale of allowing both experimentalists and bioinfor-
matists to easily access extensive information of phospho-
proteins with their sites, i.e., tracking the primary
reference to find whether the site is really phosphorylated,
identified in vivo or in vitro, and the relationship between
the phosphorylation with physiological response [28].
And these data has been collected from literature manu-
ally with high quality. Taken together, although other
resources also have collected some phosphorylation sites,
we chose Phospho.ELM for its comprehensiveness.

Positive & negative control for evaluation
The sequence information of these phosphorylation sub-
strates was retrieved from ExPASy. As previously described
[11], we adopted the experimental phosphorylation sites
as the positive control, while all other residues (S/T or Y)
in the phosphorylation substrates were regarded as the
negative control. The detailed statistics of the positive and
negative data sets categorized by PK groups is available
(see additional file 4).

Bayesian Decision Theory (BDT)
Supposed that we have an unclassified data x that belongs
to one of two certain categories: C1 (defined as phospho-
rylated sites in this work) and C2 (defined as non-phos-
phorylated sites). In addition, suppose the posterior
probability of x for these two categories can be denoted as:
p(C1|x) and p(C2|x). Then the probability of wrong predic-
tion is:

To minimize the expectation of error probability that is
defined as [29]:

P(error) = ∫P(error|x)p(x)dx (2)

It is obvious that one should choose the more probable
category as the prediction result, which can be formulated
by the Bayesian Decision Rule [29]:

Furthermore, by definition we can introduce the loss func-
tion λ(αi|Cj), where αi,i = 1,2 is the finite set of possible
solution. Thus the expected loss (risk) of taking action αi
is:

In this condition, the goal of optimization becomes to
minimize the overall risk for every x. Similar to the ration-
ale of Bayesian Decision Rule, we can obtain the best per-
formance by computing R(αi|x) for each solution αi and
choose that for which has the minimal overall risk (also
named as Bayes Risk) [29].

Training and prediction procedure

In this study, a local ennea-peptide (9aa) is deployed to
define a candidate phosphorylation site, which has 4
upstream and 4 downstream residues of the potential

phosphorylation site and can be denoted as  =
(x1,x2,...,x9)'. Given some positive (training) data, there

are many ways to estimate R(αi|x) (where α1 and α2

denote different prediction results: true and false phos-
phorylation sites, respectively). One simple way is to
assume that all flanking residues are mutual independent,
and then the Bayes Risk can be formulated as:

Here p(Cl|xj) is the posterior probability of xj belonging to
category Cl and can be further described by the Bayesian
formula:

Here p(Cl) is the prior probability of category Cl and
p(xj|Cl) can be estimated by observing the occurrence of
each residue in training data given the hypothesis of equa-
tion (5). Although there are much more false phosphor-
ylation site in data set, we give equal prior probability for
each category (no prior information), which can avoid
bias prediction results. The loss function we construct is
based on BLOSUM62 matrix [30] by considering the bio-
chemical difference of residues, which can be formulated
as:
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Although other matrices could be also adopted, the
BLOSUM62 matrix is chosen in this work. Moreover, we
introduce a trade-off threshold b as the only parameter in
this method to control the performance for different cate-
gories. Thus the final Discriminant function for prediction
is:

The outline of the training and procedure in this work is
illustrated in Figure 1. We first estimate the probability
distribution of each residue of the true/false ennea-pep-
tide within the training data. Then the Bayes risk for either
potential solution (i.e true or false phosphorylation site)
is calculated, respectively. To implement the final differ-
ential function in equation (9) effectively, we built a dif-
ference profile of Bayesian decision risk for each PK
family/group in prediction. In this way, a candidate site
for a given protein kinase is assessed in the profile and the
outcome for each residue is summed up. If the difference
of risks (false prediction minus true prediction) is greater
than the threshold b, it will be predicted by PPSP as a neg-
ative site that can not be phosphorylated by this PK. Oth-
erwise, PPSP will infer the site is as a potential

phosphorylation site. In this work, the threshold for each
PK has been optimized automatically.

Results and discussions
Prediction performance of PPSP
Three measurements, i.e., Sensitivity (Sn), Specificity (Sp),
and Mathew correlation coefficient (MCC) are widely
employed to evaluate the performance of prediction with
definitions as below:

and

Among the data with positive predictions by PPSP, the
real positives are regarded as true positives (TP), while the
others are defined as false positives (FP). Among the data
with negative predictions by PPSP, the real positives are
regarded as false negatives (FN), while the others are
defined as true negatives (TN). The Sensitivity (Sn) and
Specificity (Sp) illustrate the correct prediction ratios of
positive and negative data sets respectively. But when the
number of positive data and negative data differ too much
from each other, the Mathew correlation coefficient
(MCC) should be calculated to assess the prediction per-
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formance. The value of MCC ranges from -1 to 1, and big-
ger MCC stands for better prediction performance.

To assess whether PPSP is unbiased and robust for predic-
tion, we adopt the standard method "Jack-Knife" valida-
tion. We perform the Jack-Knife validation for these PKs
by removing one real site from the training data set at a
time and re-calculating the Sn &Sp, respectively. The final
results are the average of the all Sn &Sp of the Jack-Knife
validation. Although "Jack-Knife" validation does make
sense when the size of the data set is small (i.e., N < 30),
we have also taken an additional test with n-fold (4-, 6-, 8-
and 10-fold in this work) cross-validation for 22 PK
groups with larger positive data set (N ≥ 30). As previously
proposed [25], the tests are repeated for 20 times and the
Sn &Sp is computed each time. Then the average Sn & Sp
are calculated as the final results (see additional file 5).

In table 1, we list the prediction performances for four
most well-studied PKs of PKA (Protein kinase A), CK2
(Casein Kinase II), ATM (Ataxia telangiectasia mutated)
and S6K (Ribosomal protein S6 kinase, or RSK). The pre-
diction performances of self-consistency, Jack-knife vali-
dation and n-fold cross-validation has been provided. For
PKA, CK2, ATM and S6K, the Sn &Sp of the self-consist-
ency is 92.31% & 97.40%, 93.33% & 96.46%, 92.59% &
91.98%, and 89.47% & 95.90%, while the Jack-Knife val-
idation is 90.11% & 90.46%, 83.21% & 88.44%, 86.05%

& 91.89%, 92.86% & 91.05%, respectively. Interestingly,
the performances of n-fold cross-validation are very simi-
lar and consistent with the results of the Jack-Knife valida-
tion. So the PPSP is quite robust and unbiased for these
well-studied PKs. Moreover, PPSP could predict for several
novel PKs (>30, see additional file 4). In Table 2, we
choose four PKs, including TRK (Neurotrophic tyrosine
kinase receptor), mTOR (Mammalian target of rapamy-
cin), SyK (Spleen tyrosine kinase), and MET/RON (Hepa-
tocyte growth factor receptor/Macrophage-stimulating
protein receptor), which predictors for them are not avail-
able previously. Interestingly, the prediction performance
of PPSP is also satisfying. And the Jack-knife validation
proposes that the PPSP approach is also robust and unbi-
ased for these novel PKs. The full content of the prediction
performance of PPSP is available from PPSP website.

To evaluate the performance of PPSP on the signal to
noise for phosphorylation sites retrieval, we also perform
two additional evaluations. Firstly, we randomly generate
10, 000 serine (S) and threonine (T) ennea-peptides for
serine/threonine kinases (STKs), with 10, 000 tyrosine (Y)
nona-peptides for tyrosine kinases (TKs). In addition, to
determine the ability of the PPSP to retrieve potential real
phosphorylation sites from the full proteome, we have
downloaded the protein sequences of human proteome
from public database ftp://ftp.ebi.ac.uk/pub/databases/
IPI/current/ipi.HUMAN.fasta.gz. Again, we randomly

Table 2: The self-consistency performance and Jack-knife validation for four novel PKs of TRK, mTOR, SyK and MET/RON.

PPSP TRK mTOR SyK MET/RON

Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%)
Self-consistency 92.31 97.40 93.33 96.46 92.59 91.98 89.47 95.90

Jack-knife 84.62 96.10 93.33 91.27 77.79 86.79 73.68 91.80
Data set Positive 13 14 27 19

(No.) Negative 77 433 251 122

Table 1: The performances of self-consistency, Jack-knife validation and n -fold (4-, 6-, 8-, 10-fold in this work) cross-validation for four 
well-studied PKs of PKA, CK2, ATM and S6K. The n- fold cross-validation has been performed for the large data sets (N ≥ 30).

PPSP PKA CK2 ATM S6K

Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%)
Self-consistency 90.11 91.70 83.21 90.01 93.02 94.06 92.85 97.97

Jack-knife 90.11 90.46 83.21 88.44 86.05 91.89 92.86 91.05
4- 90.11 90.43 81.02 87.90 86.37 90.14 N/A N/A

n-fold 
cross-

validation

6- 90.11 90.52 81.02 88.34 86.37 90.60 N/A N/A

8- 90.11 90.45 81.75 88.48 86.05 90.65 N/A N/A
10- 90.11 90.48 81.75 88.22 86.05 91.39 N/A N/A

Data set 
(No.)

Positive 173 142 43 14

Negative 8, 408 5, 332 2, 048 683
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retrieve 10, 000 S & T and Y ennea-peptides for STKs and
TKs from the human proteome, respectively. Then we
compute the Risk Difference (RD) of each ennea-peptide.
Under the default threshold of PPSP, the percentile of the
sites predicted to be potential true positive hits is listed
(see in Table 3). The prediction results of random and
human proteome data set are very similar. And the distri-
bution of Risk Difference of random and human pro-
teome data set of PKA-specific site prediction is diagramed
in Figure 2. In this work, the default threshold of PKA is
3.5, and predicted Risk Differences of the most of the
ennea-peptides from the two data sets are smaller than
this cut-off. Based on these analyses, we propose that
PPSP could efficiently predict the potential real sites with
very low false positive hits. The ratio of Serine and Threo-
nine is not exactly equal. However, we and others are una-
ble to explain this question [25].

Comparison of PPSP with Scansite, NetPhosK, KinasePhos 
and GPS
With four well-studied PKs of PKA, CK2, ATM and S6K as
model kinases, we compare PPSP with four previous
online prediction systems: Scansite, NetPhosK, Kinase-
Phos and GPS. In Table 4, we list the prediction perform-
ances of Scansite, NetPhosK, KinasePhos and GPS for
PKA, CK2, ATM and S6K, respectively. Since we can't re-
perform the Jack-knife validation for the predictors, we
submit the substrate sequence into these tools for predic-
tion. And the self-consistency performance of PPSP is
adopted here for comparison. Scansite has three thresh-
olds for prediction, including high, medium and low
stringency, while KinasePhos has paid attention to predic-
tion specificity with three cut-off values, as 90%, 95% and
100%. And the default parameter is adopted for GPS. We
calculate the prediction performances of Scansite and
KinasePhos at three distinct thresholds, separately. As for
NetPhosK, we only adopt the default cut-off value with
0.5, in mode of Prediction without filtering. Obviously,
PPSP, NetPhosK, KinasePhos and GPS are better than
Scansite. For PKA, the prediction performance of PPSP is
90.11% (Sn) and 91.70% (Sp), and outperforms to Net-

PhosK (Sn 79.12% &Sp 90.65%) with about 10% higher
sensitivity and similar specificity. And for CK2, the per-
formance of PPSP is 83.21% (Sn) and 90.01% (Sp),
slightly higher than NetPhosK (Sn 82.48% &Sp 89.43%).
The prediction performance of KinasePhos is similar with
PPSP on PKA and CK2. However, for ATM, the NetPhosK
is 86.01% (Sn) and 98.51% (Sp), whereas PPSP is 93.02%
(Sn) and 94.06% (Sp). Although PPSP has a lower specif-
icity than NetPhosK with ~4%, the sensitivity is high with
~7% enhanced. Finally, for S6K (also called as RSK in Net-
PhosK), although the specificity of PPSP (97.97%) and
NetPhosK (97.14%) is quite similar, PPSP outperforms
than NetPhosK with ~10% higher in sensitivity. With
regard of this, we propose the prediction performance of
PPSP could be at least comparable with the existing sys-
tems.

However, the analysis and comparison above are only in
theoretical and not intuitive. Furthermore, we browse the
recent literature from PubMed and randomly choose
some instances for comparison. One example is Blue-
tongue virus (BTV) nonstructural protein 2 (NS2,
P23065), a substrate of CK2 [31]. As a nonspecific single-
stranded RNA (ssRNA)-binding protein, NS2 accumulates
in BTV-infected cells, and is functional in viral replication
and morphogenesis [31-34]. NS2 could hydrolyze both
ATP and GTP with high affinity, showing strong enzy-
matic activity [32]. Using mutagenesis analysis, CK2 was
demonstrated to phosphorylate NS2 in two serine sites
S249 and S259, probably modulating its RNA binding
properties, enzymatic activity or influencing its ability to
interact with other viral proteins [31]. For CK2-specific
phosphorylation sites prediction, all of the four programs
can detect them successfully (see in Table 5). In this case,
the Scansite with medium stringency get the best hits.
PPSP predict three sites as positive hits (T247, S249, and
S259), but NetPhosK provide too much results with seven
positive hits. Two additional instances are also provided
in Table 5. One is Drosophila transcription factor protein
GAGA (Q08605), regulating gene transcription and chro-
matin remodeling, etc [35]. The other is human Calmod-

Table 3: With the default cut-off of PPSP, the percentile of the sites predicted to be potential true positive hits is listed. Both random 
ennea-peptides and data sets from human proteome have been computed, separately.

PK group Random ennea- peptides Ennea-peptides from human proteome
S T Y S T Y

PKA 11.75% 2.20% 14.61% 3.20%
CK2 9.18% 3.18% 12.60% 5.65%
ATM 8.42% 1.96% 8.95% 2.13%
S6K 14.72% 3.71% 14.90% 3.89%

mTOR 5.95% 7.09% 8.20% 9.14%
TRK 3.59% 3.94%
Syk 7.00% 9.74%

Met/RON 13.37% 13.77%
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ulin protein (P62158) [36]. The prediction results of the
four programs are shown in Table 5. And the online pre-
diction of PPSP is diagramed in Figure 3. Obviously, for
the well-studied PKs, i.e. CK2, PPSP is accurate and com-
parable with the existing tools.

Application of PPSP to the novel PKs
For application of PPSP to the novel PKs, here we employ
PPSP to predict the phosphorylation sites of TRK. TRK is a
sub-family of receptor tyrosine kinases (RTK), consisting
three highly similar homologs, TRK-A, -B, and -C [37].
TRK-A, -B, and -C could be activated specifically by nerve
growth factor (NGF), brain-derived neurotrophic factor
(BDNF) and NT-4/-5, and NT-3, respectively. Under acti-
vated state, TRK could regulate a variety of biological proc-

esses including cell survival, embryo, differentiation,
proliferation, axon and dendrite growth and patterning,
and apoptosis, etc [37].

Recently, protein Ras guanine-releasing factor 1 (RasGrf1,
Q13972), a GTPase of the Ras and Rho family, has been
proposed to be phosphorylated and interact with TRK-A, -
B, -C in co-transfection experiments [5]. However, the
exact phosphorylation sites of RasGrf1 by TRK remain to
be identified. PPSP has predicted that there are totally two
potential phosphorylation sites on RasGrf1 (Y94 &
Y1209) (see in Figure 4). Moreover, the human tumorous
imaginal disc 1 (TID1, Q96EY1) was verified as a substrate
of TRK with co-immunoprecipitation (Co-IP) [4] and the
phosphorylation sites were not elucidated. PPSP could

the distribution of risk difference of random and human proteome data set of PKA-specific site prediction is diagramed in Fig-ure 2Figure 2
the distribution of risk difference of random and human proteome data set of PKA-specific site prediction is diagramed in Fig-
ure 2. A. Distribution of Risk Difference of random data set (serine) of PKA-specific site prediction. B. Distribution of Risk Dif-
ference of random data set (threonine) of PKA-specific site prediction. C. Distribution of Risk Difference of human proteome 
data set (serine) of PKA-specific site prediction. D. Distribution of Risk Difference of Human proteome data set (threonine) of 
PKA-specific site prediction.
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predict that there are three candidate sites with Y94, Y95
and Y173 (see in Figure 4). These prediction results would
be very useful for the further experimentation and eluci-
dation phospho-regulation underlying cellular dynamics.

Conclusion
In this work, we present a novel computational program–
PPSP (prediction of PK-specific phosphorylation sites)
based on Bayesian decision theory (BDT). We model a
candidate phosphorylation motif as an ennea/nona-pep-
tide (9aa) flanking with 4 upstream and 4 downstream
residues of a potential phosphorylation site (S/T, or Y).
With the BDT algorithm, we estimate the probability dis-
tributions of true and false phosphorylation sites and
make prediction based on a loss function constructed
with BLOSUM62 matrix [30]. We have evaluated the sen-
sitivity and specificity of PPSP by "Jack-knife" validation.
An online PPSP web service has been also constructed,
accurately predicting PK-specific phosphorylation sites for

68 PK groups. For comparison with four reported systems
Scansite, NetPhosK, KinasePhos and GPS, we take four
well-studied PKs of PKA, CK2, ATM and S6K as model
kinases. The prediction performances of PPSP are satisfac-
tory judged using these well-studied PKs and comparable
with the other existing tools. Moreover, PPSP also pro-
vides the accurate prediction for many novel PKs, such as
TRK, mTOR, SyK, and MET/RON, etc. Thus, comparison
with the previous work, PPSP provides more accurate and
powerful ability. Moreover, the BDT approach could also
be an extensive method for PTMs prediction, such as
sumoylation and ubiquitination, etc. In addition,
although many phospho-proteomic researches have gen-
erated numerous data [8,20,21], however, the up-regu-
lated PKs still remain to be dissected. Despite the
demonstration of phosphor-regulation of protein kinases
and their respective substrates, the exact phosphorylation
sites are unclear [4,5]. Taken together, the prediction
results of PPSP should be insightful and important for fur-

Table 5: The experimental verified vs. predicted CK2-specific phosphorylation sites of Bluetongue virus (BTV) nonstructural protein 2 
(NS2), Drosophila transcription factor GAGA and human Calmodulin protein.

CK2 NS2 (P23065) GAGA (Q08605) Calmodulin (P62158)

Experimental Defined S249, S259 S378, S388 T79, S81, S101, T117
PPSP T247, S249, S259 T123, S335, S337, S380, S388 T5, T79, S81, T117

NetPhosK T87, T88, S204, T247, S249, S259, 
T266

S388, T394 T5, T28, T44, T62, T79,
S81, S101, T117

high S259 N/A N/A
ScanSite medium S249, S259 N/A S81

low T88, S182, T247, S249, S259 T385, T394 T79, S81, T117
KinasePhos 90% (Sp) T247, S249, S259 S240, S241, S339, T378, S386, S389,

S391, S393, S397, S518, S521, S523
T5, T44, T79, S81, S101, T117

95% (Sp) S249, S259 S240, S339, T378, S386,
S391, S397, S518, S521

T5, T44, T79, S81,
S101, T117

100% (Sp) S259 S339, S521 T5, T79, S81, S101, T117
GPS S249, S259 T123, S337, S339, S385, S386,

S388, S518, S521
T5, T44, T79, S81, T117

Table 4: The prediction performance of Scansite, NetPhosK, KinasePhos and GPS for four well-studied PKs of PKA, CK2, ATM and 
S6K.

PK Group PKA CK2 ATM S6K
Predictor Sn(%) Sp(%) MCC Sn(%) Sp(%) MCC Sn(%) Sp(%) MCC Sn(%) Sp(%) MCC

PPSP Defaulta 90.11 91.7 0.3841 83.21 90.01 0.3596 93.02 94.06 0.4627 92.85 97.97 0.6618
ScanSite Highb 21.98 99.96 0.4450 10.95 99.86 0.2655 18.6 99.8 0.3443 N/A N/A N/A

Medium 44.51 99.39 0.5084 27.01 99.11 0.3342 25.58 98.89 0.2756 N/A N/A N/A
Low 47.8 98.29 0.4041 54.02 96.34 0.3684 51.16 94.89 0.2739 N/A N/A N/A

NetPhosK Default 79.12 90.65 0.3165 82.48 89.43 0.3464 86.01 98.51 0.6786 82.35 97.14 0.5404
KinasePhos 90% (Sp)d 90.72 91.3 0.3783 72.53 91.58 0.3384 88.37 87.8 0.3137 N/A N/A N/A

95% (Sp) 89.18 94.62 0.4595 64.58 94.93 0.3806 88.37 92.14 0.3893 N/A N/A N/A
100% (Sp) 76.8 98.47 0.6154 54.86 98.66 0.5222 86.05 96.89 0.5497 N/A N/A N/A

GPS Default 88.88 90.57 0.3564 82.99 87.59 0.3210 90.86 89.55 0.3498 94.9 91.34 0.3964

a. The default parameters are employed for PPSP, NetPhosK and GPS.
b. ScanSite 2.0 has three thresholds for prediction, including high, medium and low stringencies.
c. N/A – not available.
d. KinasePhos has paid attention to prediction specificity with three cut-off values, as 90%, 95% and 100%.
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ther experiments. The combination of computational and
experimental identifications will propel our understand-
ing of phosphorylation dynamics into a new phase.

Availability and requirements
PPSP has been implemented in Linux + Apache + PHP,
and is freely available at: http://bioinformatics.lcd-
ustc.org/PPSP. A latest web browser (eg. Internet Explorer,
Netscape, or Mozilla, etc) is required.
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and AL designed the methodology, carried out the analy-
sis and drafted the manuscript. LW developed the web
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improved manuscript greatly. XY coordinated the research
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The prediction results of Bluetongue virus (BTV) nonstruc-tural protein 2 (NS2), Drosophila transcription factor GAGA and human Calmodulin protein with PPSPFigure 3
The prediction results of Bluetongue virus (BTV) nonstruc-
tural protein 2 (NS2), Drosophila transcription factor GAGA 
and human Calmodulin protein with PPSP. Figure 3A – pre-
diction results of NS2; Figure 3B – prediction results of 
GAGA; Figure 3C – prediction results of Calmodulin.
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The diagram of potential phosphorylation sites of human RasGrf1 (Q13972) and TID1 (Q96EY1) by TRKFigure 4
The diagram of potential phosphorylation sites of human RasGrf1 (Q13972) and TID1 (Q96EY1) by TRK.
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Additional file 2
The statistics of the annotations of the phosphorylation information from 
Swiss-Prot database. The entries annotated with "by similarity", "poten-
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There are only 842 annotations of the kinase-specific phosphorylation sites 
provided.
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