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Abstract
Background: Analysis of DNA microarray data takes as input spot intensity measurements from scanner
software and returns differential expression of genes between two conditions, together with a statistical
significance assessment. This process typically consists of two steps: data normalization and identification
of differentially expressed genes through statistical analysis. The Expresso microarray experiment
management system implements these steps with a two-stage, log-linear ANOVA mixed model technique,
tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based
on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite,
normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity
values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input
to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV).
Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR
data.

Results: The Expresso analysis using MIV data consistently identifies more genes as differentially
expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering
pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis
with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement
with qRT-PCR data is obtained through the use of Expresso analysis and MIV data.

Conclusion: The results of this research are of practical value to biologists who analyze microarray data
sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and
complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have
the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to
data normalization and statistical analysis methods, as it yields as greater number of statistically significant
differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more
flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged
by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity.
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Background
DNA microarrays are a powerful means of monitoring the
expression of thousands of genes simultaneously. A vari-
ety of computational and statistical methods have been
proposed to extract information from the large quantity of
data generated from microarray experiments. Many meth-
ods assume, as we do here, the use of cDNA labeled with
one of two fluorescent dyes to differentiate two treatments
on a single microarray, implying data from two images to
be analyzed. These methods include a number of data
normalization techniques to reduce the effects of system-
atic errors and various kinds of statistical tests to identify
differentially expressed genes in comparisons among dif-
ferent experimental conditions. There is as yet no single
method that can be recommended under all circum-
stances for either normalization or identification of differ-
ential gene expression.

In recent years, ANOVA methods have gained popularity
for identification of differential gene expression. The
power of ANOVA methods derives from their flexibility in
fitting and comparing different models to a given set of
data [1]. One such method is the two-stage, log-linear
ANOVA mixed models technique of Wolfinger, et al., [2].
Its first stage uses a normalization model designed to
remove global effects across all microarrays. Its second
stage uses a gene-specific model to estimate gene-treat-
ment interactions as ratios of gene expression under con-
trol and treated conditions, along with a statistical
significance. Kerr [3] notes that the global normalization
model employed in this technique is conducive to com-
bining data across genes for realistic and robust models of
error, especially when random effects are included. Pan
[4] compares different microarray statistical analysis
methods and demonstrates that the log-linear ANOVA
mixed model approach performs better than the t-test and
regression approaches. The regression approach, although
flexible and robust, assumes that the data is drawn from a
normal distribution, while the t-test is limited due to very
few degrees of freedom. Chu, et al., [5] compare two log-
linear ANOVA mixed models for probe-level, oligonucle-
otide array data and found that both types of models cap-
ture key measurable sources of variability of
oligonucleotide arrays for real and simulated data. Cui
and Churchill [6] review the use of a mixed ANOVA
model for analyzing a cDNA microarray experiment and
conclude that such models provide a powerful way to
obtain information from experiments with multiple fac-
tors or sources of variation. Rosa, et al., [7] review issues
of analyzing cDNA microarrays with mixed linear models
and puts such analysis in the larger context of Bayesian
analysis procedures and adjustments for multiple testing.

Data normalization is the first step in analyzing microar-
ray data; numerous data normalization methods have

been proposed and investigated. While refinements of
existing methods continue to appear (e.g., Futschik and
Crompton [8]), naive methods, such as total intensity
normalization, are still in use (e.g., Held, et al., [9]). Xie,
et al., [10] did a comparative study of normalization
methods and test statistics to analyze the results of a DNA-
protein binding microarray experiment. Using perform-
ance and bias correction criteria, Bolstad, et al., [11] eval-
uate the cyclic lowess method, the contrast method, the
quantile method, and baseline array scaling methods,
both linear and non-linear; they demonstrate that nor-
malization methods incorporating data from all microar-
rays perform better than methods employing a baseline
array.

Several software tools that combine data normalization
and statistical analysis are currently available. Dudoit, et
al., [12] review these software tools with an emphasis on
the TM4 microarray software suite, Bioconductor in R,
and the BioArray Software Environment (BASE) system.
Saeed, et al., [13] describe the features and capabilities of
TM4, while Quackenbush [14] describes the normaliza-
tion and transformation methods implemented in it. Wil-
liams, et al., [15], Zhu, et al., [16], and Khaitovich, et al.,
[17] have used TM4 in microarray data analysis. Another
system is Expresso, an experiment management system
that serves as a unifying framework to study data driven
applications such as microarray experiments [18-20].
Expresso has adapted the two-stage ANOVA mixed mod-
els technique of Wolfinger, et al., [2] to the particular
needs of individual microarray data sets. Our experience
with numerous such data sets has demonstrated that
modeling the underlying experiment carefully and com-
pletely is essential to obtaining meaningful and defensi-
ble results. Use of tools that require experiments to
conform to their analysis methods are less than satisfac-
tory.

In this paper, we compare the Expresso analysis method-
ology to the approach provided in the TM4 microarray
analysis software suite [13]. Each is invoked to identify
differentially expressed genes in two experimental data
sets, each of which uses an Arabidopsis thaliana oligonucle-
otide array. Along the way, we demonstrate differences
between the use of integrated intensity values (IIV) and
median intensity values (MIV) as inputs. We report inter-
actions between normalization and gene identification
methods. We use quantitative reverse-transcriptase PCR
(qRT-PCR) results to assess the consistency of genes
reported by TM4 and Expresso as having significant differ-
ential expression.

Results and discussion
Here, we report a portion of the results obtained in our
comparison of Expresso analysis and the TM4 pipeline
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(see Materials and Methods). Figure 1 illustrates the over-
all flow of the statistical analyses of microarray data that
were done in this study. We began with microarray data in
GPR format from Experiment 1 and Experiment 2.
Median intensity values (MIV) from the GPR files can be
analyzed by the Expresso GP and GOT models directly.
ExpressConverter provides integrated intensity values
(IIV) for further Expresso and TM4 analysis. The MIDAS
normalization and filtering pipeline executes these steps
in order: total intensity normalization (subscript T), low-
ess normalization (subscript L), standard deviation regu-
larization (subscript S), and low intensity filter (subscript
F). MIDAS allows tapping the output of any step in the
pipeline; for example, IIVTL signifies an MEV file after total
intensity normalization followed by lowess normaliza-
tion. The identification of genes with significant differen-
tial expression was performed on all GPR and MEV files,
using the Expresso GP and GOT models and the t-test in
MEV.

Normalization and low intensity filtering in TM4
Quackenbush [14] describes the use of ratio-intensity
plots (RI-plots) to detect and normalize for any systematic
intensity-dependent dye bias using lowess normalization
(see Materials and Methods). We evaluated the effect of
lowess normalization within the context of the flow in
Figure 1 by creating RI-plots after each step for the second
replicate microarray in Experiment 1, WT plant. Supple-
mentary Figure 1 - see Additional file: 1 contains these RI-
plots. The IIVTL is indeed effective, for this data set, in cor-
recting systematic dye bias, suggesting that preprocessing
by these two normalization steps in MIDAS may be a
good practice in many situations.

The normalization and filtering pipeline affects the
number of genes identified as differentially expressed in
both the GP and GOT models. See Table 1. For example,
in Experiment 1, the GP model using IIV input data iden-
tifies 567 up-expressed genes in the WT microarrays, while
it identifies only 460 WT genes as up-expressed if IIVTLSF
(processed by the complete MIDAS pipeline) input data is
used.

Small changes in the number of genes identified as up- or
down-expressed after successive MIDAS steps may mask
larger changes in the composition of sets of up- and
down-expressed genes. To obtain a more precise view of
the effects of MIDAS changes, we computed retention
counts (RC) and retention percentages (RP) between the
gene successive sets whose numbers are in Table 1. RC is
the number of genes in the set before the MIDAS step that
remain in the set after the step. RP is the percentage of
remaining genes with respect to the number of genes in
the set after the MIDAS step. Table 2 contains the RC and
RP values corresponding to the counts in Table 1. For

Experiment 1, there is a tremendous drop in retention
during the lowess normalization that follows the total
intensity normalization. There is not a drop of corre-
sponding magnitude for Experiment 2. For both experi-
ments, normalization has a significant effect on the sets of
genes identified as differentially expressed.

In Experiment 1 results, the number of genes commonly
assessed by Expresso as significantly expressed when using
IIV and IIVT is high. For example, there is 95.45% reten-
tion of WT genes (545 total) assessed as up-expressed
when using IIVT data in Expresso compared to that when
using IIV data. Retention percentage of these genes
assessed as expressed however went down after doing low-
ess normalization. There is only 15.20% retention of WT
genes (74 total) assessed as up-expressed in the results
when using IIVTS data in Expresso compared to when
using IIVT. While we observe increase in the retention per-
centage in IIVTLS (from IIVTL) and IIVTLSF (from IIVTLS),
there's low retention percentage in the results using IIVTLSF
from IIV data. This can be traced in the low retention per-
centage of IIVTL from IIVT. Hence, the normalization
method that affects the results in Experiment 1 the most is
lowess normalization.

The results of Expresso on Experiment 2 show that low
retention percentages happen after appli-cation of total
intensity normalization (lowest is 59.30%) and after
application of low intensity filtering (lowest is 61.19%).
The low retention percentages shown in the IIV ∩ IIVTLSF
column implies that the normalization pipeline also sig-
nificantly affects the results in Expresso analysis of Exper-
iment 2.

Choice of intensity signal data
The input to statistical analysis of microarray experiments
is a set of real numbers that represent the measured inten-
sity signal for each spot in a microarray. Much statistical
analysis of microarray data has traditionally used median
intensity values (MIV). The alternative used in TM4 is the
integrated intensity value (IIV). (See Materials and Meth-
ods.) Since IIV is intended to integrate the measured
intensity across the biological sample printed at a spot,
one might expect IIV to be a more accurate assessment of
the biological measurement than MIV data. For example,
a spot having 100 pixels and a median intensity of 5,000
has the same IIV as a spot having 50 pixels and a median
intensity of 10,000.

This study provides the opportunity to observe the differ-
ence that choosing MIV or IIV makes on the sets of genes
ultimately identified as differentially expressed. We used
the GP model to analyze unnormalized MIV and IIV data
from Experiment 1, and we used the GOT model to ana-
lyze unnormalized MIV and IIV data from Experiment 2.
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Overall flow of the statistical analyses of microarray dataFigure 1
Overall flow of the statistical analyses of microarray data. Data input is in GPR format and provides the MIV for each 
spot. TM4 analysis requires ExpressConverter to generate MEV format containing the IIV for each spot. The normalization 
steps performed by MIDAS are T (total intensity normalization), L (lowess normalization), S (standard deviation regularization), 
and F (low intensity filter). Differential gene expression is obtained from the Expresso GP model, the Expresso GOT model 
(Experiment 2 only), and the t-test in MEV.
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Table 3 reports a summary of the results. In Experiment 1,
725 WT genes are assessed as up-expressed and 774 WT
genes are down-expressed when MIV data are used in
Expresso. These numbers decreased to 567 up-expressed
genes and 552 down-expressed genes when IIV data are
used instead. A similar trend is observed in Experiment 2
results when using MIV and IIV data. These results suggest
that employing IIV input data with Expresso analysis leads
to more conservative results than employing MIV input
data.

Comparison of statistical methods
We compared the performance of the GP model, the GOT
model, and the t-test of MEV in identifying differentially
expressed genes in Experiment 2. We used the IIVTLSF data
of Experiment 2 as input to these methods. We also con-
trast these results with MIV data analyzed in GP. Table 4
reports counts for these analyses.

The plot in Figure 2a demonstrates that the estimates of
Iog2(fold change) are the same in GP and GOT. As Figure
2b shows, the p values by GOT are smaller compared to
the p values calculated by GP. Use of the MEV t-test
resulted in fewer genes assessed as significantly expressed
when compared to the numbers for the GP model. The
results obtained when MIV data was used as input to GP,
is closest to the results when using IIVTLSF.

To compare the effectiveness of Expresso and TM4 in
identifying gene differential expression, we compared the
identified direction of differential expression of a select set
of genes per genotype in Experiment 2 with results
obtained by qRT-PCR. See Table 5. The lowest overall per-
centage (71.9%) of agreement is between the qRT-PCR
results and the MEV t-test results using IIVTLSF. The
log(fold change) estimates of the GP model has 77.1%
percentage agreement with the qRT-PCR results, which is
slightly higher than the percentage for the MEV t-test. The
results of the GP model using MIV data demonstrated the
greatest agreement, 90.1%, with the qRT-PCR results.

Figures 3, 4, and 5 present the actual assessed Iog2(fold
change) values for 50 selected Col-0 genes in Experiment
2, along with their qRT-PCR values. These are the 50 Col-
0 genes, among the 55 with qRT-PCR values, for which we
have expression values for all methods. For each gene, a
histogram of the Iog2(fold change) estimates of qRT-PCR,
the GP model using MIV, the GP model using IIVTLSF, and
the MEV t-test is given. The 50 histograms are spread over
three figures to enhance readability and are in increasing
order by qRT-PCR estimated change. In general, the
log2(fold change) estimates of the GP model and of the
MEV t-test, all IIVTLSF input data, are approximately the
same, while being slightly different from estimates of the
GP model using MIV input data. As might be expected,
disagreement between qRT-PCR and microarray results
are more prevalent for small estimated log2(fold change)

Table 1: Number of differentially expressed genes. Numbers of identified differentially expressed genes in the GP and GOT models 
after preprocessing by 0 or more MIDAS pipeline steps — IIV, IIVT, IIVTL, IIVTLS, or IIVTSLF. For Experiment 1, up-expression (+) and 
down-expression (-) numbers are given for both WT and antiPLD. For Experiment 2, + and -1 numbers are given for all 4 genotypes 
separately. The ALL entries correspond to the H1 hypotheses of the GOT model (see Materials and Methods).

Genotype IIV IIVT IIVTL IIVTLS IIVTLSF

GP Model — Experiment 1

WT + 567 571 487 495 460
WT - 552 553 499 499 460
antiPLD + 442 421 440 471 431
antiPLD - 336 346 381 363 334

GOT Model — Experiment 2

Col-0 + 227 309 242 240 270
Col-0 - 122 171 178 180 183
Cvi-0 + 106 108 82 78 71
Cvi-0 - 63 93 74 71 67
WS + 234 346 279 269 150
WS - 331 347 340 340 224
Th + 238 398 350 363 361
Th - 196 245 241 246 240
ALL + 298 428 357 354 290
ALL - 202 261 253 248 195
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values. The histograms for genes AT4G09020 (Figure 3),
AT1G35580 (Figure 4), and AT3G29360 (Figure 4) show
that the direction of log(fold change) estimate of qRT-
PCR matches the direction of the GP model using MIV
input data, while differing from the direction of the esti-
mates of the GP model and the MEV t-test using IIVTLSF
input data.

Table 6 summarizes genotype-specific correlation results,
which demonstrate that the GP model us-ing MIV input
data has the highest correlation with qRT-PCR compared
to the GP model and the MEV t-test using IIVTLSF input
data. The highest correlation of 0.85 is for the Col-0
results of qRT-PCR versus the GP model using MIV input.
The corresponding correlations for Cvi-0, WS, and Th are
0.73, 0.66, and 0.84, respectively, which are all best
among the analysis methods.

Conclusion
Our integration and comparison of Expresso analysis and
the capabilities of TM4 has highlighted successes in
microarray analysis, some similarities, and some differ-
ences. The success of microarray analysis is demonstrated
by considerable agreement between qRT-PCR results and
the results of all the examined microarray analysis meth-
ods. The greatest agreement was found when median

intensity value (MIV) inputs were analyzed with the
Expresso GP analysis model. We also found that the use of
integrated intensity value (IIV) inputs for Expresso analy-
sis consistently resulted in fewer genes identified as differ-
entially expressed when compared to results from MIV
inputs. This suggests that the use of IIV inputs is more con-
servative than the use of MIV inputs, while MIV inputs
may give greater agreement to qRT-PCR results than IIV
inputs.

Our results demonstrate that the MIDAS normalization
and filtering pipeline corrects systematic intensity-
dependent dye bias on a per microarray basis. The nor-
malization stage in Expresso analysis removes global
effects across all microarrays and complements the per
microarray normalization methods of MIDAS. The gener-
ally better agreement of Expresso analysis with qRT-PCR
results when compared to the MEV t-test suggests that it
would be desirable for MEV to have an ANOVA test that
has the greater flexibility of the Expresso gene model.

Methods
Median and integrated intensity values
This research considers two ways of measuring spot inten-
sity, one or both of which are reported by typical microar-
ray image processing software. The median intensity value

Table 2: Retention counts and percentages. Retention counts (RC) and retention percentages (RP) for the differentially expressed 
gene sets of Table 1. RC is the number of genes in a set before the MIDAS step that remain in the set after that step. RC is the number 
of genes in the set before the MIDAS step that remain in the set after that step. RP is the percentage of remaining genes with respect 
to the number of genes in the set after the MIDAS step. RC and RP are reported for the intersections IIV∩ IIVT, IIVT ∩ IIVTL, IIVTL ∩ 
IIVTLS, and IIVTLS ∩ IIVTLSF, as well as intersection IIV∩ ∩IIVTLSF, which corresponds to the effect of MIDAS steps from the start of the 
pipeline to the end. The ALL entries correspond to the H1 hypotheses of the GOT model (see Materials and Methods).

IIV ∩ IIVT∩ IIVTL∩ IIVTLS∩ IIV ∩
IIVT IIVTL IIVTLS IIVTLSF IIVTLSF

Genotype RC RP RC RP RC RP RC RP RC RP

GP Model — Experiment 1

WT + 545 95.45 74 15.20 285 57.58 456 99.13 59 12.83
WT - 532 96.20 55 11.02 306 61.32 459 99.78 53 11.52
antiPLD + 403 95.72 58 13.18 278 59.02 430 99.77 46 10.67
antiPLD - 326 94.22 45 11.81 203 55.92 330 98.80 33 9.88

GOT Model — Experiment 2

Col-0 + 224 72.49 221 91.32 219 91.25 172 63.70 159 58.89
Col-0 - 121 70.76 150 84.27 165 91.67 120 65.57 92 50.27
Cvi-0 + 81 75.00 65 79.27 71 91.25 49 69.01 36 50.70
Cvi-0 - 60 64.52 60 81.08 63 88.73 41 61.19 38 56.72
ws + 223 64.45 230 82.44 248 92.19 108 72.00 101 67.33
ws - 293 84.44 267 78.53 314 92.35 180 80.36 149 66.52
Th + 236 59.30 308 88.00 330 90.91 256 70.91 201 55.68
Th - 183 74.69 210 87.14 225 91.46 172 71.67 144 60.00
ALL + 282 65.89 307 85.99 333 94.07 200 68.97 177 61.03
ALL - 196 75.10 196 77.47 230 92.74 133 68.21 103 52.82
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(MIV) of a spot is the median value of all the pixels iden-
tified as part of the spot. The integrated intensity value
(IIV) of a spot is the total value of all the pixels identified
as part of the spot. In this research, both are background-
corrected values. If the IIV data is unavailable, but the
radius of the bounding circle of the spot and its average
intensity value are available, then the IIV data can be esti-
mated as the product of the average intensity and the
number of pixels in the circle. This is the estimate used by
ExpressConverter (below) when it converts GPR format
data to MEV format data.

Microarray data sets
We used data sets from two experiments that used the Ara-
bidopsis Oligonucleotide Microarrays [21], which include
25,712 elements, each a gene-specific 70-mer (Qiagen/
Operon, Valencia, CA) for a known or putative open read-
ing frames in Arabidopsis thaliana. There are 48 blocks per
microarray, 25 rows by 24 columns (600 spots) per block,
and 28,800 spots per microarray, including spots for the
25,712 gene-specific 70-mers and 302 control elements.
The remaining 2,786 spots are blank.

Table 3: Comparison of MIV and IIV. We compare MIV and IIV input data with respect to the sets of genes ultimately identified as 
differentially expressed. The genotype and set labelings are the same as those in Table 1. The GP model was used to analyze the 
unnormalized MIV and IIV data from Experiment 1. The GOT model was used to analyze the unnormalized MIV and IIV data from 
Experiment 2. Up-expressed and down-expressed counts are reported for both experiments and all genotypes. The count of genes in 
the intersections is found in column Common. For convenience, percentages of the intersection with respect to the MIV and IIV sets 
are tabulated in the last two columns. The ALL entries correspond to the H1 hypotheses of the GOT model (see Materials and 
Methods).

Genotype MIV IIV Common % of common in 
MIV

% of common in 
IIV

GP Model — Experiment 1

WT + 725 567 501 69.10% 88.36%
WT - 774 552 515 66.54% 93.30%
antiPLD + 518 422 357 68.92% 84.60%
antiPLD - 505 336 313 61.98% 93.15%

GOT Model — Experiment 2

Col-0 + 311 227 198 63.67% 87.22%
Col-0 - 190 122 110 57.89% 90.16%
Cvi-0 + 185 106 89 48.11% 83.96%
Cvi-0 - 97 63 59 60.82% 93.65%
ws + 326 234 181 55.52% 77.35%
ws - 482 331 273 56.64% 82.48%
Th + 363 238 219 60.33% 92.02%
Th - 251 196 166 66.14% 84.69%
ALL + 448 298 249 55.58% 83.56%
ALL - 294 202 159 54.08% 78.71%

Table 4: Comparison of Expresso analysis and MEV t test. We compare the number of genes identified as differentially expressed by 
Expresso analysis and the MEV t-test. Counts for both up-expressed and down-expressed genes, as well as all four genotypes of 
Experiment 2, are reported. The first three analyses — the GP model, the GOT model, and the MEV t-test — take the IIVTLSF data as 
input. For point of comparison, the last analysis uses the GP model on MIV input.

GP Model GOT Model MEV t-test GP Model
IIVTLSF IIVTLSF IIVTLSF MIV

Genotype + - + - + - + -

Col-0 1837 1563 270 183 2125 2007 1761 1212
Cvi-0 817 1248 71 67 478 823 669 1403
WS 2606 2002 150 224 535 388 2422 1184
Th 2016 1314 361 240 1144 827 2395 1457

Totals 7276 6127 852 714 4282 4045 7247 5256
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Experiment 1
Experiment 1 compares the responses of Arabidopsis thal-
iana wild type, ecotype Columbia (henceforth, WT), and

of an antisense plant for phospholipase D α (antiPLD) in
Columbia background to drought stress [22]. Plants were
harvested at a single time point, and two biological repli-

Comparison of GP and GOT modelsFigure 2
Comparison of GP and GOT models. Comparison of estimated log2(fold change) and the corresponding p-value estimates 
for the GP and GOT model results of the WS ecotype values in Table 4 (a) This is a scatter plot of the estimated log2(fold 
change) values from the GP and GOT models; these values are essentially identical, (b) This is a scatter plot of the - log10 (p-
value), again for the GP and GOT models. The dotted lines correspond to - log10(0.05), as our significance cutoff is 0.05. For 
the GP model, it is the points to the right of the dotted line that are significant. For the GOT model, it is the points above the 
dotted line that are significant.
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Table 5: Comparison of qRT-PCR with Expresso and TM4. We compare the qRT-PCR results with identified up-expressed and down-
expressed genes in Experiment 2 using Expresso and TM4. Results of qRT-PCR are available for each of the four ecotypes in the 
numbers n in the second column. Numbers of agreement or non-agreement are shown in the S, D, and F columns. The S (same) 
column tabulates the number of genes for which the sign of the log(fold change) for statistically significant differential expression 
matches the direction of change in the corresponding qRT-PCR result. The D (differing) column tabulates the number of genes for 
which the sign of the log(fold change) for statistically significant differential expression is in the opposite direction of the change in the 
corresponding qRT-PCR result. The F (filtered) column tabulates the number of genes for which there is a qRT-PCR result, but for 
which either the gene was filtered by MIDAS low intensity filtering or the analysis method did not assess the change in expression as 
statistically significant. The MEV t-test (first grouping) results are for the typical TM4 process, which involves IIV input data followed 
by the four MIDAS steps, which we denote IIVTLSF The GP model (second grouping) gives the same numbers and uses the same 
IIVTLSFinput data, the GP model (third grouping) results use MIV input data and has no filtered genes.

GP Model GP Model MEV t-test
qRT-PCR MIV IIVTLSF IIVTLSF

Genotype n S D S D F S D F

Col-0 55 50 5 43 8 4 40 9 4
Cvi-0 52 46 6 38 9 5 36 7 9
ws 59 54 5 46 10 3 41 9 9
Th 26 23 3 21 3 2 19 3 4

Total 192 173 19 148 30 14 138 28 26
Percentage 90.1% 9.9% 77.1% 15.6% 7.3% 71.9% 14.6% 13.5%
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cate hybridizations were done for each of WT and
antiPLD. Scan Array Express (PerkinElmer Life and Ana-
lytical Sciences, Inc., Boston, MA USA) was used to quan-
titate the four microarrays. By default, ScanArray Express
performs a global lowess normalization of median inten-
sities per microarray. ScanArray Express output its results
to four files in GenePix (GPR) format, which constitute
the Experiment 1 data set.

Experiment 2
Li, et al., [23] compare the responses to elevated CO2 of a
wild Arabidopsis thaliana relative (Thellungiella halophila,
ecotype Shandong; Th) and of three Arabidopsis thaliana
ecotypes: Wassilewskija (WS), Columbia (Col-0), and
Cape Verde Islands (Cvi-0). Three biological replicate
hybridizations were done for each genotype. GenePix
(Axon Instruments, Union City, CA USA) was used to
quantitate the twelve microarrays. GenePix also performs
by default a global lowess normalization of median inten-
sities per microarray. The output of GenePix is twelve GPR
files, which constitute the Experiment 2 data set.

Real-time quantitative RT-PCR
For verification of microarray results in Experiment 2, Li,
et al., [23] performed real-time quantitative reverse-tran-
scriptase PCR (qRT-PCR) for selected genes — 55 in Col-
0; 52 in Cvi-0; 59 in WS; 26 in Th. Supplementary Table 1
- see Additional file: 2 contains the annotation of the
selected genes. In brief, primer pairs were selected to rep-
resent unique sequences in the Arabidopsis thaliana
genome and in the Thellungiella sequences deposited in
NCBI. Thellungiella actin (CX129618) cDNA primers and
Arabidopsis thaliana. Ubiquitin-10 cDNA primers were
used as internal controls in the qRT-PCR analyses. RT-PCR
products were detected using the fluorescent dye SYBR-
green (Applied Biosystems, Foster City, CA USA) and the
ABI PRISM/Taqman 7900 Sequence Detection System
(Applied Biosystems, Foster City, CA USA). Dissociation
curves were generated for each reaction to ensure specific
amplification. Three repeats were done for each gene. The
averaged threshold cycle numbers were used to estimate
original mRNA levels.

Comparison of qRT-PCR results, Part IFigure 3
Comparison of qRT-PCR results, Part I. Comparison of qRT-PCR results to Expresso and MEV t-test results for first 16 
of 50 selected genes of the Col-0 genotype of Experiment 2.
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The microarray results of Experiment 2 suggested that
exposure to elevated CO2 resulted in changes in expres-
sion of many genes associated with carbon metabolism,
and those associated with pho-tosynthetic carbon metab-
olism in particular. This included genes encoding proteins
that transport pho-tosynthate out of the chloroplast,

where carbon fixation takes place, for export to other parts
of the cell, and also genes encoding transport proteins that
export carbon skeletons out of the cell to other tissues
where growth is taking place. Because of this finding, it
was important to validate the results obtained for gene
expression associated with carbon metabolism with qRT-

Comparison of qRT-PCR results, Part IIFigure 4
Comparison of qRT-PCR results, Part II. Comparison of qRT-PCR results to Expresso and MEV t-test results for the 
middle 17 of 50 selected genes of the Col-0 genotype of Experiment 2.
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Table 6: Correlation of qRT-PCR with Expresso and TM4. We calculate the correlation of qRT-PCR results from the Expresso GP 
model and the MEV t-test. For each comparison, the analytical result for each gene for which there is a qRT-PCR result for a particular 
genotype is assembled into a result vector. We used SAS to compute a Pearson correlation of each result vector with the 
corresponding vector of qRT-PCR results. The computed correlations are as reported above.

Genotype-Specific Correlation

Comparison Col-0 Cvi-0 WS Th

qRT-PCR versus GP model 
with MIV input

0.85 0.73 0.66 0.84

qRT-PCR versus GP model 
with IIVTLSF input

0.83 0.69 0.61 0.78

qRT-PCR versus MEV t-
test with IIVTLSF input

0.83 0.65 0.64 0.77
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PCR. Hence, a number of the genes in Supplementary
Table 1 - see Additional file: 2 are related to carbon metab-
olism.

Expresso analysis
Expresso analysis employs a general and flexible method
to identify differentially expressed genes that is adapted
from the two-stage analysis method of Wolfinger, et al.,
[2]. In general, Expresso analysis consists of two log-linear
ANOVA mixed models, called the normalization model
and gene model. The first estimates and removes the
experiment-wise systematic errors, while the second esti-
mates and removes the gene specific errors. The residual
that remains is the log-ratio estimate for each gene. In par-
ticular, the Tukey-Kramer multiple comparison of treat-
ment effects on each gene is performed to estimate its
expression level and the significance of (confidence in)
that expression level. Expresso analysis is implemented
for and executed on SAS (SAS/STAT version 8.2, SAS Insti-
tute Inc., Gary, NC USA).

The original model of Wolfinger, et al., [2] includes the
treatment and the array as the main effects. In previous
Expresso analysis, we have extended that model to exper-
iment-appropriate models that include additional fixed
and random effects. Here, the design of the two-dye oligo-
nucleotide microarray used in Experiment 1 and Experi-
ment 2 includes various controls strategically positioned
in different blocks of the microarray. This makes it possi-
ble to estimate the random block effect in each microar-
ray. Furthermore, the dye effect is included in the
normalization model to estimate and remove the global
dye bias.

For this research, we developed two Expresso models, one
whose gene model assesses the gene-(plant sample) effect
(the GP model) and the other whose gene model assesses
the gene-genotype-treatment effect (the GOT model). The
GP model is much like previous Expresso models and is
applicable to both Experiment 1 and Experiment 2. How-
ever, the GOT model is specific to analyzing Experiment
2. In both experiments, we used the GP model to estimate

Comparison of qRT-PCR results, Part IIIFigure 5
Comparison of qRT-PCR results, Part III. Comparison of qRT-PCR results to Expresso and MEV t-test results for the last 
17 of 50 selected genes of the Col-0 genotype of Experiment 2.
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the differences in response of individual genotypes to
treatment (drought stress versus control or ozone stress
versus ambient ozone). However, the GOT model was
used to estimate the effects of treatment (ozone stress),
aside from the effect of individual genotypes.

Expresso GP model
The normalization model is

yspdab = μ + Pp + Dd + Aa + (P × A)pa + Bba + rspdab.

Each yspdab value is the log2-transformed intensity of spot s
within the dye d image in block b of array a. (A spot may
represent a gene, a control, or a blank.) The global mean
of the yspdab values, over all microarrays, is μ. The fixed
effects in the model are the plant sample effect Pp, where
p indexes the various distinct plant samples from which
mRNA was obtained, and the dye effect Dd, where d has
two values for the two dyes. The random effects in the
model are the array effect Aa, where a indexes the microar-
rays, the interaction effect (P × A)pa of plant sample p with
microarray a, and the block effect Bba, where b identifies
the block within microarray a. The model residual is rspdab.
This differs from the normalization model in Wolfinger,
et al., [2], in that it incorporates dye and block effects. It is
a refinement of the Expresso normalization model in Wat-
kinson, et al., [18], in that it has no printing pin effect,
which is specific to the analysis in the earlier paper, and
includes the block effect.

The second stage of the analysis uses the residual values
rspdab computed in the first stage to estimate the interaction
between an individual gene g and each plant sample p at
a significance level ≤ α = 0.05. Index g is added to the
residual values rspdab resulting to rgspdab. The value of g is
determined using the mapping of s index values to g index
values. The gene model is

rgspdab = Gg + (G × P)gp + (G × D)gd + (G × A)ga + λgspdab.

Here, g is a spot that represents a gene (not a blank or con-
trol) within the dye d image in block b of array a. The value
Gg is the mean of residual values for all spots that repre-
sent gene g in all images. The interactions (G × P)gp of gene
g with plant sample p and of (G × D)gd of gene g with dye
d are the fixed effects. The interaction (G × A)ga of gene g
with mi-croarray a is a random effect. The λgspdab values are
stochastic errors. This differs from the gene model in
Wolfinger, et al., [2], in that it incorporates interactions
between gene and dye and between gene and array. It
refines the Expresso gene model in Watkinson, et al., [18]
to include the interaction between gene and array.

The estimate of the expression level of each gene in each
treatment comparison is done by computing the pair-wise

least square mean differences of gene-treatment effects.
The Tukey-Kramer multiple comparison of gene-(plant
sample) effects on each gene is made to estimate the p val-
ues associated with each calculated expression level. If

there are ρ plant samples, then there are  possible

pairwise comparisons. If we index the plant samples from

1 to ρ, then the null hypothesis for gene g and comparison

i, j, where 1 ≤ i <j ≤ ρ, is

Ho: (G × P)gi = (G × P)gi.

The difference (G × P)gi - (G × P)gj is the estimate of the
log2(fold change) of gene g in the experimental compari-
son Pi versus Pj. The analysis also yields a p-value for the
statistical confidence in each difference.

The above GP model was used to analyze both Experi-
ment 1 and Experiment 2. In both experiments, there are
48 blocks per array. In Experiment 1, there are four arrays
and four plant samples, namely, WT-control, WT-stressed,
antiPLD-control, and antiPLD-stressed. In Experiment 2,
there are 12 arrays and eight plant samples, namely, Col-
0-test, Col-0-control, Cvi-0-test, Cvi-0-control, WS-test,
WS-control, Th-test, and Th-control.

Expresso GOT model
We wanted to estimate the gene-treatment effects sepa-
rately from gene-genotype-treatment interaction effects
using just one model. To do this, we designed the gene-
genotype-treatment model, an alternative set of log-linear
ANOVA mixed models, for the elevated CO2 experiment
where we unfold the genotype information from the plant
sample factor in the GP model. This resulted in a normal-
ization model that includes the genotype effect (Oo) with
4 levels (Col-0, Cvi-0, WS, and Th) and basic treatment
effect (Tt) with 2 levels (test and control). The random
array (Aa) effect however needs to be removed from the
model since it confounds the genotype effect.

The normalization model is

ysotdab = μ + Oo + TT + Dd + (O × T)ot + Bba + rsotdab.

Each ysotdab value is the log2-transformed intensity of spot s
for genotype o and treatment t within the dye d image in
block b of array a. We have that μ is as in the GP model.
The fixed effects in the model are the genotype effect Oo,
where o indexes the genotype (organism), the treatment
effect Tt, where t is the treatment, and the dye effect Dd,
where d has two values for the two dyes. The random
effects in the model are the interaction effect (O × T)ot of
genotype o with microarray a, and the block effect Bba,

ρ
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where b identifies the block within microarray a. The
model residual is rsotdab. This differs from the normaliza-
tion model in Wolfinger, et al., [2], in that it incorporates
genotype (organism), dye, and block effects. It is a refine-
ment of the Expresso normalization model in Watkinson,
et al., [18], in that it has no printing pin effect, and
includes the genotype and block effects.

The second stage of the analysis uses the residual values
rsotdab computed in the first stage to estimate the interac-
tion among an individual gene g, each genotype o, and
each treatment t, at a significance level ≤ α = 0.05. Index g
is added to the residual values rsotdab resulting to rgsotdab. The
value of g is determined using the mapping of s index val-
ues to g index values. The gene model is

rgsotdab = Gg + (G × O)go + (G × T)gt + (G × O × T)got + (G ×
D)gd + λgsotdab

Here, Gg are as for the GP model. The interactions (G ×
O)go of gene g with genotype o, (G × T)gt of gene g with
treatment t, (G × O × T)got of gene g with genotype o and
treatment t, and (G × D)gd of gene g with dye d are fixed
effects. The λgsotdab values are stochastic errors. This differs
from the gene model in Wolfinger, et al., [2], in that it
incorporates interactions between gene and genotype,
between gene and genotype with treatment, and between
gene and array. It refines the Expresso gene model in Wat-
kinson, et al., [18] to include interactions between gene
and genotype and between gene and genotype with treat-
ment.

We do pairwise comparisons as in the GP model, but
there are two plausible classes of null hypotheses to test
within the GOT gene model. If τ is the number of treat-
ments, then the class 1 null hypothesis for gene g and
comparison i,j, where 1 ≤ i <j ≤ τ, is

H1: (G × T)gi = (G × T)gj.

The difference (G × T)gi - (G × T)gj is the estimate of the
log2(fold change) of gene g in the Ti versus Tjcomparison.
This particular comparison looks for gene-treatment
effects that are independent of genotype.

We can still estimate the expression level of each gene
with respect to a specific genotype level by computing the
pair-wise least square differences of gene-genotype-treat-
ment interaction effects. The class 1 null hypothesis for
gene g and comparison i, j, where 1 ≤ i <j ≤ τ, is

H2: (G × O × T)goi = (G × O × T)goj.

The difference (G × O × T)goi - (G × O × T)goj is the estimate
of the log2 (fold change) of gene g of a specific genotype o

for the Ti versus Tj comparison. The analysis also yields a
p-value for the statistical confidence in each difference.

The GOT model applies to Experiment 2 in a straightfor-
ward way. There are 12 arrays, two treatments, and four
genotypes, namely, Col-0, Cvi-0, WS, and Th.

TM4 microarray software suite
The TM4 microarray software suite consists of several
components freely available from the TM4 web site [24].
In this research, we employed these components: Express-
Converter, Microarray Data Analysis Software (MIDAS),
and Microarray Experiment Viewer (MEV). ExpressCon-
verter converts microarray data from various data formats,
such as the GenePix Results (GPR) format, to the MEV for-
mat, which is used by MIDAS and MEV. MEV format
includes only integrated intensity values (IIV), which is
the kind of intensity values expected of all TM4 compo-
nents.

MIDAS data normalization methods and filters
Low intensity and saturated spots are marked by quantita-
tion programs. These spots are filtered out from the data
before doing any further normalization or statistical anal-
ysis. Data normalization methods proceed from the
assumption that only a relatively small proportion of the
genes change significantly in expression level between the
two hybridized mRNA samples. This assumption is rea-
sonable for these data sets since the hybridizations and
subsequent analysis address nearly all Arabidopsis thaliana
genes. The MIDAS component of TM4 provides a number
of data normalization methods and filters and supports
applying them in a pipelined fashion [13,14].

Total intensity normalization

While our assumption implies that the average measured
intensities of the two channels of a cDNA or oligonucle-
otide microarray should be almost the same, these aver-
ages are often significantly different, due to differences in
the inherent fluorescence of the two dyes. The total inten-
sity normalization step in TM4 is a straightforward means
to eliminate this global dye bias. For each spot i, where 1

≤ i ≤ n, let Ri and Gi be the measured intensities of the spot

in the two channels. The normalized intensity data for

spot i is  = κGi and  = Ri, where κ is the normaliza-

tion factor  Quackenbush [14]

discusses this normalization in the context of sev-eral var-
iations that are possible to address differing channel
intensities.

′Gi ′Ri

κ = = =∑ ∑( )/( )R Gii
n

ii
n

1 1
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Lowess normalization
Beyond the global dye bias, there is dye bias that is
dependent on the measured spot intensities [25,26]. TM4
constructs a scatter plot, called an RI-plot, of the points (xi,
yi), where 1 ≤ i ≤ n, given by xi = log10(RiGi) and yi =
log2(Ri/Gi). Under our assumption, the RI-plot should be
very nearly symmetric with respect to the line y = 0. In
lowess normalization, TM4 applies the lowess method of
Cleveland [27] to fit a locally weighted regression curve to
the RI-plot; TM4 then adjusts spot intensities to eliminate
any systematic intensity-dependent bias. Additional
details on correcting intensity-dependent bias is found in
[14].

Standard deviation regularization
After total intensity and lowess normalizations eliminate
dye bias on a global (per microarray) scale, TM4 employs
standard deviation regularization to ensure that the per-
block variances of log(Ri/Gi) values are the same [25,28].
Quackenbush [14] provides the formulas for this normal-
ization step.

Low intensity filtering
Since the relative error in the log(Ri/Gi) values increases if
Ri or Gi is close to background levels, spots with low inten-
sities are filtered out. Quackenbush [14] provides addi-
tional details, which essentially require that both Ri and Gi
intensities be above two standard deviations of the respec-
tive backgrounds.

The MIDAS pipeline
We applied a MIDAS pipeline consisting of total intensity
normalization, lowess normalization, standard deviation
regularization, and low intensity filtering to both microar-
ray data sets. MIDAS default parameters were used
throughout; the default low intensity filter cut-off is RiGi <
10,000.

TM4 MEV analysis
The Multi Experiment Viewer (MEV) component of TM4
provides a number of statistical analyses and clustering
algorithms to identify differentially expressed genes. We
report results from the one-class t-test analysis applied to
output of the MIDAS pipeline. This test assumes that the
paired distribution of treated and control groups is nor-
mally distributed. Since the intensities measured from the
same spot are correlated, we can apply the one-class t-test
for the two-group comparison.
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Genes subjected to qRT-PCR. Supplementary Table 1 is a PDF file that 
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ment 2, Li, et al., [23] performed real-time quantitative reverse-tran-
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