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Abstract
Background: Microarrays measure the binding of nucleotide sequences to a set of sequence
specific probes. This information is combined with annotation specifying the relationship between
probes and targets and used to make inferences about transcript- and, ultimately, gene expression.
In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple
probes can target a single sequence. These 'multiply targeted' probes can result in non-
independence between measured expression levels.

Results: An analysis of these relationships for Affymetrix arrays considered both the extent and
influence of exact matches between probe and transcript sequences. For the popular HGU133A
array, approximately half of the probesets were found to interact in this way. Both real and
simulated expression datasets were used to examine how these effects influenced the expression
signal. It was found not only to lead to increased signal strength for the affected probesets, but the
major effect is to significantly increase their correlation, even in situations when only a single probe
from a probeset was involved. By building a network of probe-probeset-transcript relationships, it
is possible to identify families of interacting probesets. More than 10% of the families contain
members annotated to different genes or even different Unigene clusters. Within a family, a
mixture of genuine biological and artefactual correlations can occur.

Conclusion: Multiple targeting is not only prevalent, but also significant. The ability of probesets
to hybridize to more than one gene product can lead to false positives when analysing gene
expression. Comprehensive annotation describing multiple targeting is required when interpreting
array data.

Background
Sources of noise in microarray experiments may be
numerous [1,2], thus most researchers try to minimize its
influence or estimate it through various quality control,
normalization and outlier filtering procedures [3]. One
source of variation is cross-hybridization (CH), which
occurs when unintended sequences hybridize to a probe
alongside the intended target. In the case of Affymetrix

arrays, which use a set of short (typically 25-mer) oligonu-
cleotide probes to target a transcript, hybridization condi-
tions are carefully controlled with the aim of minimizing
the effect of CH due to non-specific binding [4]. In addi-
tion, each Perfect Match (PM) probe is accompanied by a
Mismatch probe (MM), in which the middle residue has
been changed. The intention is that this can be used to
provide a measure of the level of CH associated with each
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PM probe. A more detailed discussion of CH in short
oligo arrays may be found in [5]. From October 2004,
Affymetrix also started to display brief summaries of cross-
hybridization within their own NetAffx service [6].

In some circumstances, probes may match exactly to more
than one transcript. This is important because these
probes can no longer be identified with a unique tran-
script, but are instead dependent on more than one gene
product. The situation is rendered somewhat more com-
plex by the fact that Affymetrix arrays use more than one
probe (typically, 11 PM/MM pairs – together referred to as
a "probeset") to target each transcript. Recently, several
databases have been built to provide a mapping of
Affymetrix probesets to known transcripts [7-10], to
sequences from cDNA microarrays [11,12], or for apply-
ing algorithmic approaches to cross-platform or cross-spe-
cies comparisons [7]. A recent paper [13] presents a global
overview of the interpretation of GeneChip arrays, and
the need to update annotation to match the continued
evolution of genomic databases. The solution includes the
redefinition of CDF files, similar to what was proposed
initially in [10], which may be sufficient in many cases.

The issue of 'multiply targeted' probes is important
because they have the potential to result in cross-talk
between the probesets they are part of. If their effects are
significant, and expression summarizing algorithms are
unable to control for them, then one outcome of this will
be that otherwise unrelated probesets will appear corre-
lated, since they are being driven by a shared signal.

The ADAPT database [4] was used to investigate the extent
and significance of multiply-targeted probesets in Affyme-
trix expression data (see methods). Use is made of the fact
that the platform's combination of short oligos and strict
hybridization conditions, which are designed to maxi-
mize binding to the PM probes whilst minimizing bind-
ing to the MM ones. This makes it viable to use in silico
methods to identify which probes are likely to bind with
100% identity to which transcripts. We refer to cases of
exact matches between probe and transcript as Multiple
Targeting (MT), to distinguish from the more general case
of cross-hybridization, in which matches with less than
100% identity may occur.

Particular attention is directed at the influence MT can
have on the apparent correlation between probesets'
expression measurements. Since Pearson correlation is
scale independent, it is not influenced by the overall mag-
nitude of either signal being compared, but rather on the
similarity in their shapes. Although it may seem counter-
intuitive, when two signals are superimposed, the amount
of correlation found between each of the original signals
and the combined one is driven by the relative variance of

those two signals, not by their mean intensity (an example
and further discussion of this can be found in the supple-
mental material). Many microarray data analysis tech-
niques rely on correlation analysis, with the majority of
methodologies aiming to draw a distinction between
genes that are, in some way, co-occurring, co-expressed or
correlated and those that do not follow a significant com-
mon pattern. Methodologies such as hierarchical cluster-
ing [14,15] and relevance networks [16-18] make direct
use of the Pearson correlation coefficient of expression
values between probesets, whilst others (such as ANOVA
and more general linear models), are ultimately based on
correlation-like principles.

Results
Affymetrix arrays use a series of probes to target a tran-
script. These probes are grouped together to form a
probeset; expression processing algorithms such as MAS5
[19], RMA [20] and GCRMA [21] combine the signals
from each probe in a probeset to provide a single sum-
mary value representing an estimate of the concentration
of that transcript in solution. The issue of MT arises
because certain probes are capable of hybridizing to more
than one transcript, leading to non-independence, while
in other situations probes from more than one probeset
are capable of hybridizing to a single transcript (Figure 1).
In general, these interactions combine to form a complex
lattice (Figure 2, see also Additional file 1).

In this paper, we consider the extent and structure of these
relationships, followed by an investigation of how much
effect they have both on signal strength and on the corre-
lation between probesets.

The prevalence of multiple targeting in oligo arrays
An analysis of the HG_U133A array reveals that many
transcripts (Ensembl: 7,257; RefSeq: 6,702) are matched
with multiple probesets (i.e. case a in Fig. 1) while almost
half (10,223) of the total 22,215 probesets (excluding
control probesets) show exact matches (with 1 or more
PM probes) to more than one Ensembl (9,460) or RefSeq
(9,666) transcript (i.e. case b in Fig. 1). For comparison,
18,722 probesets were found to match to at least one well-
known transcript.

The effect of MM probes is minimal: the number of MM
probes that can hybridize exactly to known transcripts is
about 1,000 times smaller (Ensembl: 1,899 MM matches
vs. over 1,956,000 PM matches, RefSeq: 1,962 MM vs.
1,922,000 PM) – most of them singleton matches to unre-
lated sequences. Thus we exclude MM probes from subse-
quent analyses. Since MM probes were not considered,
and RMA makes no use of these probes in its computa-
tions, RMA processed data is used for all calculations pre-
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sented here, although similar effects were also observed
with MAS5 processing.

Affymetrix probeset names are supposed to identify
probesets that are associated with multiple targeting. In
particular, those marked "_x_at" are identified as being

non-specific. Similarly, "_s_at" probesets are identified as
potentially targeting different gene family members or
splice variants. The analysis shows that many of the
probesets associated with MT are not identified in this way
and are simply annotated " _at" (2,189 according to
Ensembl matches; 1,496 for RefSeq). These numbers are

LGL graph of MTFigure 2
LGL graph of MT. a) LGL graph of all probeset-transcript relationships in HG_U133A array b) and c) are close-up views of 
regions in a)

MT motifsFigure 1
MT motifs. The basic motifs of multiple targeting. a) PTP motif b) TPT motif c) a simple combination of both – PTPTP motif. 
The motifs form the basic building blocks of multiple targeting networks. The strength of relationship between a transcript and 
a probeset is dependent on the number of probes matching to the transcript.
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likely to be underestimates because ADAPT was built
using only well characterized sequences. Thus, a signifi-
cant number of the standard "_at" probesets are involved
in MT.

Structures of multiple targeting in oligo arrays
Basic motifs
The two basic building blocks of MT interaction networks
are Probeset-Transcript-Probeset (PTP) motifs (Figure 1a),
and Transcript-Probeset-Transcript (TPT) motifs (Figure
1b). Depending on the robustness of the analysis algo-
rithms used to process array data, the presence of either
motif can be expected to lead to non-independence
between the expression profiles of the participating
probesets.

A search for both types of motifs confirms the prevalence
of MT in oligo arrays. Table 1 summarizes the rates of
occurrence of both motifs for a variety of Affymetrix
arrays. The PTP motif is especially common – it involves
almost half the probesets on the HG_U133A array and
over a third of those on the HG_U133Plus2. Generally,
the more recent arrays have a larger proportion of
probesets involved in MT.

Families of related probesets
Probesets may be involved in multiple PTP and TPT
motifs, resulting in an MT-network. This can be expressed
as a graph in which nodes represent transcripts and

probesets, while edges represent matches between tran-
scripts and probesets, labelled with the number of match-
ing probes involved in the interaction. Such graphs are
informative because so many probesets have the potential
to be involved in MT (almost half for HGU133A arrays).
Since Affymetrix arrays measure the binding of cRNA
sequences to sequence-specific probes, the searches used
to define MT help catalogue which binding events are pos-
sible. Knowledge of MT interactions is important because
it begins to describe what is actually being measured in a
microarray experiment.

Figure 2 shows one such graph, laid out using LGL [22].
Edges attached to RefSeq transcripts are painted red,
Ensembl ones, green. Blue is used to mark the strength of
MT, with intensity corresponding to the number of
matching probes. The LGL graph, when magnified, shows
a set of disconnected families -detached sub-graphs of var-
ious complexity. Thus, almost all of the MT relationships
are local ones.

To build families, the database was queried to identify all
PTP motifs. Then, a simple search algorithm used to iden-
tify the maximal graph that can be reached from a starting
probeset using the identified motifs. Probesets that are
not involved in any PTP motifs result in trivial families
that consist of just a single probeset. An additional step is
used to eliminate "hub probesets", as described below.

Table 1: Summarization of PTP and TPT motifs for various Affymetrix arrays

PTP motifs TPT motifs

array p-set pairs probesets % probesets transcripts probesets % probesets

hgu133Plus2 78504 18182 33.29% 11576 7285 13.34%
hgu133a 54762 9666 43.51% 9288 5289 23.81%
hgu133b 6218 3197 14.16% 3241 1526 6.76%
hgu95c 70156 1620 12.88% 3201 928 7.38%
hgu95b 2930 1729 13.77% 2256 1042 8.30%
hgu95e 2984 1515 12.05% 2113 897 7.13%
hgu95d 1444 612 4.87% 1765 502 3.99%
hgu95a 15320 3880 31.32% 7309 3085 24.91%
moe430_2 30552 14234 31.61% 4995 2439 5.42%
moe430a 21686 9808 43.35% 4142 1929 8.53%
moe430b 4224 2647 11.76% 1155 517 2.30%
mgu74av2 17142 2843 22.89% 3221 1184 9.53%
mgu74bv2 3606 2302 18.55% 1175 521 4.20%
mgu74cv2 1158 636 5.36% 888 243 2.05%
Rat230_2 7134 4818 15.52% 2821 1011 3.26%
rae230a 2812 2056 12.96% 2404 792 4.99%
rae230b 1792 1293 8.46% 581 226 1.48%
rgu34b 908 680 7.79% 681 181 2.07%
rgu34c 1382 769 8.81% 745 243 2.78%
rgu34a 14818 3373 38.59% 2302 752 8.60%
rnu34a 1050 600 47.51% 171 81 6.41%
rtu34a 1130 442 45.47% 255 120 12.35%
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For HG_U133A arrays, this process results in the identifi-
cation of 3,859 families containing at least 2 probesets
(for examples – see Additional file 2). The mean number
of probesets in the family is not high -about 2.56. Interest-
ingly, 429 families (involving a total of 1,529 probesets),
were found in which family members were annotated to
different genes. Importantly, these families were not sim-
ply comprised of "_x_at" probesets: 456 were annotated
"_at" and 497 – "_s_at".

A full list of MT families is included in the supplementary
data (see Additional file 3), along with an applet that
allows the exploration of these families, attached to exem-
plary expression data (see Additional file 4).

Hub probesets
There is a group of probesets (not always annotated by
Affymetrix as " _x_at") that match a large number of tran-
scripts, usually with a small number of probes. They may
be called "hub" probesets, because their expression com-
bines signals from many available transcripts. In the net-
work of probeset-transcript relationships, hub probesets
often join together smaller families of probesets, often
many at a time. A typical example of a hub probeset is
"221992_at" which matches to 44 RefSeq or Ensembl
transcripts, with an average 3.18 probes per match, or
"210524_x_at" (127 matches, 1.5 probe on average).

Hubs were selected for the family search algorithm
described above if the average number of matching
probes was less than 3 and the total number of transcripts
greater than 30, or if the total number of transcript
matches was greater than 70. This resulted in 277 hub
probesets being selected, allowing the granularity of fam-
ilies to be kept to a reasonable level (also see Table 2 for
hub selection criteria).

Quantitation of the effect of multiple targeting
Probes found by the database searches to target multiple
transcripts, generally have a higher measured signal than
those that target unique transcripts. For example, the aver-
age measured expression level in the Gene Atlas data is
16% higher for multiply targeted PM probes and over
80% higher when the PM – MM difference for individual
PM:MM probe pairs is considered.

These numbers refer to differences in the raw probe inten-
sities, which are subsequently grouped into probesets and
processed by an expression summary tool such as MAS5
or RMA. The following sections investigate whether these
changes at the probe level are carried through to the MAS5
or RMA processed expression summaries, and the influ-
ence they have on Pearson correlation.

Real data, same transcript

Figure 1 draws a distinction between transcripts that share
a probeset, and probesets that share a transcript. The first
case (PTP, la) is relatively trivial: we should expect to see
correlation between these probesets. The extent of the
excessive correlation is confirmed by Figure 3, which
shows the distribution of the Pearson correlation coeffi-
cient calculated between every probeset pair on the array.
The resultant distribution is almost normal, with a slight
displacement (  = 0.02, for Gene Atlas data processed by
RMA, for other datasets the mean is comparably small).
By contrast, when only multiply targeted probesets are
considered (as in Figure 1a), the distribution is strongly
distorted towards positive values (  = 0.55). Thus, as
expected, probesets targeting the same transcript show
much higher correlation than those that are not linked in

r

r

Influence of MT on correlation between probesetsFigure 3
Influence of MT on correlation between probesets. 
The distribution of Pearson correlation for all probeset pairs 
(black) vs. MT probeset pairs (red). Data from 50 arrays 
from Gene Atlas processed with RMA. The global (black) 
curve represents correlation for 1 million random probeset 
pairs, while the MT curve (red) was drawn using all probeset 
pairs from over 110,000 PTP motifs that occur in the 
HG_U133A array. The peak of the MT curve close to a cor-
relation of 1 may be explained by a group of probesets having 
almost constantly high signal. Most of these are 'hub' 
probesets as defined in the text. The green distribution is a 
normal distribution with the same mean ( = 0.018) and stand-
ard deviation as the black one. It can be seen that the global 
distribution is very close to normal.
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this way. Similar results were also seen with MAS5 and
GCRMA processed data (not shown). Importantly, this
effect is not confined to probesets in which 11/11 probes
match. Figure 4 shows the distribution of Pearson correla-
tion for probesets in which only a subset of probes are
involved in MT. It can be seen that even a single matching
probe can result in increased correlation. This is surprising
given that oligo array data processing methods such as
MAS5 and RMA are designed to be robust against outliers
– a single probe behaving differently from its peers may
not be expected to have a large influence on the data. This
is investigated in more detail below.

Simulation data
Intensity
Figure 1b shows a situation where the expression level of
a probeset might be expected to be driven by two different
transcripts. Since there is no independent estimate availa-
ble for the expression levels of the individual transcripts
involved in TPT motifs, simulation experiments were per-
formed to mimic the effect by artificially spiking raw
expression data.

Figure 5 shows the results of one such simulation,
designed to consider the effects of the presence of an addi-
tional transcript in equal abundance to the intended tar-
get. It can be seen that as the number of spiked probes
increases, the signal becomes more pronounced. As previ-
ously observed with real data, a single matching probe can
have a significant influence on the computed expression
level. Even when the expression level is relatively high the
signal from only 2 probes can be sufficient to lead to
apparent differential expression. Even so, the largest fold
changes are generally restricted to the lower intensity
probesets, indicating that both MAS5 and RMA do a good
job at reducing the effects of outliers.

Correlation
In a second simulation experiment, spiking was achieved
by adding the signals from a second set of probes to the

first set. In this way, the case shown in Figure 1b was sim-
ulated – i.e., a probeset hybridizing to two different tran-
scripts (one with all the probes matching, the other with a
varying number of matches). The second group of
probesets was produced by randomly selecting up to 500
probesets. Variance filtering was performed to ensure that
at least one of the transcripts had an expression profile
that varied. Since Pearson correlation is not dependent on
the mean intensity of the signals, but rather the similarity

Effect of MT in real data on correlation between probesetsFigure 4
Effect of MT in real data on correlation between 
probesets. Distribution of Pearson correlation for MT-asso-
ciated probesets. Curves correspond to the number of inter-
acting probes in the PTP motif: orange – 1 probe, magenta – 
up to 3 probes, blue – up to 7 probes, green – all MT 
probeset pairs. The peak at the correlation close to 1 is due 
to hub probesets that generally have high intensity and match 
to many transcripts with single probes.
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Table 2: Number of hub probesets and hub probesets not annotated x_at depending on the condition of the number of matching 
transcripts

Transcripts matched – more than: hubs non-x_at hubs

10 1548 630
15 1020 289
20 762 144
25 613 96
30 531 73
35 450 56
40 404 47
45 378 42
50 334 29
Page 6 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:276 http://www.biomedcentral.com/1471-2105/7/276
of their shapes, filtering was performed on variance, not
intensity. Pearson correlation, r was calculated between
each member of the first list and its corresponding partner
in the second. Before spiking, the two sets should be
uncorrelated; spiking is expected to increase correlation.
As in the real data, the signal from the spiked probes con-
tributes significantly to the correlation, even when only a
small number of probes are involved. It can be seen from
Figure 6 that even when high variance probesets are the
recipients of additional spiked signals changes in r are
possible. Thus, the effects are not restricted to probesets
with low signal (see also Additional files 5, 6, 7, 8).

Intensity vs. correlation
Both real and artificial datasets demonstrate that MT can
have a significant effect on correlation, even when only a
small proportion of probesets are involved in the interac-
tion. Algorithms such as RMA and MAS5 successfully
employ robust averaging techniques (such as median pol-
ishing or a Tukey's biweight) to reduce the effect of out-
liers. Thus, when only a small number of probes in a
probeset are involved in MT, changes in measured expres-

sion level are expected to be generally small. This is con-
firmed in both the real and simulation datasets.

However, even when overall changes in intensity are min-
imal, increase in Pearson correlation can still be high. This
is because Pearson correlation is driven by similarity in
profile shape, not intensity; small amounts of stray signal
can lead to large increases in r, even if the overall mean
between probesets are very different. Since Pearson corre-
lation centers each variable about its mean, and scales it
by its standard deviation, correlation is entirely depend-
ent on the relative shape and variance of the two signals,
not their overall intensity. When two signals, a and b are
compared to their sum, s, the signal that is most correlated
with s depends not on their relative sizes, but on their rel-
ative variance. This is counter-intuitive but important to
recognize when considering the effects of interacting sig-
nals on correlation (see Additional file 9).

This effect can be demonstrated by varying the amount of
contribution made by the spiking probes (f f -see Meth-

Variance filtering of spikes and target probesetsFigure 6
Variance filtering of spikes and target probesets. The 
distribution of correlation for data generated as in Figure 5, 
but grouped according to variance. Green – high variance 
probeset plus high variance spiking, blue – high variance 
probeset plus low variance spiking, magenta – low variance 
probeset plus low variance spiking, cyan – low variance 
probeset plus high variance spiking. Red – correlation before 
spiking. The effects of multiple targeting on correlation is 
most pronounced when the intended target is of low vari-
ance, however even in the case of high variance targets, cor-
relation is likely to be influenced.
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Simulation experiment – fold changeFigure 5
Simulation experiment – fold change. Change in meas-
ured signal intensity following spiking to simulate the pres-
ence of an additional hybridizing transcript in equal 
abundance to the intended target. Numbers denote the 
quantity of probes modified in a probeset. Axes are log2. Even 
a single spiked probe can result in significant change of the 
intensity. Fold changes can be seen even for high intensity 
target probesets.
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ods) to the resulting value. Figure 7 shows that even when
only 5% of the spike signal was present, the influence on
Pearson correlation can still be large, even though the
resultant fold change is generally small.

Together Figures 6 and 7 show that increases in correla-
tion are not simply confined to those cases in which a
large and varying signal is being added to a low-variance
probesets.

Influence of the level of spiking on RMA expression values and distributions of correlationFigure 7
Influence of the level of spiking on RMA expression values and distributions of correlation. 1st row: f f = 0.05, 2nd 
row: f f = 0.2, 3rd row: f f = 1. 1st column scatterplot of the signal after RMA versus the signal before spiking, 2nd column dis-
tortion of the correlation distribution – changes after spiking. 500 randomly selected targets and spikes. Even small amount of 
stray signal may significantly influence correlation. For f f = 0.2, the fold change is not so much affected, but the effect on cor-
relation distortion is almost as large as for f f = 1.
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In situations where probesets are already strongly corre-
lated, the addition of extra signal due to cross hybridiza-
tion with another transcript might be expected to reduce
correlation. Spiking experiments found this to be the case
(data not shown). Interestingly, however, even though
there are occasions where r is reduced by multiple target-
ing, the general tendency is towards significantly
increased correlation (as shown in Figure 3; similar figure
for simulation experiments – see Additional file 10).

False positive rates will also be raised because otherwise
absent probesets with signals resulting only from back-
ground levels of non-specific hybridization can experi-
ence additional, structured, signal due to exact matches to
transcripts other than the intended target.

Functional homogeneity and spurious correlations in 
families of probesets
Analysis of MT-families shows that out of the 3,859
shown in Figure 2, 395 contained probesets annotated
(using the BioConductor annaffy package [3]) to 2 or
more UniGene clusters. When gene symbols are consid-
ered, annotation becomes even more ambiguous: 429
families contained transcripts annotated to different
genes. Thus, even though the majority of families are
homogenous with respect to UniGene and gene symbols
– some 10–15% (depending on size of the family and
source of annotation) may be annotated to different
genes. This translates to about 1000 probesets.

As we have shown using both real and artificial data, MT
leads to increased correlation. A consequence of this is
that probesets associated by MT should be drawn closer to
one another in dendrograms, such as those used to cluster
probesets for visualisation using heatmaps. For example,
the heatmap in Figure 8 was created using three groups of
probesets. The first (annotated to the genes RPS29,HFL-
B5,EIF4A1,RPL36A and RPL18), was identified in [23] as
discriminating between standard-risk and high-risk TEL-
AML1 cytogenetic abnormalities. Non of these probesets
are associated by MT and can thus be considered to form
a "well behaving" biological family. The second set (anno-
tated to TUBB6, TUBB2 and TUBB3) constitute another
biological family, but they are also associated by MT to
each other, as well as to other tubulin genes. This family
thus represents a mixed biological – MT family. The third
group of probesets are associated with RPS10, but also to
numerous pseudogene transcripts. This group represents
an "MT family" where the relationship is expected to be
artefactual. These three sets of probesets were added to a
further set of randomly selected probesets, to act as "back-
ground", and then clustered. The MT-family, the tubulins
and the biological family are found as separate clusters
(the MT-family with even closer links than others), dem-
onstrating that the hierarchical clustering is unable to

make a distinction between probable real (i.e. biological)
and probably artefactual (i.e. MT driven) clusters.

Discussion
It is clear that multiple targeting is an important artefact
within microarray data: nearly half of all probesets on the
HG_U133A array are associated with MT. When real
expression data are considered, it can be seen that these
probesets are significantly more correlated than would be
expected by chance. These results are also supported by
simulation experiments, using datasets derived from real
experimental data, that allow MT to be considered in a
more controlled framework. MT can lead to increased cor-
relation between associated probesets, even when only a
small proportion of their probes are involved. Although
expression summary algorithms are successful at reducing
the effects of outlier probes, the do not remove them com-
pletely, and small amounts of stray signal can still have a
significant influence on correlation. The reason for this
apparent paradox is the scale-invariance of Pearson corre-
lation; absolute signal is not important. What is impor-
tant are the variance and (effectively) the relative
similarity in shape of the expression profiles. For this rea-
son, particular care must be taken when analysing expres-
sion data using correlation-based approaches. The
situation is also further complicated by the fact that MT
occurs at a probe level – adding additional signal to indi-
vidual probes within a probeset – but correlation is calcu-
lated after normalization and expression summarization
using an algorithm such as RMA or MAS5. This additional
complexity makes it difficult to reliably predict what will
happen when signals are combined. However, empirical
data (Figure 6) show that influence on correlation is
dependent on the relative variance of the two probesets
being combined. As expected, high variance spiked probes
generally have more of an effect than low variance spikes,
but interestingly, adding low variance spikes to low vari-
ance data (the magenta line in Figure 6) has more of an
effect than adding high variance spikes to low variance
data (the cyan line). This is likely to be a consequence of
the expression summarization and normalization that is
imposed on the data.

One consequence of MT is that because it serves to add
structure to otherwise random probesets with no genuine
signal, it can lead to the detection of false positives unless
the presence of cross-matching probesets is known. Anal-
ysis of the intensity distributions for MT and non-MT
probesets shows a considerable degree of overlap (see
Additional file 11). This means that MT probesets cannot
be removed simply by filtering on intensity. In fact,
because MT generally increases signal strength, such filter-
ing might actually serve to enrich for MT probes.
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MT is ultimately a sequence-based event; it occurs when
two sequences show 100% identity across the 25bp tar-
geted by a probe. At the level of a probeset, this is most
likely to occur when transcripts show a high degree of
sequence similarity. The relationships is troublesome,
because a major use of expression data is to identify

probesets (and, via annotation, genes) with correlated
expression profiles, and to use these relationships to infer
functional similarities. Since sequence similarity is itself
often the basis by which common function is inferred
[24], sequence similarity combined with MT has the
potential to become a self-fulfilling prophecy.

Heatmap exampleFigure 8
Heatmap example. Heatmap and hierarchical clustering of 3 families of probesets (MT-driven, tubulin and a functional one), 
plus randomly chosen non-MT probesets. The clustering does not make any distinction between functional and MT families – is 
grouping them together in very similar way.
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A search of the database found that about 5% of family
members contained probesets annotated to different
genes. Thus, the chances of finding a spurious functional
relationship due to MT between a pair of randomly
selected genes is small. However, this is optimistic,
because microarray analysis generally involves filtering to
produce a set of significant probesets (either by magni-
tude of change, or by statistical confidence). The result of
such filtering is to enrich the final 'hit list' not only for real
biological effects, but also for anything else that is consist-
ent, including biochemical or sequence based artefacts
such as MT. This is illustrated by the heatmap in the Figure
8; MT families fall into separate clusters against a back-
ground of randomly selected probesets.

One possible solution to MT is to redefine probesets so
that probes targeting the same transcript are placed into
larger probesets representing the entire sequence, as pro-
posed by [10]. This is the approach taken also by [13], but
authors conclude that "under many circumstances it is not
possible to generate transcript-specific probe sets for genes
with multiple transcripts based on probes available on the
current generation of GeneChips". Thus they may be used
to make distinction at the level of genes, but not at the
level of transcripts or splice variants – MT with all its con-
sequences, still exists. There is a compromise to be made
between generalisation and maintaining the ability to
resolve subtle differences between transcripts and, for
example, splice variants.

The issue becomes more significant with the new genera-
tion of microarrays such as the Affymetrix exon array [25]
that deliberately use multiple probesets to distinguish
between individual transcripts from within a set of splice
variants expressed by a particular gene. The result is a
many-many relationship between gene, transcript and
probeset.

Annotation schemes that attempt to compress these
many-many relationships into a one-to-one mapping lose
the complexities inherent in the system. Grouping
together a probeset that targets more than one transcript
with probesets that target one or more individual tran-
scripts, results in MT occurring between the new probeset
and all the other transcripts it shares probes with. From
one perspective, many these issues are simply down to
annotation. The apparent aretefacts in the data only exist
because the probeset annotations do not accurately reflect
the transcripts they bind to.

With all solutions, including those that attempt to solve
the problem by aggregating probes into larger probesets,
annotation is crucial, since inaccuracies will arise unless
all the many-many relationships that occur within the
data are represented explicitly.

Conclusion
Cross hybridization between probesets is a significant
effect that has real consequences for the interpretation of
microarray data. It may cause a variety of problems during
analysis including false positives and negatives, and gen-
erally increased correlation between multiply-targeted
probesets. Although the results presented here are for
Affymetrix arrays, it is reasonable to expect similar effects
to occur with other expression-based technologies. The
use of short oligos and strict hybridization conditions
makes it possible to perform the in silico searches required
to identify MT within Affymetrix data. However, CH is not
exclusive to any one platform, and similar behaviour is
likely to be seen elsewhere. Expression summary algo-
rithms must correct not only for variation across arrays,
but also for variation between individual probes within a
probeset. This is generally performed using some kind of
robust averaging procedure, but even small amounts of
stray signal can lead to high correlations between
probesets. Although algorithms such as RMA and MAS5
do a very good job of significantly reducing the influence
of outlier probes, they do not always remove it completely
– and this is manifested by significantly increased correla-
tion between probesets, even when only a small subset of
probes are involved.

Many of the issues described above can be avoided with
more detailed annotation. Often the terms 'gene', 'tran-
script' and 'probeset' are used interchangeably. This is
dangerous, because the relationship is not one-one-one,
and the existence of MT networks can lead to apparent
biological relationships that are, in fact, artefactual.
Expression data that is presented simply as a gene list is
difficult to interpret properly, since the complexities of the
interaction networks implicit within the data are lost. The
community should ensure that the actual probeset IDs are
always available alongside gene names or transcript acces-
sions. This allows the graph structures associated with
gene-transcript-probeset mappings to be explored where
necessary and used to fully interpret the complexities of
gene expression data.

Methods
Graph rendering
MT networks and interaction graphs were produced by
extracting data from ADAPT and redirecting the output for
visualization to LGL [22], and our own visualization soft-
ware. As global layouts of graphs such as LGL are static,
thus not interactive, because the number of vertices is too
big for efficient real-time rendering, an applet was devel-
oped for fast and flexible analyses of individual families.
These small, local graphs within the applet were realized
with the JUNG API [26].
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Databases, experimental data sources and data processing
ADAPT [4] is a database of mappings between Affymetrix
probesets, transcripts and genes. It is populated by search-
ing all probe sequences for exact matches to transcript
data taken from RefSeq (Release 11 at the time of writing)
[27] and Ensembl (V30 at the time of writing) [28]. For
RefSeq, both "known" and "model" sequences are used;
for Ensembl, ADAPT uses those assigned "known",
"novel" or "pseudo" status. Both databases are used
because they employ different methods to predict tran-
script/gene sequences.

The ADAPT database was queried (using SQL and Rdbi-
PqSQL database link to R) to extract a set of tables describ-
ing all possible MT links between probesets and
transcripts, excluding anti-sense strand matches. The
probesets may match transcripts with anything from 1 to
16 matching probes. The tables implicitly define an
unconnected graph (see Figure 2 and supplemental file 1),
and form the basis for all subsequent explorations of MT.
In order to consider the strength of the MT effect and its
consequences on expression studies, data from ADAPT
were combined with expression data from experiments
generated using the HG-U133A array. Expression levels
were produced using MAS5 and RMA, as implemented in
Bioconductor (packages affy and simpleaffy [3,29,30]).

Results were analogous when experiments were repeated
with MAS5. All plots presented were generated using the
Novartis Gene Atlas [31] dataset. Similar results were seen
with both leukaemia [23] and sarcoma [32] datasets –
publicly available from ArrayExpress.

Pearson correlation was calculated for all the pairs of
probesets found to be targeting the same transcript. The
distribution of correlation coefficients was calculated for
all probeset pairs and for all pairs where one of the
probesets matches to a transcript with less than a specified
number of probes.

Simulation data
A subset of 50 HG_U133A arrays from Gene Atlas V2 was
used as the basis for simulation experiments designed to
explore how the number of MT probes influences expres-
sion measurements from RMA processed data.

Spiking was conducted as follows: prior to expression
summary generation using RMA, 500 probesets were
selected at random to be spiked and 500 (at random) to
act as a source of spiking data. No filtering was applied to
these probesets. Probesets were randomly paired, and
between 1 and 10 probe-pairs selected for each probeset
(again at random). The signals from the spike-sources
were added to the original signals for the spike-targets. In
this way TPT motifs were simulated. The resulting simu-

lated data were batch normalized using RMA and com-
pared to the original un-spiked data (again batch
normalized using RMA, separately from the first set). In all
simulation experiments spiking for the selected probesets
was carried out across the entire set of arrays.

In the second experiment, a set of 500 probesets was
selected, as before. A second set with the same number of
probesets was then chosen at random. These probesets
were selected from a subset of the probesets available,
generated by filtering the expression data on variance. In
this way, both sets could be sampled from probesets with
specifically high, average or low variance of expression.
High and low variance are defined as the top or bottom
2000 probesets, sorted by of variance, excluding the 100
most extreme ones. Each probeset in the second list was
used to supply data for the probeset in the first list;
between 1 and 11 probes were chosen and the probe
intensities from the second list added to the correspond-
ing probes in the first list. Various levels of influence were
applied, adding a specific proportion of one probeset sig-
nal to another: PM11after = PM1before + f f * PM2, where for f
f ranging from 0.05 to 1. In this way, cross-hybridization
between probesets in the first list, and the transcripts rep-
resented by the probesets in the second list, was simu-
lated.
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