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Abstract

Background: Membrane proteins are estimated to represent about 25% of open reading frames
in fully sequenced genomes. However, the experimental study of proteins remains difficult.
Considerable efforts have thus been made to develop prediction methods. Most of these were
conceived to detect transmembrane helices in polytopic proteins. Alternatively, a membrane
protein can be monotopic and anchored via an amphipathic helix inserted in a parallel way to the
membrane interface, so-called in-plane membrane (IPM) anchors. This type of membrane anchor
is still poorly understood and no suitable prediction method is currently available.

Results: We report here the "AmphipaSeeK" method developed to predict IPM anchors. It uses
a set of 2| reported examples of IPM anchored proteins. The method is based on a pattern
recognition Support Vector Machine with a dedicated kernel.

Conclusion: AmphipaSeeK was shown to be highly specific, in contrast with classically used
methods (e.g. hydrophobic moment). Additionally, it has been able to retrieve IPM anchors in
naively tested sets of transmembrane proteins (e.g. PagP). AmphipaSeek and the list of the 21 IPM
anchored proteins is available on NPS@), our protein sequence analysis server.

Background

About 25% of open reading frames in fully sequenced
genomes are estimated to encode membrane proteins [1].
However, the global analysis of these proteins has proved
to be difficult. A greater effort has thus been undertaken to
develop prediction methods, with reasonable success [2-
4]. Most of these have been devised to detect transmem-
brane segments with an a-helical conformation (TM heli-
ces). This type of membrane segment is the most studied
so far, and consequently the most represented in mem-
brane protein databases [5,6]. Alternatively, membrane
proteins can be monotopic, i.e. bound to the membrane
interface and thus in contact with only one of the com-

partments defined by the membrane. In the latter case, the
membrane anchor can be made of (1) covalent links to a
hydrophobic compound [7] (2) electrostatic binding to
phospholipid head groups [8], (3) hydrophobic loops
inserted in the membrane interface [9,10] and (5)
amphipathic a-helices inserted at the membrane inter-
face, parallel to the membrane plane, so-called in-plane
membrane anchors (IPM anchors) [11,12].

IPM anchors are not uncommon. Since their first discov-
ery in 1986 [13], new examples are regularly reported in
the literature. However, IPM anchors are still poorly
understood and no suitable prediction method is yet
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Amino acid composition bias of IPM anchors, sol-
vent-accessible helices from globular proteins and
TM anchors. Amino acid frequencies were normalized to
UniProt amino acid composition (dashed line). The composi-
tion of IPM anchors is shown in black, of TM helices in grey
and of solvent-accessible helices from globular proteins in
white. IPM anchors are extracted from our final data set. Sol-
vent accessible helices are extracted from globular soluble
proteins present in the PDB (sequence similarity lower than
25%, accessibility computed by DSSP [53] lower than or
equal to 60). TM helices are extracted from the 3D_helix set
of the MPtopo database [5].

widely available to the scientific community. To date,
their analysis in silico mainly involves the calculation of
the hydrophobic moment [14] and the Schiffer-Edmund-
son projection [15]. These 2 methods are suitable for
depicting amphipathic structures in proteins (e.g. [16]),
but are not specifically designed for IPM anchors. In fact,
they appear as highly sensitive but poorly specific in this
latter case. To our knowledge, there has been only one
attempt to develop a prediction method for such mem-
brane anchors. It consists of calculating the Depth-
Weighted Inserted Hydrophobicity (DWIH, [17]). How-
ever, this method has only been assessed on 6 sequences.
The main problem springs from the fact that systematic
sequence analyses are still limited to a few examples of
membrane proteins [17,18]. There is no exhaustive and
reliable set of experimentally characterized IPM anchored
proteins, making the development of a prediction method
very difficult.

In this paper, we describe the first attempt to develop a
prediction method for IPM anchors in monotopic pro-
teins using experimental data. In practical terms, our
method uses a set of 21 monotopic proteins reported as
anchored in the membrane plane. This set constitutes the
most exhaustive database of IPM anchored proteins to
date. The method is a one-against-all classification process
(IPM versus non-IPM) based on a pattern recognition Sup-
port Vector Machine (SVM) with a dedicated kernel. In
contrast with other classically used methods, our objective
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was to develop a highly specific classifier. Multiple align-
ments and a hierarchical architecture were additionally
used to improve the performances of the SVM. This
resulted in an increase of specificity and a limited but sig-
nificant increase of sensitivity. Our method was naively
tested on set of known membrane or soluble proteins, as
a key proof of efficiency. It as been able to retrieve IPM
segments in several membrane proteins while limiting the
prediction of IPM anchors in soluble proteins. Our
method, "AmphipaSeeK", was implemented on the
NSP@ server [19].

Results

Data set building and characterization

As detailed in Methods Section, the 21 sequences of
monotopic proteins reported as IPM anchored (initial set)
were submitted to an enrichment protocol resulting in a
homogenous final data set of 91 sequences (enriched set).
It is important to note that in this latter set only 7.8% of
the residues are involved in an IPM anchor. Their compo-
sition bias is reported in Figure 1. The average size of IPM
anchors is 23 + 10 residues and they are mainly predicted
in helical and random coil states (66.1% and 28.3% of the
residues, respectively). Most of IPM anchors include a sin-
gle amphipathic a-helix, for a maximum of 3. Finally, IPM
anchors appear indifferently located between the extrem-
ities or in the middle of the sequences.

In IPM anchors, Lys, Phe and Trp are the most over-repre-
sented residues while Cys, Tyr and Pro are the most under-
represented. IPM anchors are more hydrophobic than sol-
vent accessible helices from globular proteins, known to
be preferentially amphipathic [16,20]. This difference is
particularly marked for Trp and Phe, two large hydropho-
bic residues. As expected, IPM anchors are more
hydrophilic than TM helices [16,21]. It is noticeable that
Trp is the only hydrophobic residue more abundant in
IPM anchors than in TM helices. Trp, Tyr and Lys, are
known to be preferentially located at the membrane inter-
face in TM proteins [21,22]. It is then not surprising to
observe an over-representation of Trp and Lys in IPM
anchors. In contrast, Tyr is under-represented in this type
of anchor. However, this fact is difficult to interpret with-
out a larger data set of monotopic proteins.

Sequence-to-topology SVM: prediction using a single
sequence

As the main characteristics of the IPM anchors are an a-
helical conformation and a membrane localization, we
used the Levin-Robson-Garnier (LRG) [23,24] and PHAT
[25] substitution matrices (or more precisely the corre-
sponding Gram matrices) for the SVM Gaussian kernel
(see Equations 1 and 2 in Methods section). The LRG
matrix was specifically designed for protein secondary
structure prediction (e.g. the SOPMA method [26]) while
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Table |I: Sequence-to-topology SVM performance using the LRG and PHAT matrices

No Positional Weighting

Positional Weighting

Substitution Matrix LRG2 PHAT®
Accuracy 94.0 93.6
Sensitivity 18.3 9.9
Specificity 99.8 100.0
Pron-ipM 94.1 93.6
Pipm 87.1 94.4
Com 0.38 0.30

LRGe PHATd MLPe
93.9 94.3 90.6
284 27.2 353

98.9 99.4 94.8
94.8 94.7 95.1

67.0 76.3 342
0.41 0.44 0.30

aC =150, I/1262=0.03, window size = 21

bC=5.0, 1/1262=0.01, window size = 21

¢C =125.0, I/262 = 0.40, window size = 2| residues
dC=25.0, I/262=0.10, window size = 21| residues
¢ hidden layer size = 16, window size = |5 residues

the PHAT matrix is built from predicted TM regions of the
Blocks database. The BLOSUM matrix [27] has also been

tested but gives a significantly lower performance (data
not shown).

The optimal values of the window size, the soft margin
parameter C and the kernel bandwidth 1/2c62 (Equation 1)
were determined for each matrix, with and without posi-
tional weighting (no positional weighting simply means
that the components of the positional weighting vector 6
are all set to 1). A ratio of the dual objective function over
the primal objective function exceeding 0.90 was used as
the stopping criterion for the training procedure. The best
results obtained are reported in Table 1. The results
obtained with a multi-layer perceptron (MLP) [28,29], a
standard connectionist architecture, are also given for
comparison. Performance of the SVM trained with the ini-
tial set of 21 proteins was measured by using a standard
leave-one-out procedure in order to assess the influence of
the enrichment protocol. No significant difference has
been observed with the SVM trained with the enriched
data set (Table 1 in Result section and Table S2 of Addi-
tional file 1).

=
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Figure 2

Positional weighting profiles associated with the LRG (dashed
line) and PHAT (solid line) matrices.

Residues involved in an IPM anchor represent only 7.8%
of the total number of residues in the enriched data set.
The recognition rate and specificity are consequently not
very significant for assessing the quality of the prediction.
We have thus used the positive predictive value (P,p), the
negative predictive value (P,.,py) and the correlation
coefficient of Pearson-Matthews (Cp,,) (Equations 6-8) to
better assess the classification performance. Performance
with respect to these latter criteria, especially sensitivity,
remains low for both matrices when no positional weight-
ing is used.

The introduction of positional weighting dramatically
improves prediction accuracy. The profile associated with
PHAT (Figure 2), is approximately symmetric with higher
weights (> 0.2) at positions i-6, i-5, i-3, i-2 and i+2, i+3,
i+5, i+6, with i the absolute position in the sequence of the
residue to be classified. The profile associated with LRG is
rather asymmetric. Higher weights are found in the right-
hand side of the profile.

The results obtained with a positional weighting are simi-
lar for both PHAT and LRG. The IPM anchors are largely
under-predicted. However, the sensitivity is slightly better
with LRG (28.4%) than with PHAT (27.2%). In both
cases, predictions are specific with a P, of 67.0% and
76.3% for LRG and PHAT respectively. The Cp,, is only
slightly better when using PHAT. These results call for
improvements in the prediction method, in order to
improve some measures of accuracy, especially sensitivity.
Several options have been investigated, among which we
favored two: a hierarchical approach to prediction, with a
post-processing of the output, and the introduction of
additional evolutionary information.

Hierarchical approach: topology-to-topology SVM

The output of the sequence-to-topology SVM was used as
input of a second SVM, implementing a classical Gaussian
kernel. This "topology-to-topology SVM" will be said to
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Table 2: Topology-to-topology SVM training and test
performance using as input the output of the sequence-to-
topology SVM. "With" and "Without Structure II" indicates if
the predicted secondary structure of the sequence is also
included in input or not. LRG and PHAT columns correspond to
the substitution matrices used by the sequence-to-topology
SVM.

Without Structure Il With Structure Il

Substitution Matrix LRG?2 PHAT® LRGe PHATd
Accuracy 91.7 93.6 92.3 94.3
Sensitivity 429 64.3 41.1 44.|
Specificity 95.5 95.9 96.4 98.3
Pron-iPM 95.4 97.1 95.3 95.6
Piom 44.1 55.7 475 67.1
Cem 0.39 0.64 0.40 0.52

aC=10.0, 1/1262= 0.1, predictors = segment of 2| residues

bC=10.0, //262= 0.1, predictors = segment of 2| residues

cC=15.0, I/262= 0.1, predictors = segment of 21| residues +
corresponding predicted secondary structure
d4C=5.0, I/1262= 0.05, predictors = segment of 2| residues +
corresponding predicted secondary structure.

be associated with LRG or PHAT, depending on the nature
of the substitution matrix used by the sequence-to-topol-
ogy SVM. Applying such a hierarchical approach to data
processing provides us with the possibility of (1) intro-
ducing a smoothing to limit aberrant predictions, such as
too short IPM segments and (2) taking into account addi-
tional pieces of information, for instance the predicted
secondary structure. The generalization performance of
the topology-to-topology SVM is summarized in Table 2
(values directly comparable to those of Table 1).

The sensitivity of the topology-to-topology SVM is 1.5
times higher than that obtained by the sequence-to-topol-
ogy SVM using the LRG matrix (42.9% versus 28.4%,
respectively). The sensitivity becomes 2.4 higher when
considering the PHAT matrix (64.3% versus 27.2%,
respectively). However P, is divided by 1.5 for both
matrices. The Cp,, is consequently not significantly differ-
ent between sequence-to-topology and topology-to-

Table 3: Quality of the predictions involving multiple alignments.
The weights assigned to the aligned sequences are calculated
using a BLOSUM weight scheme at a fractional identity of 0.80.
LRG and PHAT columns correspond to the substitution
matrices used by the SVM.

Substitution Matrix LRG PHAT
Accuracy 95.0 95.0
Sensitivity 31.3 31.3
Specificity 99.8 99.8
Pron-iPM 923 93.8
Pipm 95.0 95.0
Cem 0.52 0.53

http://www.biomedcentral.com/1471-2105/7/255

topology SVMs when considering the LRG matrix. The
performance improvement is more effective with PHAT
since the Cp,, is 1.5 times higher than for the correspond-
ing sequence-to-topology SVM. The improvement of the
Cpy, is still observed when the predicted secondary struc-
ture is included in the input of the topology-to-topology
SVM associated to PHAT and is > 0.5. The Cpy, is thus
intermediate between those obtained by the sequence-to-
topology SVM and by the topology-to-topology SVM
without using secondary structures. Additionally, the loss
of specificity is less important.

In parallel with the secondary structure, one could won-
der whether the hydrophobic moment puH could be used
in the input of the topology-to-topology SVM, since pH is
commonly calculated to characterize amphipathic helices
[14]. In fact, uH quantifies the segregation of hydropho-
bic and hydrophilic residues along the main axis of an a-
helix. However, our preliminary analyses highlighted the
fact that high pH values are not specifically associated
with IPM anchors (data not shown). Indeed, soluble glob-
ular proteins possess numerous amphipathic helices on
their surface that do not specifically interact with mem-
branes [16]. Amphipathic helices of IPM anchors are thus
completely included in the very abundant population of
amphipathic helices from soluble proteins. This is the rea-
son why we have not considered pH.

Taking into account the evolutionary information using
multiple alignments

In order to include additional evolutionary information
in our method, we applied the sequence-to-topology SVM
to multiple alignments. More precisely, the procedure
consists in performing the prediction independently for
all the sequences in the alignment, then afterwards deriv-
ing a consensus prediction, using a weighted average. This
procedure is similar to what was done by [30]. The other
standard possibility, to feed the SVM directly with the
multiple alignments in place of the sole sequences, would
also have been possible (see [31] for details on the way
this change affects the computation of the kernel). Since
this work is highly time-consuming, this will be done as
soon as the parallelization of the M-SVM code will be
completed. Aligned sequences for the 91 base sequences
were retrieved in UniProt using a previously described
process [32]. Different alignment weighting methods
were applied for the average score computation: the BLO-
SUM method [27], a position-based method [33], a
Voronoi method [34] and a maximum entropy method
[35]. The best results were obtained with the BLOSUM
weighting scheme (Table 3, other data not shown).

The performance improvement is significant in both
cases. Sensitivity is improved by more than 10%, com-
pared to the sequence-to-topology SVM processing single

Page 4 of 11

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:255

http://www.biomedcentral.com/1471-2105/7/255

Table 4: Classification performance for 3 sets of soluble or transmembrane proteins naively tested. "Observed as" corresponds to the
number of residues observed at a TM or a non-TM position. "Predicted as" corresponds to the number of residues predicted at a IPM
or non-IPM position. "Proteins with TM a-helix" is a set of 101 proteins with | or more TM o-helices. "Proteins with TM B-barrel" is a
set of 21 TM B-barrel proteins. TM proteins are extracted from the MPtopo database (3D_helix and 3D_other subsets, respectively).
"Soluble proteins" is a set of 65 soluble proteins extracted from the PDB (sequence similarity < 25%). These 3 sets were submitted to
the sequence-to-topology SVM, using PHAT and a positional weighting (Table 1). An average prediction was then computed for each
sequence of the sets following the procedure described above (Table 3).

Proteins with TM a-helix

Proteins with TM B-barrel Soluble proteins

Observed as

Observed as Observed as

Predicted as ™ non-TM
IPM 181 152
non-IPM 11057 14423
Total number of residues 11238 14575

™ non-TM ™ non-TM
16 5 - 57
3540 4138 - 30310
3556 4143 - 30367

sequences. The P, is 1.4 and 1.3 times better for LRG
and PHAT respectively. Moreover, the Cp,, exceeds 0.5.
This process reduced very efficiently the number of false
positives (Tables S1 and S3 of additional data file 1). Since
our objective is to build a prediction method as specific as
possible, this behavior can be seen as the most satisfactory
obtained so far.

Performance on naively tested sequences

IPM anchors are not the only type of membrane anchors.
Furthermore, amphipathic helices are not systematically
associated with a membrane. We have thus applied our
method to 3 supplementary sets of sequences to test
whether it tends to confuse a TM segment or a segment
from a soluble protein with an IPM anchor. The first and
second sets were composed of membrane proteins of
known 3D structure including TM B-barrels or TM helices,
respectively. The third set was made up of soluble proteins
of known 3D structure that do not interact with a mem-
brane.

Our method was very efficient in distinguishing soluble
proteins from membrane proteins since only 57 residues
are predicted as "IPM" on a total of 30367 in the set of sol-
uble proteins (0.2% of the residues, see Table 4 and Table
S5 of additional file 1). Additionally, more than 80% of
the predictions are limited to < 5 consecutive positions.
The exception is the B-methylaspartase (PDB: 1IKDO) with
a predicted IPM segment of 11 residues, corresponding to
a solvent-accessible amphipathic helix [36].

Prediction of IPM segments is also limited in TM B-barrel
proteins. Only 21 residues on a total of 7699 are predicted
as "IPM" in the set of TM B-barrel proteins: 16 of them are
involved in a TM B-strand. In this case, predicted IPM
anchors are limited to < 3 consecutives residues. Very
interestingly, our method predicted an IPM anchor of 6
consecutives residues at the N-terminal extremity of PagP
(PDB: 1THQ). This predicted segment indeed corre-

sponds to an amphipathic a-helix perpendicular to the B-
barrel and very probably inserted in the membrane plane
[37].

The amount and the size of predicted IPM anchors are
higher for proteins with TM a-helices: 333 residues on a
total of 25813 are predicted as "IPM" (1.3% of the resi-
dues). 68% of these predictions have a size > 5 consecu-
tive residues, and 6% a size > 10. Predicted IPM residues
are approximately equally distributed between the T™M
and non-TM parts of the proteins. In fact, most of the pre-
dictions of IPM anchors outside a TM helix very likely cor-
respond to effective IPM segments. For example, the 22 C-
terminal residues of the subunit L of the photosynthetic
reaction center from Rhodopseudomonas viridis (PDB:
1DXR) are predicted as "IPM". Analysis of the structure
reveals that it indeed corresponds to an amphipathic a-
helix perpendicular to a TM a-helix and very likely
inserted in the membrane plane (OPM: 1DXR, [38]). Nev-
ertheless, predicted IPM anchors very often overlap the
ends of TM a-helices. This problem is not really surprising
since the composition biases of the interfacial parts of TM
helices and IPM helices appear to be close (Figure 1 and

[21]).

Additionally, the 3 sets of proteins were submitted to the
SVM trained with the initial set of 21 proteins. Specificity
is lower in this case than for the SVM trained with the
enriched set (Table S4 of additional file 1). In fact, the
SVM trained with the initial set tends to confuse a segment
of soluble protein or a TM a-helix with a IPM anchor
more often than the SVM trained with the enriched set. In
fact, the SVM trained with the initial set tends to be more
sensitive and less specific, contrasting with our aim to
develop a very specific prediction method.

Discussion and conclusions
In this paper, we have introduced a prediction method for
IPM anchors based on a support vector machine. Our
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objective was to develop a highly specific classifier in con-
trast with other methods used to predict this kind of mem-
brane segment (hydrophobic moment, helical wheel
projection).

Training was performed using a set of 21 experimentally
characterized IPM anchored proteins. The retrieved pro-
teins are involved in various biochemical functions and
organisms: viral replication, hormone synthesis in mam-
mals, etc.

Our initial set of proteins was enriched using experimen-
tal and bioinformatic methods. The final data set contains
91 sequences. This enrichment has allowed us to take into
account the important sequence variability between IPM
anchors of homologous proteins (e.g. [12] and Brass, Pal
et al. submitted). The composition bias of the IPM seg-
ments shows an over-representation of Lys and Trp,
known to be preferentially located at the membrane inter-
face [21,22,39]. Surprisingly, Tyr, also known to be an
interfacial residue, is one of the most under-represented
residues in IPM anchors. This difference is difficult to
interpret because of the limited number of examples
reported in the literature. Interestingly, Tyr seems to be
preferentially in IPM anchors with low amount of Trp.
Thus, Tyr might be also an important membrane determi-
nant, at least for some IPM anchors.

The enriched set was used to train a bi-class SVM, distin-
guishing the residues involved in an IPM from the other
ones. The kernel of this SVM (sequence-to-topology SVM)
is a Gaussian function which incorporates an amino acid
substitution matrix and a positional weighting vector.
Two substitution matrices have been tested: LRG, devel-
oped for secondary structure prediction, and PHAT, devel-
oped for TM helices prediction. The performance
obtained with the 2 matrices is similar: the resulting clas-
sifier can be considered as lowly sensitive but specific.

Several possibilities were investigated to improve the pre-
diction accuracy of this classifier. First, its output was used
in the input of a second SVM (topology-to-topology
SVM), both alone and in conjunction with a prediction of
the corresponding secondary structure. This post-process-
ing improves significantly the sensitivity, especially when
the sequence-to-topology SVM uses the PHAT matrix.
However, the drawback is that the specificity is signifi-
cantly reduced.

To benefit from the additional evolutionary information
in our method, we have used multiple alignments in order
to compute average predictions from the sequence-to-
topology SVM results. In accordance with our objective,
the resulting classifier was very specific. Furthermore, the
sensitivity is better than when the prediction is based on

http://www.biomedcentral.com/1471-2105/7/255

the sequences only. Multiple alignments were also used in
the two-step approach (sequence-to-topology + topology-
to-topology SVM). However, this did not lead to any sig-
nificant improvement. This is probably due to an overfit-
ting of the topology-to-topology SVM. The
implementation of a stacked generalization procedure
[40] appears as the natural solution to this problem. This
will be done after the completion of the SVM paralleliza-
tion.

Given the experimental results summarized above, the
configuration we eventually selected for our prediction
method consists of a sequence-to-topology SVM process-
ing multiple alignments. In accordance with our objec-
tive, the method is highly specific (99.8%), with a Cp,, of
0.53. The low sensitivity is difficult to overcome since it is,
at least partially, due to the imbalance between the
amounts of IPM (7.8%) and non-IPM (92.2%) residues.
The imbalance could be influenced by Trp, a residue over-
represented in the data set and associated with high scores
in substitution matrices. Trp is thus associated with low
values in the matrix of dot products between amino acids.
Consequently, the classifier could underestimate the
"IPM" category in Trp poor sequences.

Unfortunately, our classification method cannot be com-
pared readily with the only other prediction method of
IPM anchors published so far, the DWIH measurement
(see introduction), for two main reasons. First, the DWIH
algorithm is not publicly available; second, its reported
efficiency has been measured on 6 sequences only. How-
ever, our method has been naively tested on 3 sets of pro-
teins made up of soluble proteins, proteins with TM B-
barrels or proteins with TM a-helices. The prediction of
IPM anchors is limited in soluble proteins and proteins
with TM B-barrels, as expected. In the case of membrane
proteins with TM helices, predicted IPM anchors tend to
overlap the ends of the TM segments. This is very probably
due to the composition bias of these parts of TM helices,
rather close to the one of IPM anchors (Figure 1 and [21]).
In fact, defining the limit between a TM and an IPM seg-
ment in transmembrane proteins is not a trivial problem,
even when a 3D structure is available. Including TM pro-
teins in the training set will probably partially solve the
problem. However, this will require the systematic anno-
tation of the TM and IPM segments in transmembrane
proteins, a long and difficult task. As preliminary tests, we
included some well-defined cases of transmembrane pro-
teins with IPM anchors in the training set (e.g. gp41 [41]),
which gave satisfactory results.

As a final proof of efficacy, our method has been able to
retrieve several IPM anchors in transmembrane proteins
(e.g- PDB: 1THQ). In fact, it would be interesting to turn
to a multi-class problem by introducing additional cate-
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Figure 3

Schematic representation to scale of an IPM anchor.
The amphipathic a-helix of the IPM anchor is depicted as a
black and white cylinder, for the hydrophobic and hydrophilic
sides, respectively. The non-membrane part of the protein is
represented by a dotted line. The membrane hydrophobic
core, including acyl chains, is dark grey and the membrane
interface, including glycerol and above atoms, is light grey.

gories, e.g. a "TM" category. Note that this would not gen-
erate any technical problem since our SVM software is
actually a multi-class one. Additionally, it will be interest-
ing to further investigate the choice of the kernel; for
example, it is possible to combine several kernels (one
dedicated to the sequence, one dedicated to the secondary
structure, etc.) into a single one (e.g. [42]) and to adapt the
Gaussian kernel to directly deal with multiple alignments.
In any case, a regular update of the initial data set used in
our method will improve the performance. Finally, our
method, "AmphipaSeeK", is available on the NPS@, our
protein sequence analysis server [19].

Methods

Data Set

The sequences constituting the experimentally character-
ized data set were initially retrieved from the literature.
The 21 selected sequences correspond to monotopic pro-
teins with an experimentally characterized IPM anchor
segment (Figure 3). Experiments included insertion-dele-
tion-mutation, fusion with soluble heterologous proteins
(e.g. Green Fluorescent Protein), liposome and/or unila-
mellar vesicule binding assays, and structural studies
using circular dichroism, ATR-FTIR and liquid/solid NMR

http://www.biomedcentral.com/1471-2105/7/255

in membrane mimetic media. All sequences possess an
unambiguous IPM anchor. This means that the segment
including the IPM anchor: (1) is necessary and sufficient
for the membrane anchor; (3) is < 75 residues long and is
mainly arranged as an o-helix; (4) possesses amphipathic
o-helices (characterized or predicted) and (5), no T™M
anchor is present in the whole protein.

The database was completed with our experimental study
of the NS5A N-terminal segment from Hepatitis C Virus
(HCV) and related viruses. HCV belongs to the Flaviviridae
family including Flavivirus (e.g. dengue virus), Pestivirus
(e.g. bovine viral diarrhea virus or BVDV), Hepacivirus
(HCV) genera and unclassified GB viruses (GB virus A, B
and C). NS5A N-terminal segments of HCV [43], GB
viruses B and C (Brass, Pal et al., submitted), and BVDV
[12] has been demonstrated to be necessary and sufficient
to anchor Green Fluorescent Protein to the endoplasmic
reticulum membrane. ATR-FTIR experiments have shown
that these peptides are positioned parallel to the mem-
brane (Vigano and Huet-Pécheur, personal communica-
tion). Determination of the three-dimensional structure
of the membrane segments of the BVDV segment by NMR
performed in various membrane mimetic environments
has revealed the presence of an amphipathic a-helix posi-
tioned at the interface of peptide-detergent micelles [12].
All these experimentally characterized proteins have been
included in the data set.

This initial data set was enriched by the application of a
sequence of treatments in silico centered on a profile HMM
method (Figure 4). The aim was to increase the evolution-
ary information content of the data set by including dis-
tant homologous sequences, since IPM anchors of closely
related proteins can have a low sequence similarity (e.g.
NS5A proteins from HCV, GB viruses and BVDV, [12] and
Brass, Pal et al. submitted). Thus, this set is considered as
enriched since it contains more different examples of IPM
anchors, even if the entire protein sequences are globally
similar. It must be borne in mind that the enrichment
process does not constitute a prediction method itself.
Indeed, it tells us nothing about IPM anchors possibly
existing in sequences not homologous to those of the data
set of reference.

Each experimentally characterized IPM segment was sub-
mitted to the FASTA homology search program [44].
Retrieved sequence segments were aligned using CLUS-
TAL W [45]. HMM profiles were built from these multiple
alignments using HMMbuild from the HMMER 2.2 g
package [46]. Each profile was searched for in the UniProt
database [47] using HMMsearch from the HMMER 2.2 g
package. Matching sequence segments extracted from
HMMsearch results were evaluated as putative members
of the family of IPM anchored proteins by examining (1)
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Figure 4
Flowchart of the data set enrichment process.

the presence of a predicted a-helix with a consensus sec-
ondary structure prediction method, the amphiphilicity
of predicted helices with (2) helical wheel projections and
(3) hydrophobic moment calculation, and (4) by search-
ing for the membrane binding properties of the corre-
sponding sequences reported in the literature, when
available. The validated new segments were included in
the set of aligned sequences with HMMalign. A new HMM
profile was constructed and searched for once more in
UniProt. This iterative process was repeated until conver-
gence, i.e. when no new segment could be validated and
added to the previous multiple alignments. All the above
tools are available on the NPS@ Web server [19]. The pre-
dicted secondary structure was obtained as a consensus
from several prediction methods also available on the
NPS@ Web server: DSC, PHD and SOPMA (see NPS@
home page and references therein). Hydrophobic
moments of predicted a-helices [14] have been computed
using a size 11 sliding window and an angle of 100 deg.

The enrichment process could retrieve 531 sequences
comprising some distant homologous sequences and also
many closely homologous ones, which contained less
useful evolutionary information. To overcome this prob-
lem, only IPM segments with a similarity < 50% were
selected from the enriched data set, representing 91
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sequences. Finally, the full-length sequences correspond-
ing to those 91 segments have been retrieved. They consti-
tuted our data set. Their similarity was approximately <
50% but the exact value was not so important since (1)
the classification method was a bi-class one (i.e. IPM posi-
tion or not) and (2) the SVM, due to the geometrical
nature of the principle on which it is based (maximal mar-
gin hyperplane), could deal with redundant information.

SVM classifier

We have seen earlier that homology could not be used as
a single criterion to perform the prediction. The classifica-
tion method we used was a SVM [48,49]. To overcome the
aforementioned shortcomings, it implements a totally
difference strategy: the inference of statistical regularities
from local information (the content of a sliding window).
The conjecture is that the local context tells us something
about the state of a residue, precisely if it belongs to an
IPM anchor or not, and that this knowledge can be
extracted even from non homologous sequences. In that
context, the aim of the enrichment process is primarily to
provide the classifier with additional information regard-
ing the natural variability it must cope with.

The training algorithm implemented, described in detail
in [50], was inspired from the Frank-Wolfe algorithm
[51]. The main advantage of this algorithm, which incor-
porates a decomposition method, consists in making it
possible to process very large data sets.

Choice of the kernel

The predictors used to determine the category of each res-
idue are the amino acids contained in a sliding window
centered on the residue to be classified. The description of
each example is thus a vector x = (;)_,,<i<, Of {1,..., 22}20+1,
the integers 1 to 20 corresponding to the 20 amino acids,
while 21 is used to designate undetermined amino acids
(i.e. X, B and Z) and 22 corresponds to an empty position
(which occurs when the window overlaps with the N or
the C-terminus of a sequence). The kernel used by the
SVM is the Gaussian kernel introduced in [31]. Compared
to the basic implementation of the Gaussian kernel for
sequence processing, this one exhibits two specificities: it
makes use of a matrix D = (d;);<j<, of dot products
between amino acids and a positional weighting vector 6
= (0,)_y<i<- 1t is given by the formula:

2

n
> 67 |xi -«

S (1)

kB,D(xf x") = exp

Under the assumption that the amino acids in the i-th
position of the first and second window are those of indi-
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ces j and k (no matter in which order),
by:

x: - x':||2 is given
|x; - x'3[[2is g

[|x;- x'3]]12 = djj + diy, - 2djk (2)

Thanks to the use of D, the amino acids (and the
unknown amino acids and the empty position) are not
supposed to form an orthonormal basis. In other words,
the distance between the contents of two positions with
equal indices in two windows is not simply 0 (identical
contents) or 1 (different contents), but can take different
values as a function of the amino acids involved. The com-
ponents of matrix D are derived from similarity/substitu-
tion matrices. In that way, evolutionary information can
be taken into account. The weighting vector 6 modulates
the influence of the different positions in the window on
the prediction. Details on the determination of D and 6
are given in the following subsection.

Setting the parameters of the Gaussian kernel

Computation of the matrix of dot products D

As explained above, the kernel integrates evolutionary
information through a matrix of dot products between
amino acids. This matrix is directly derived from a substi-
tution matrix. Such matrices cannot be used directly in the
computation of the kernel since they are not symmetric
positive (semi-)definite, i.e. are not associated with an
underlying dot product. However, since they are symmet-
ric anyway, one simple way to approximate them with a
Gram matrix consists in diagonalizing them and replacing
all the negative eigenvalues with 0. This is what was done
with the two substitution matrices used in the experi-
ments reported in Results section, LRG and PHAT.

Positional weighting vector 6

The determination of the values of the components of vec-
tor 0 in Equation 1 is the result of a supervised learning
algorithm. The matrix D being given, a training set is used
to implement a kernel alignment principle introduced in
[52]. In short, the objective function with respect to which
vector 0 is optimized is the "fit" between the computed
Gram matrix and an ideal one (for which building a clas-
sifier with optimal recognition rate and large margin
would be trivial). In practice, 6 is obtained through a sto-
chastic gradient ascent.

Validation protocol

The procedure implemented to derive the test perform-
ance is a standard seven-fold cross-validation. During the
procedure, a great care has been taken to put homologous
sequences in the same cross-validation subset. Two
homologous sequences were then learnt/tested concomi-
tantly. Six different measures were used to assess the pre-
diction accuracy, involving the 4 components of the
confusion matrix (TP, number of correctly classified IPM
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positions; TN, number of correctly classified non-IPM
positions; FP, number of incorrectly classified non-IPM
positions; FN, number of incorrectly classified IPM posi-
tions):

Accuracy:

= TP + TN
TP+ TN+ FP + EN

(3)

Sensitivity:
Sn=— 1P (4)
TP + FN
Specificity:
TN
Sp= ———— 5
P TN + FP ( )

Positive predictive value, i.e. proportion of correctly pre-
dicted IPM residues:

TP

Py = ———— 6
IPM ™ 1p 4 P (6)

Negative predictive value, i.e. proportion of correctly pre-
dicted non-IPM residues:

TN

Phon-ipm = NN (7)

Correlation coefficient of Pearson-Matthews:

o TPx TN — FPXFN
M J(TP + FP)(TP + EN) (TN + FP) (TN + EN)

Availability and requirements
Name: AmphipaSeeK

Operating system: platform independent

Programming language: C and Python

Other requirements: Python 2.4 or higher

Availability: AmphipaSeeK is available on the NSP@
server http://npsa-pbil.ibcp.fr/ at the following URL:

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/
NPSA/npsa_amphipaseek.html

The list of the 21 proteins used to build the data set is
available on the AmphipaSeeK help page:
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The M-SVM source code is available on the Web page of
Yann Guermeur

http://www.loria.fr/~guermeur,
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