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Abstract
Background: Tangle analysis has been applied successfully to study proteins which bind two
segments of DNA and can knot and link circular DNA. We show how tangle analysis can be
extended to model any stable protein-DNA complex.

Results: We discuss a computational method for finding the topological conformation of DNA
bound within a protein complex. We use an elementary invariant from knot theory called
colorability to encode and search for possible DNA conformations. We apply this method to
analyze the experimental results of Pathania, Jayaram, and Harshey (Cell 2002). We show that the
only topological DNA conformation bound by Mu transposase which is biologically likely is the five
crossing solution found by Pathania et al (although other possibilities are discussed).

Conclusion: Our algorithm can be used to analyze the results of the experimental technique
described in Pathania et al in order to determine the topological conformation of DNA bound
within a stable protein-DNA complex.

Background
Tangles have many applications in modeling protein-
DNA binding [1-5]. An n-string tangle consists of n strings
properly embedded in a 3-dimensional (3D) ball. Some
examples of 2-string tangles and a 3-string tangle are
shown in Fig. 1. A protein complex bound to n segments
of DNA can be modeled by an n-string tangle. The protein
complex is modeled by the 3D ball while the n DNA seg-

ments can be thought of as n strings properly embedded
in a protein ball (note each string represents one segment
of double-stranded DNA). This is an extremely simple
model of protein-DNA binding. A 3D ball does not accu-
rately represent the shape of a protein complex, and DNA
sometimes winds around a protein complex as opposed
to being embedded within the protein complex. However,
much information can be gained from this simple model.
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When modeling protein-DNA reactions, it is helpful to
know how to draw the DNA segments bound by the pro-
tein. For example, does the DNA molecule cross itself
within the protein complex or does it bend sharply? Tan-
gle analysis can be used to determine the topological
shape of the DNA segments bound by a protein complex.
Tangle analysis does not determine the exact geometry
and hence cannot determine the sharpness of DNA bend-
ing, but it can determine the overall topology. This can be
used to infer which DNA sequences are likely to be close
to each other within the protein-DNA complex [5] as well
as other information useful for modeling protein-DNA
reactions.

The focus of this paper is two-fold: (1) we describe a com-
putational method for solving n-string tangle equations
for small crossing solutions; (2) we apply this method to
analyze the topology of the DNA bound in the Mu trans-
pososome.

Although our current C++ program is specific for analyz-
ing the results of [5], we would be happy to make any nec-
essary modifications for solving any other system of
tangle equations for small crossing solutions, especially
those modeling experimental data. The source code is also
available upon request.

The Mu transpososome is involved in DNA transposition.
DNA transposition is the process by which a piece of DNA
can change its location within a genome. The Mu transpo-
sition pathway involves the formation of a series of pro-
tein-DNA complexes (for more biology background, see
[5,6]). The Mu transpososome refers to the Mu transposase
protein complex (Mu) and the three DNA segments
bound by this protein complex. Since three DNA seg-
ments are bound by Mu, the Mu transpososome can be
modeled by a 3-string tangle. An experimental technique
called difference topology [7,8,5,9,10] combined with tan-
gle analysis was used in [5] to determine that some of the
Mu-DNA complexes can be modeled by the five crossing
3-string tangle shown in Fig. 1B. There are an infinite
number of tangles that mathematically satisfy these exper-
imental results (Darcy IK, Luecke J, Vazquez M: A tangle
analysis of the Mu transpososome protein complex which
binds three DNA segments, manuscript in preparation).

These other conformations are very complicated and
hence biologically unlikely to model the Mu transposo-
some, but they leave open the possibility that there are
other biologically relevant models.

We describe a computational algorithm we have imple-
mented which solves for biologically relevant topological
conformations of DNA bound within the Mu transposo-
some using experimental results from [5]. For the pur-
poses of this paper, we will consider a solution to be
biologically relevant if it has a 2-dimensional projection
with at most eight crossings. Observe that the solution
found in [5] has five crossings (Fig. 1B). Although we
briefly describe in the Discussion and Conclusions sec-
tion why we believe the Mu transpososome contains at
most eight crossings, our main reason for choosing to
limit solutions up to eight crossings is computational
time. Currently our C++ algorithm takes two days on a
Linux computer with AMD Opteron Processor (2.2 GHz
cpu) to find solutions up through eight crossings. The
speed of the algorithm can be significantly improved by,
for example, parallelizing the algorithm and running it on
a cluster. Hence the algorithm can be improved to find
solutions with around ten crossings. But as the number of
tangles grows exponentially with crossing number, it is
unlikely that this method can be used to find solutions
with more than fifteen crossings due to computation time.

The experimental technique used in [5] can be applied to
any protein complex which stably binds two or more seg-
ments of DNA (see Discussion and Conclusions for lim-
itations) in order to determine the topological
conformation of the DNA bound by the protein complex.
The results of such experiments can be analyzed using a
modification of the software we developed for analyzing
the Mu experiments. In other words, this software can be
modified to solve any system of n-string tangle equations
for solutions containing up to around ten crossings,
including those modeling difference topology experi-
ments applied to a protein complex that stably binds any
number of segments of DNA.

An example of a tangle equation
A description of the tangle equations modeling the differ-
ence topology experiments in [5] is given in [5] without

A.) Some 2-string tanglesFigure 1
A.) Some 2-string tangles. B.) a 3-string tangle.

A.) B.)
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the use of mathematical notation. Since we use mathe-
matical notation, we start with an example of a tangle
equation. Fig. 2A is a tangle equation with one unknown,
the tangle T. A solution to this equation is a tangle T such
that the conformation of the strands inside T combined
with the conformation of the strands outside T must equal
the four crossing link on the right-side of the equation in
Fig. 2A. The tangle in Fig. 2B is a solution as shown in Fig.
2C. The three crossing tangle in Fig. 2D is not a solution
to the tangle equation in Fig. 2A as shown in Fig. 2E.

Cre recombinase
Cre recombinase was used to obtain the system of tangle
equations in [5] and hence we give some background
information on Cre. Cre is a site-specific recombinase that
will bind to 34 base pair DNA sequences called loxP.
When Cre binds two copies of this sequence, it breaks
both sequences and switches the ends before rejoining the
DNA as shown in Fig. 3. If Cre acts on a circular DNA mol-
ecule containing Cre binding sites which are directly
repeated as in Fig. 3A, then the resulting product is a two
component link. If the circular DNA molecule contains
inversely repeated Cre binding sites as illustrated Fig. 3B,
then the product is a one component knot.

Difference topology and tangle modeling
We will now describe some of the difference topology
experiments as well as the tangle model from [5]. The idea
behind the experimental technique of difference topology
is to use a protein such as Cre recombinase to trap cross-
ings bound by the protein under study (in this case, Mu).
This is illustrated in Fig. 4 where Mu is represented by the
cyan colored ball. To show how a difference topology
experiment works, we will assume the DNA conformation

bound by Mu corresponds to the five crossing 3-string tan-
gle in Fig. 1B based upon the results of [5]. In this tech-
nique, circular DNA is first incubated with the proteins
involved in Mu transposition. The Mu complex binds
DNA, possibly trapping DNA crossings within the protein
complex. A second protein whose mechanism is well
understood is added to the reaction (in this case, Cre, rep-
resented by smaller pink ball). This second protein, Cre,
cuts the DNA and changes the circular DNA topology
before resealing the breaks, resulting in knotted or linked
DNA. The crossings bound by the first protein, Mu, will
affect the product topology. In Fig. 4, four of the five cross-
ings bound by Mu are trapped by the action of Cre, result-
ing in a four crossing link. Hence, one can gain
information about the DNA conformation trapped by the
first protein, Mu, by determining the knot/link type of the
DNA knots/links produced by the second protein, Cre.

Note that in the substrate configuration, three loops ema-
nate from the Mu transpososome. The two binding sites
for Cre can be placed in two of the three loops. By choos-
ing on which pair of loops to place the Cre binding sites,
the location of Cre action can be controlled. Six different
substrates were constructed in [5] by varying the relative
positions (choice of loop pairs) of the Cre sites as well as
their relative orientations (direct versus inverted repeats).
Models proposed in [5] of these six reactions are illus-
trated in Fig. 5. The cyan colored ball represents the DNA
bound by Mu transposase while the pink colored ball rep-
resents the DNA bound by Cre.

Observe that in Fig. 4 (bottom) the yellow and brown
arrow heads in the Cre complex point in opposite direc-
tions. Based on the crystal structure of Cre complexed

A.) An example of a tangle equationFigure 2
A.) An example of a tangle equation. B.) A solution to the tangle equation in (A). C.) The tangle equation from (A) where the 
tangle in (B) has been substituted for the tangle unknown T showing that the tangle in (B) is a solution to the tangle equation in 
(A). D.) A tangle which is not a solution to the tangle equation in (A). E.) When we plug the tangle in (D) into the equation in 
(A), we see that the three crossing tangle cannot result in a four crossing link for this equation. Hence this three crossing tan-
gle is not a solution to the tangle equation in (A).
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with DNA [11], it was assumed in [5] that the two Cre
binding sites must be in anti-parallel orientation with
respect to each other within the Cre-DNA complex. Note
that for the configuration in Fig. 3, an even number of
crossings between Cre binding sites are needed to achieve
an anti-parallel orientation between the Cre binding
when the Cre sites are directly repeated (Fig. 3A) while an
odd number of crossings are necessary when the Cre bind-
ing sites are inversely repeated (Fig. 3B). In the Mu/Cre
models in Fig. 5, sometimes an extra crossing not bound
by either protein is needed for correct DNA orientation
within the Cre protein complex, depending on the orien-
tation of the Cre binding sites on the two loops. When
comparing products where the Cre sites are placed on the
same pair of loops but in different orientations, it was
assumed that the extra crossing occurred with the higher
crossing product. When this extra crossing exists, it is
placed within the green annulus in our figures. Hence
crossings within the green annulus, if any, represent cross-
ings not trapped by either protein complex.

If we do not assume that the shape of DNA bound by Mu
is the five crossing 3-string tangle from Fig. 1B, we can
instead enclose the protein-bound DNA conformation
into an unknown tangle, T. The system of tangle equa-
tions corresponding to these experiments is shown in Fig.
6 where the tangle T represents the unknown DNA confor-
mation bound by Mu. When the Cre sites are directly
repeated, the products are four crossing links regardless of
the location of the Cre binding sites. The chirality of the
four crossing links was only determined in one of the
three cases where the Cre binding sites are directly
repeated. But as there is only one four crossing link up to
mirror image, the crossings of the two unidentified four
crossing link products are either all left-handed or all
right-handed. When the Cre sites are inversely repeated,
the products are three crossing knots in two cases and a
five crossing knot in the third case. Since there is only one
three crossing knot up to mirror image, the crossings of
the unidentified three crossing knot are either all left-
handed or all right-handed. In Methods, we will prove

Difference topology experimentFigure 4
Difference topology experiment. Mu represented by the cyan colored ball is shown bound to five DNA crossings. Cre is rep-
resented by the smaller pink ball. Before Cre recombination, the DNA is circular and unknotted. Cre recombination changes 
the DNA configuration outside of the Mu transpososome. Since four of the five crossings bound by Mu are trapped by Cre 
recombination, the DNA product configuration equals a four crossing link.

Before Cre recombination          After Cre recombination

Mu =

Cre =Cre =

= =

Cre recombinationFigure 3
Cre recombination. A.) If the Cre binding sites are directly repeated, then Cre recombination results in a link. B.) If the Cre 
binding sites are inversely repeated, then Cre recombination can knot circular DNA.
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mathematically that the five crossing knot must also con-
tain all left-handed or all right-handed crossings, but for
now we will make no assumptions regarding this knot
other than that it contains five crossings as experimentally
determined.

Mathematical model
Determining the topological conformation of DNA bound by
Mu is equivalent to solving the system of tangle equations in
Fig. 6 for the 3-string tangle T. A solution is a topological
approximation, given as a 2-dimensional projection of a 3-
dimensional conformation.

An example of a 3-dimensional reconstruction using 2-
dimensional tangle models is given in [3].

In order to find the Fig. 1B solution, Pathania et al [5]
assumed the protein-bound DNA is a 3-branched super-
coiled structure like those in Fig. 7. Furthermore, since the
substrate was negatively supercoiled unknotted DNA,
Pathania et al [5] assumed that the crossings within each
of the three branches is right-handed. Pathania et al [5]
used the number of crossings in the knotted and linked
DNA products to determine the number of crossings in
each of the three branches in order to find the Fig. 1B solu-
tion which is repeated in Fig. 7A for convenience. Next, we
illustrate their method for finding the number of crossings
in each branch.

There exist four 3-branched supercoiled solutions to the
tangle equations in Fig. 6. These solutions are shown in

System of tangle equations corresponding to difference topology experiments in [5]Figure 6
System of tangle equations corresponding to difference topology experiments in [5]. The tangle T (cyan ball) represents the 
unknown DNA conformation bound by Mu. In two of the experiments, the knot/link product was fully identified and hence we 
know that the crossings are all right-handed as shown in the bottom two tangle equations. In the remaining four experiments, 
only the crossing number of the knot/link was determined. There is only one three crossing knot and only one four crossing 
link up to mirror image. Hence, we know that for the three and four crossing products, the crossings are either all left-handed 
or all right-handed.

T T == 5 crossing
knot

= =T T

T T= = T T= =

==T T = =T T

Tangle model from [5]Figure 5
Tangle model from [5]. Mu is shown binding five DNA crossings (cyan ball). Cre recombination (pink balls) results in knotted 
and linked products. The topology of the knotted/linked products is dependent upon the location of the Cre binding sites and 
the DNA topology within the Mu transpososome.
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Fig. 7. They were obtained by solving a system of linear
equations. For example, looking at the bottom left tangle
equation in Fig. 6 in which the product is a right-handed
three crossing knot, we observe that if the solution is a 3-
branched supercoiled conformation with x crossings in
one branch containing a Cre binding site and y crossings
in the other branch containing the other Cre binding site,
then x + y = 3 (compare to bottom left tangle equation in
Fig. 5). If we let z be the number of crossings in the third
branch, then the top left equation involving an unidenti-
fied four crossing link in Fig. 6 corresponds to the linear
equation y + z = ± 4, while the equation involving the uni-
dentified three crossing knot (middle left equation in Fig.
6) results in the equation x + z = ± 3. If we solve the system
of linear equations, x + y = 3, y + z = ± 4, x + z = ± 3, we
obtain x = 1, y = 2, z = 2 (Fig. 7A), x = 2, y = 1, z = -5 (Fig.
7B), x = -2, y = 5, z = -1 (Fig. 7C), x = 5, y = -2, z = -2 (Fig.
7D).

Note that we are actually solving four different systems of
linear equations (where each system has a unique 3-
branched supercoiled solution) depending on whether
the top left four crossing link is right- or left-handed (y +
z = ± 4) and whether the unidentified three crossing knot
is right- or left-handed (x + z = ± 3).

The solutions shown in Fig. 7B, 7C, 7D contain more
crossings than the solution in Fig. 7A. Also, the solutions
in Fig. 7B, 7C, 7D contain left-handed crossings. As the
substrate DNA was negatively supercoiled, one would
expect a 3-branched supercoiled structure to contain right-
handed twists, not left-handed twists. Hence the Fig. 7A
solution [5] is biologically more likely than the other 3-
branched supercoiled solutions (Also, the solutions in Fig.
7B, 7C, do not satisfy additional experiments in [5] not
described here).

The solutions in Fig. 7 are the only solutions if one con-
siders only 3-branched supercoiled DNA conformations,
but the question remains whether there are any other bio-
logically relevant solutions if we do not assume a 3-

branched supercoiled structure. In the next section, we
describe colorability, the tangle invariant which we use to
search for solutions for T where the only restriction placed
on T is that it has eight or fewer crossings. However, a
thorough understanding of this invariant is not necessary
to understand the main idea behind the algorithm dis-
cussed in Results.

The coloring invariants
A diagram, D(T) of a knot, link, or tangle T is a projection
of T into �2, the 2-dimensional plane, where only double
points are allowed at a crossing (two points are superim-
posed when strands cross), and gaps are used to indicate
which part of the knot crosses under. Two diagrams corre-
spond to the same 3D knot/link/tangle if one diagram can
be converted to the other diagram via a sequence of Rei-
demeister moves-RI, RII, and RIII (Fig. 8).

An m-coloring of a diagram D(T) is a function C : {arcs of
D (T)} # m where the elements of m = {0,1, ..., m-1}

will be called colors, and such that at each crossing the rela-
tion y + z - 2x = 0 mod to holds, where x is the color
assigned to the overarc and y and z are the colors of the
two underarcs. See Fig. 9. A coloring is trivial if the color-
ing function is the constant map, i.e., all the arcs are
assigned the same value or "color". A knot or link, K is
said to be in-colorable if there exists a non-trivial m-color-
ing of D(K). This is a knot/link invariant in that if one dia-
gram of the knot/link K is m colorable then all diagrams
corresponding to K are m-colorable [12]. For an elemen-
tary introduction to coloring knots see [13]. We will more
thoroughly define how coloring relates to tangles below
[14,15].

A coloring matrix of a knot/link/tangle diagram, T, is any
matrix, MT, which is row equivalent to a coefficient matrix
corresponding to the coloring equations. For example, the
6 × 8 matrix in Eqn. (1) is a coloring matrix corresponding
to the tangle diagram in Fig. 9C. Each row corresponds to

Z Z

Three-branched supercoiled solutions to the tangle equations in Fig. 6Figure 7
Three-branched supercoiled solutions to the tangle equations in Fig. 6.

A. B. C. D.
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one of the six crossings in the tangle diagram while each
column represents one of the eight arcs, x5, x6, x7, x8, x1, x2,
x3, x4 in the tangle diagram.

We will call the arcs which have one endpoint on the
boundary of the tangle 3-ball endpoint arcs. The remaining
arcs will be called interior arcs. Notice that we place the
four columns corresponding to the endpoint arcs, x1, x2,

x3, x4, as the four rightmost columns of the matrix MT . We

can solve this system of equations by performing the fol-

lowing row operations: (1) exchange two rows (row i ↔
row j); (2) add a multiple of one row to a different row

(row i → row i + t · row j, i ≠ j, t ∈ ); (3) multiply a row

by -1 (row i ↔ -row i). Since we are working in m where

to is an arbitrary integer, scaling a row is not allowed.

The first non-zero term in a row is called a leading entry.
A matrix is in echelon form if (1) rows consisting of only

0 1 1 0 2 0 0 0

1 2 0 0 1 0 0 0

2 1 0 0 0 0 0 1

0 0 1 1 0 2 0 0

1 0 0 2 0 1 0 0

2 0 0 1 0 0 1 0
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A.) Coloring a knotFigure 9
A.) Coloring a knot. The three arcs are labeled x1, x2, x3. A coloring of this knot diagram must satisfy the three equations cor-
responding to the three crossings. B.) A 3-coloring of this knot. C.) Coloring a 2-string tangle. The eight arcs are labeled x1, x2, 
..., x8. The six crossings result in six equations.

x1 x2

3x2x  + x  − 2x  = 0 mod m
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1
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23
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1 + 2 − 2(0) = 0 mod 3

0 + 1 − 2(2) = 0 mod 3

0 + 2 − 2(1) = 0 mod 3A.) B.)

C.) 4x x3
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Reidemeister movesFigure 8
Reidemeister moves.

R1 RII RIII
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zero's occur below rows containing at least one non-zero
term; (2) each entry below a leading entry is zero; (3) If aih
and ajk are leading entries and if i <j, then h <k (i.e., the
leading entries move to the right as the rows descend). An
echelon form, EF(MT) of the matrix in Eqn. (1) is

We define the standard echelon form of a matrix, SF(M),
to be the echelon form in which each leading entry is pos-
itive and if aij is a leading entry of the ith row, then 0 ≤ arj
≤ aij -1, 1 ≤ r <i. The standard echelon form of a matrix is
unique. Note that the matrix in Eqn. (2) is not in standard
echelon form, but the lower right hand corner 2 × 4 sub-
matrix is in standard echelon form (see also Eqn. (3)).

Let Ml(T) be the lower right hand corner 2 × 4 submatrix
of MT in standard echelon form. If the endpoints arcs'
unknowns, x1, x2, x3, x4 correspond to the four rightmost
columns, then Ml(T) is a tangle invariant. It is a tangle
invariant in that if you take two diagrams of the same tan-
gle T and place the endpoint arcs in the same order in the
last columns of their respective coloring matrices, then no
matter how the interior arcs are labeled, Ml(T) will be the
same for both diagrams. In addition, the absolute value of
the determinant of the upper left 4 × 4 submatrix, du(T) =
3, is also an invariant.

In the above example, the tangle diagram T is a 2-string
tangle with six crossings. Hence its coloring matrix is a 6 ×
(6 + 2) = 6 × 8 matrix, and we were interested in the 2 × 4
matrix Ml(T) as well as the determinant of the upper left 4
× 4 matrix. In the general case, suppose T is a diagram of
an arbitrary n-string tangle with a k × (k + n) coloring
matrix MT (listing the 2n endpoint arcs in the right-most
columns of the matrix in a fixed order). Let Ml(T) be the
lower right-hand corner n × 2n submatrix of MT in stand-
ard echelon form, and let du(T) be the absolute value of
the determinant of the upper left (k - n) × (k - n) submatrix
of MT . Both Ml(T) and du(T) are invariants of T [15]. Note
that columns corresponding to the endpoint arcs must be
the right-most columns of the coloring matrix, and these
columns must be in a fixed order when calculating Ml(T).
We will always order the endpoint arcs in a clockwise
manner starting with a northwest endpoint arc.

In order to calculate Ml(T) where T is an n-string tangle,
we must label 2n endpoint arcs with distinct variables. If
a string consists of just one arc (i.e., a string does not pass
under any other string including itself so that it projects to
just one arc; hence both endpoints of this arc lie on the
boundary of the 3D ball), we can doubly label the arc,
labeling one half of this endpoint arc xi, the other half xj,
and adding the equation xi - xj = 0. Normally an n-string
tangle with k crossings will have a k × (k + n) coloring
matrix. But if any arcs are doubly labeled, then the color-
ing matrix will have more than k rows and (k + n) col-
umns.

Results
We describe a computational algorithm we have imple-
mented to solve the system of tangle equations in Fig. 6.
The full description is given in Methods. The majority of
the algorithms were written so that this program can easily
be modified to solve any system of n-string tangle equa-
tions up to around 8–10 crossings, including those mod-
eling difference topology experiments applied to a protein
complex that stably binds any number of segments of
DNA.

We first determine how the strings enter and exit the tan-
gle. The parity of a tangle refers to the order in which the
strings enter and exit the 3D ball. A solution to the tangle
equations in Fig. 6 can have one of two possible parities:
the strings enter and exit the tangle as in Fig. 10A or as in
Fig. 10B. This is easily determined by noting which of the
equations in Fig. 6 involve a knot (one component) versus
a two component link. For example, the string entering in
at x1 cannot exit at x2 since the top left equation in Fig. 6
involves the one component unknot. As discussed in
Methods, we also use 2-string tangle analysis to simplify
the system of equations in Fig. 6.

A number of techniques have been used to encode knot
diagrams for computational purposes [16,17]. As
described in Methods, we use coloring matrices to encode
tangle diagrams. We generate matrices which could corre-
spond to tangle diagrams up through eight crossings. We
check each matrix to determine if it has the correct color-
ing invariants to be a solution to the tangle equations in

EF( )MT =

−
−

−
− −
− −

1 0 0 2 0 1 0 0

0 1 1 0 2 0 0 0

0 0 1 1 0 2 0 0
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0 0 0 0 00 0 3 3

2

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

( )

Ml T d Tu( ) , ( )=
− −

−
⎛

⎝
⎜
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⎠
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3 3

Possible paritiesFigure 10
Possible parities.
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Fig. 6. As shown in table 1, this eliminates the majority of
the generated matrices. Not all generated matrices corre-
spond to a tangle. We use an algorithm similar to that
described in [18] to remove all matrices which do not cor-
respond to a tangle.

Recall that a tangle can be represented by a number of dif-
ferent diagrams related by Reidemeister moves. Unfortu-
nately, there is no algorithm guaranteed to determine
whether two tangle diagrams are equivalent. In fact, in
order to simplify a diagram, it may be necessary to first
increase the number of crossings in the diagram. Thus this
software does not determine all tangle equivalences, but
does reduce the output sufficiently to handle the remain-
ing possibly equivalent tangles by hand. While generating
matrices, we omit matrices where the corresponding dia-
gram can be simplified by RI or RII moves (Fig.8). As dis-
cussed in Methods, we also perform some other
simplifications which involve a combination of RI, RII,
and RIII moves. As shown in table 1, this leaves us with 13
matrices that could correspond to tangles satisfying the
system of equations in Fig. 6: ten with the parity shown in
Fig. 10A and three with the parity shown in Fig. 10B.

We checked the remaining thirteen tangles corresponding
to these matrices by hand. The ten tangles with Fig. 10A
parity are all equivalent to the five crossing tangle found
in [5] (Fig. 7A). The three tangles with Fig. 10B parity are
all equivalent to one of the two eight crossing tangles in
Fig. 7B, C. Recall that the two eight crossing solutions
were not considered in [5] since the unknotted DNA sub-
strate was negatively supercoiled and hence trapping left-
handed crossings is biologically unlikely.

Discussion
We have developed software to analyze the difference
topology experiments in [5]. Pathania et al [5] needed to
assume the basic shape of a 3-branched supercoiled struc-
ture (Fig. 7) in order to find the solution shown in Fig. 1B
(= Fig. 7A). With our software, no assumptions regarding
the DNA conformation bound by the protein complex are
needed except for an upper bound on the number of
crossings. This algorithm can also be modified to analyze
any difference topology experiment regardless of the
number of DNA segments bound by the protein complex
(although there is a bound on the topological complexity
of the protein-bound DNA as discussed below).

A tangle solution is a topological approximation given as
a 2-dimensional projection of a 3-dimensional structure.
It does not determine sharpness of DNA bending, but it
does give an important starting point from which other
modeling techniques may be applied. Limited informa-
tion regarding the Mu-DNA conformation existed before
[5]. Since then a partial structure based on scanning trans-
mission electron microscopy (STEM) at cryo-temperatures
has become available [19], but this involves only a por-
tion of the protein complex and a change in the DNA
sequences bound by Mu. Information regarding protein-
bound DNA conformations can sometimes be obtained
via crystallography, STEM, or FRET (fluorescence reso-
nance energy transfer), but all these techniques are quite
difficult and currently can only be applied to small pro-
tein-DNA complexes.

Recall that in the Mu tangle model from [5] (Figs. 5, 6), it
is assumed that at most one crossing is trapped outside of
the protein complexes (modeled within the green annu-
lus). Since Mu and Cre bind to specific DNA sequences,
the length of the DNA between the Mu binding sites and

Table 1: Results.

#of Crossings # of Matrices Generated Parity Fig. 10A Parity Fig. 10B
Col Draw Non-Equiv? Col Draw Non-Equiv?

≥ 4 1,639 0 0 0 0 0 0
5 34,578 1 1 1 1 0 0
6 794,578 22 4 0 22 0 0
7 19,781,058 354 15 3 400 0 0
8 537,193,563 5019 106 6 5595 6 3

total (≥ 8) 10 3

Number of matrices with the correct coloring invariants (Col columns), corresponding to a drawable tangle (Draw columns), and which are 
potentially non-equivalent (Non-equiv columns). The first column refers to the number of crossings in the tangle diagram. The second column gives 
the number of matrices generated which could correspond to a tangle with a fixed crossing number. The results in the next three columns assume 
the parity in Fig. 10A while the results in the last three columns assume the parity in Fig. 10B. The columns labeled "Col" state the number of 
generated matrices which have the correct coloring invariants to satisfy the equations in Fig. 6. However, not all generated matrices correspond to 
a tangle. The columns labeled "Draw" give the number of matrices which correspond to a drawable tangle with the correct coloring invariants. The 
number of these matrices which may correspond to non-equivalent tangles is given in the columns labeled "Non-equiv?". Note, however, that the 
algorithm does not identify all equivalent tangles.
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Cre binding sites can be controlled. The shortest length
needed for the reaction to take place was determined in
[5] in order to prevent trapping extraneous crossings. The
difference topology experimental technique can also be
applied to proteins that bind to arbitrary DNA sequences
rather than specific DNA sequences, but the results would
not be expected to be as clean (both in terms of experi-
mental results as well as determining the appropriate tan-
gle model). It was shown in [20] that if the length of DNA
between binding sites is not properly controlled, then the
number of protein-bound DNA crossings may be overes-
timated. But even if we are left with a topological approx-
imation, it is still a significant improvement over having
little or no information on how to draw the DNA in a pro-
tein-DNA complex.

We are not mathematically limited to equations resulting
from Cre recombination. Any protein which can change
DNA topology could potentially be used in a set of differ-
ence topology experiments to obtain a different system of
tangle equations. For example topoisomerases change the
topology of circular DNA by changing DNA crossings. It
may be possible to obtain a more 3-dimensional model
by averaging 2-dimensional projections of tangle solu-
tions from two or more systems of tangle equations or
tangle models [3,4]. Cre, however, may be the easiest to
work with due to its sequence specificity and its simple
mechanism.

The software and its applicability to n-string tangle 
equations
This software consists of 4 steps:

1. Matrices which could correspond to coloring matrices
of tangle diagrams are generated (see subsection Tangle
generation in Methods)

2. The coloring invariants of each matrix are checked (sub-
section Checking the coloring invariants in Methods).
Implementing this part of the software requires that we
first mathematically simplify the system of tangle equa-
tions via 2-string tangle analysis (subsection 2-string tan-
gle simplification in Methods).

3. Not all the matrices generated in step 1 will correspond
to a tangle diagram. Hence each generated matrix is
checked to determine if it actually corresponds to a tangle
diagram (subsection Non-drawable matrices in Meth-
ods).

4. Different matrices can correspond to the same tangle.
Thus we remove some (but not all) of the redundant
matrices (subsection Equivalence moves in Methods)

No modifications are needed for Steps 1 and 3 in order to
apply this algorithm to a different system of n-string tan-
gle equations. For step 2, additional invariants may be
needed in addition to or in replacement of the coloring
invariants. Additional subroutines may also be needed for
step 4.

Although coloring is not that powerful of a knot invariant,
it is a powerful tangle invariant. As our results show, it is
the only invariant we need to check to determine if a tan-
gle up through eight crossings is a solution to the equa-
tions in Fig. 6. However, there is no guarantee that this
invariant will be sufficient for a different system of tangle
equations. Hence we may need to check additional invar-
iants. Fortunately, there are a number of other invariants
as well as software available for calculating these other
invariants which can be used when needed [17,21]. In
particular we plan to add the homflypt polynomial knot
invariant as an alternative option to the coloring invari-
ant. The homflypt polynomial has been used in other
algorithms requiring computational speed [22]. Knots
with nine or fewer crossings are uniquely identified by
their homflypt polynomial. Hence if the knotted products
of the difference topology experiments contain fewer than
ten crossings, then checking the homflypt polynomial is
sufficient (i.e., the homflypt polynomial will completely
determine if a tangle is a solution to a system of n-string
tangle equations if the equations only involve knots with
less than ten crossings). Even if we need to use different
invariant(s), this does not affect any other part of the algo-
rithm. In particular, we can still use coloring matrices to
encode tangle diagrams.

Our software left us with only 13 different coloring matri-
ces which could correspond to tangle solutions to the sys-
tem of equations in Fig. 6. We could have added
additional methods to determine if two tangle diagrams
are equivalent to further reduce this output, but it was
quicker to check these 13 matrices by hand. For a different
system of equations, additional methods to determine
tangle equivalence may be needed to reduce the output to
a handful of matrices. We will add additional subroutines
to decrease the number of redundant tangles as needed.

The modifications that may be needed are straightfor-
ward. In fact they have been used by others for a compu-
tationally much more complex problem, knot tabulation
[16]. The techniques we use are very similar to those used
to tabulate knots up through 16 crossings. The main dif-
ference between knot tabulation and our algorithm is that
in tabulating knots, every knot diagram must be fully
identified and all redundancies eliminated. In our algo-
rithm, we discard diagrams that do not satisfy our equa-
tions, and hence only need to analyze a very small fraction
of diagrams compared to the number of diagrams ana-
Page 10 of 19
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lyzed in knot tabulation. Also, since we focus on only a
few systems of equations at a time, we can analyze by
hand some redundancies among our tangle solutions.
Hence we don't need to check nearly as many invariants
or computationally determine as many tangle equiva-
lences as in knot tabulation where millions of knots have
been identified [23]. Thus our algorithm is computation-
ally much simpler than that required for knot tabulation.

Unfortunately, we cannot give a mathematical estimate
regarding the number of solutions or the number of
redundancies for an arbitrary system of tangle equations.
In most cases, any modifications needed to reduce the
number of repeated solutions will take at most a few days
to implement. However, if the system of tangle equations
is under-determined so that it has many small crossing
solutions, then determining redundancies computation-
ally will become much more important. An example of an
under-determined system would be one modeling a par-
tial set of difference topology experiments. In [5], Cre
binding sites, in both inverted and direct orientations,
were placed on each pair of the three loops emanating
from the Mu transpososome. Hence six different sub-
strates were constructed. If a protein binds, for example,
four segments of DNA, then four loops will emanate from
the protein-DNA complex. If Cre binding sites are placed
on each pair of these four loops in both inverted and
direct orientation, twelve substrates would be needed. In
general if a protein-complex binds n segments of DNA,
one would need to contract n(n - 1) different substrates if
Cre binding sites are placed on each pair of loops in both
orientations. An under-determined system would result if
Cre binding sites are not placed on each pair of loops. We
will eventually be able to solve under-determined systems
for small crossing solutions as this problem is still much
simpler than knot tabulation, but we expect this will take
longer to implement.

Other mathematical methods
There are many mathematical techniques (for example
[1,24-28,28-36]) as well as software [37,38] for solving 2-
string tangle equations. Hence many (but not all) biolog-
ically relevant 2-string tangle equations can be completely
solved. Similar mathematics does not yet exist for solving
n-string tangle equations for n > 2. Some work has been
done on 3-string tangles [39] and solving 3-string tangles
equations involving the class of 3-string tangles called 3-
braids [40]. There is also some work on classifying n-string
tangles (for example, [41]). Also techniques in 3-manifold
theory can be applied to solve n-string tangle equations
for small crossing solutions [42], (Darcy IK, Luecke J,
Vazquez M: A tangle analysis of the Mu transpososome
protein complex which binds three DNA segments, man-
uscript in preparation). However, at the moment, there
are no mathematical methods for solving the system of 3-

string tangle equations in Fig. 6 or for most systems of n-
string tangle equations.

Computational limitations
Currently this C++ algorithm takes about two days on a
Linux computer with AMD Opteron Processor (2.2 GHz
cpu) to find solutions through eight crossings. However,
the efficiency of the algorithm can be significantly
improved by parallelizing it and running it on a cluster.
Hence it should be possible to find solutions up to about
ten crossings. As the number of tangles grows exponen-
tially with crossing number, this algorithm can not be
used to find high crossing solutions. Knots have only been
tabulated up through sixteen crossings. Although our
algorithm is computationally much simpler than knot
tabulation, there are more tangles with k crossings than
there are knots with k crossings. Hence we do not expect
to be able to get much past ten crossings with a reasonable
computation time.

Despite this computational limitation, we believe this
algorithm is applicable to a wide array of protein-DNA
complexes. The length of DNA bound by the protein lim-
its the bound DNA's topological complexity. For example,
the three DNA segments bound within the Mu transposo-
some are 50, 175 and 190 base pairs. However, we do not
know of a theoretical tipper bound on the topological
complexity of protein-bound DNA.

We believe eight crossings is a reasonable limit for the Mu
transpososome. In addition to limits imposed by the
lengths of the three protein-bound DNA sequences, the
existence of a five crossing solution implies that a much
more complicated solution with eight or more crossing is
less likely. However, we have no proof that this is the case.

Conclusion
The computational algorithm described in this paper can
be modified to solve any system of n-string tangle equa-
tions for small crossing tangle solutions. A long-term goal
is to create software accessible to those without a back-
ground in knot theory. Eventually this software will be
able to draw the tangle solutions. Some additional work is
needed to handle under-determined systems of tangle
equations as discussed above. But in the meantime if the
system is not under-determined, we can readily modify
this algorithm to solve any specified system of tangle
equations up to around ten crossings; hence an experi-
mentalist need not wait for the final version of this soft-
ware before performing difference topology experiments.

Methods
Tangle generation
We use the coloring matrix of a tangle diagram to encode
its shape. Recall that a solution to the tangle equations in
Page 11 of 19
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Fig. 6 can have one of two possible parities: the strings
enter and exit the tangle as in Fig. 11A or as in Fig. 11B.
For tangle generation, we will not place the columns cor-
responding to the endpoint arcs in the rightmost col-
umns. This simplifies the matrix generation as well as
determining if a matrix corresponds to a drawable tangle
or if two matrices correspond to the same tangle. In order
to calculate the coloring invariants, we will later move the
columns corresponding to the endpoint arcs to the right-
most columns. The red string which begins with the end-

point arc labeled x1 and ends with the endpoint arc xi will
be called string 1. The green string which begins with the
endpoint arc labeled xi+i and ends with the endpoint arc xj
will be called string 2 while the remaining blue string will
be called string 3.

We first consecutively label the arcs of red string 1 begin-
ning with x1 as illustrated with the example in Fig. 12A.
The red string is broken into four arcs with the arcs con-
secutively labeled x1, x2, x3, x4. We then label the arcs of
the green second string starting from the first endpoint arc
clockwise from the red endpoint arc x4. String 2 is broken
into four arcs which are consecutively labeled x5, x6, x7, x8.
We then label the arcs of string 3, x9, x10, starting from the
first endpoint arc clockwise from the last labeled arc of
string 2. Recall that the arcs correspond to columns in the
coloring matrix (Fig. 12A). Hence for tangle generation,
we have chosen a particular ordering of the columns by
ordering the arcs.

Recall that the coloring equations (which correspond to
rows in the coloring matrix) are determined by the cross-
ings in the tangle diagram. Hence we determine the order-
ing of the rows by labeling the crossings. Beginning with

A.) Example: labeling arcsFigure 12
A.) Example: labeling arcs. The arcs correspond to columns in the coloring matrix. The rows of the coloring matrix are not 
determined until the crossings are labeled, but are included in the above figure for illustrative purposes. The matrix is parti-
tioned into blocks in order to emphasize the correlation between the placement of 1's and the number of arcs in each string. 
Observe 1's only occur in the diagonal blocks in the pattern shown. B.) Example: labeling crossings.
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Possible parities. Note that the endpoint arcs are neither 
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generation.
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string 1, we consecutively number the under-crossings
(Fig. 12B). Hence for string 1, crossing number i occurs
between string 1 arcs xi and xi+i. For string 2, crossing
number j occurs between string 2 arcs xj+1 and xj+2 while
for string 3, crossing number k occurs between string 3
arcs xk+2 and xk+3. This determines the placement of the
two 1's in each row (Fig. 12B). To generate matrices that
could correspond to a coloring matrix, we can now place
one -2 in each row in all possible combinations.

Not all matrices that could correspond to a 3-string tangle
are generated (see below). Not all generated matrices cor-
respond to a tangle (see section on Non-drawable matri-
ces). Many different matrices correspond to the same
tangle (see below and section on Equivalence moves).

Matrices not generated
The algorithm under discussion does not generate all
matrices which could correspond to a tangle. A tangle dia-
gram can contain an extraneous crossing manifested by
the looping of a string over itself. If the loop does not pass
under any string, this results in the equation xi - xi+1 = 0.
This is more general than an RI move (Fig. 8) as there
could be strings passing under this loop. In any case this
tangle diagram can be simplified, and hence we do not
need to generate the matrix corresponding to this dia-
gram. Since all matrices generated have two "l"s and one
"-2" in each row, none of the matrices generated will cor-
respond to a tangle containing such an extraneous cross-
ing.

Another case that is not generated is the presence of a
string not crossing under any arcs, and hence consisting of
just one arc doubly labeled xi and xi+1 . This case results in
the equation, xi - xi+1 = 0. We could easily generate this, but
the system of tangle equations in Fig. 6 rules out such tan-
gles as possible solutions.

The algorithm also does not generate matrices that corre-
spond to tangles containing crossings which can be
removed by an RII move. These matrices contain -2's in
the same column in two consecutive rows where the rows
correspond to the same string. See Fig. 13. By not generat-
ing matrices containing the submatrix in Fig. 13B, we do
not generate any tangle diagrams which can be simplified
by an RII move (Fig. 13A). This also eliminates other tan-
gles whose coloring matrix also contains this submatrix.
This includes tangle diagrams containing a generalization
of an RII move where strings are allowed to pass under the
strings which would otherwise correspond to an RII move
(Fig. 13C, left-side) as well as tangles containing diagrams
like that on the right-side of Fig. 13C. All of these tangle
diagrams can be simplified. This is one advantage of using
coloring matrices to generate tangles: we easily remove a

number of matrices that correspond to tangle diagrams
where the number of crossings can be reduced.

The next part of this software checks the coloring invariant
as this removes the majority of the matrices from consid-
eration. However, for readability, we will discuss the
drawability algorithm first.

Non-drawable matrices
Not all generated matrices correspond to a tangle. We use
an algorithm almost identical to that described in [18] to
completely determine if a matrix corresponds to a drawa-
ble tangle. This algorithm determines if all arcs can be
drawn or if an arc becomes trapped in a region and cannot
be completed. We illustrate with an example. If the matrix
in Eqn. (4) corresponds to a coloring matrix of a tangle,
then since it has five rows, the tangle must have five cross-
ings. Also, based upon the pattern of 1's in this matrix, the
first string should consist of four arcs, x1, x2, x2, x4, while
the second string consists of arcs x5, x6 and the third string
consists of arcs x7 and x8. A matrix corresponds to a tangle
diagram if we can embed all of the arcs. In this case we say
that the matrix is drawable. In order to determine if there
exists a tangle diagram associated to the matrix in Eqn.

A.) An RII moveFigure 13
A.) An RII move. B.) Matrix corresponding to RII move. C.) 
Tangles which would also contain the submatrix in Fig. 13B.
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(4), we begin by drawing the arcs x1 and x2. Recall the first
row represents the first crossing with underarcs x1, x2.
Since a -2 appears in the first row and the fourth column,
we know that x4 crosses over between x1 and x2. Hence we
also draw a portion of the arc x4 between the arcs x1 and x2
(Fig. 14A). Similarly since a -2 appears in the second row
and fifth column, we know that x5 crosses over between x2
and x3 (Fig. 14B).

In order to complete arc x3, we note that x1 crosses over
between x3 and x4 (-2 appears in the third row and first col-
umn and hence the x1 is the overcrossing for this third
crossing). Since x1 has already been drawn, we determine
if the arc x1 is reachable from x3 by searching the region
accessible to x3 (Fig. 14C, middle). In this case we see that
x3 can reach x1 from both above and below and hence
both cases are checked. Thus we draw the arc x3 approach-
ing x1 from above in one case (Fig. 14C, top) and from

below in the other case (Fig. 14C, bottom). We also draw
the beginning part of the arc x4.

A portion of the arc x4 has been draw before (crossing over
between x1 and x2), so we must determine if we can con-
nect the previously drawn part of x4 with the beginning
part of x4 that we just added. We determine if the previ-
ously drawn portion of x4 is within the region accessible to
the newly drawn beginning part of x4 (Fig. 14D, left). Note
that exactly one side of the previously drawn part of x4 is
accessible. Hence there is exactly one way of connecting
these two parts of x4 (Fig. 14D, right).

According to the matrix in Eqn. (4), the first string consists
of exactly four arcs. Hence x4 must also connect to the
boundary of the tangle ball. Therefore we check if the
boundary of the tangle ball is accessible to the first part of
x4 (Fig. 14E). It is not. After passing over between the arcs,
x1 and x2, the arc x4 arc is trapped in the shaded region and
cannot connect to the boundary of the 3-ball without
introducing an extra crossing. Thus the matrix in Eqn. (4)
does not correspond to a drawable tangle.

This is all done computationally. Currently no tangle dia-
grams are literally drawn. For a full description of the
algorithm applied to link diagrams, see [18]. The main
difference between our algorithm and the algorithm in
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The matrix in Eqn. (4) does not correspond to a 3-string tangleFigure 14
The matrix in Eqn. (4) does not correspond to a 3-string tangle.
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[18] is that since we are interested in tangles, we must con-
sider the boundary of the tangle 3-ball as shown in the
example in Fig. 14.

2-string tangle simplification
Coloring is a weak knot invariant, but a strong tangle
invariant. Hence, in order to use this invariant for solving
tangle equations, we must first simplify the system of tan-
gle equations in Fig. 6 by applying 2-string tangle analysis.
Recall that the tangle T in Fig. 6 contains three strings.
Observe that one of the strings in the green annulus loops
back, connecting two of the three strings in the tangle T
(see also Fig. 15 and the example in Fig. 5). Hence if we
combine the three strings in the tangle T with the strings
in the green annulus, we obtain a 2-string tangle. Thus the
tangles in Fig. 15 are 2-string tangles. Endpoints of the two
strings are marked by dots (note two strings have four
endpoints).

We can solve for the 2-string tangles in Fig. 15 using the
tangle equations in Fig. 6. This step requires some mathe-
matical background in tangle analysis, although there is
software (available at KnotPlot.com) for solving some 2-
string tangle equations [38]. For information on how to
solve 2-string tangle equations, see [1,33]. For additional
2-string tangle analysis applied to the Mu transpososome,
see (Darcy IK, Luecke J, Vazquez M: A tangle analysis of
the Mu transpososome protein complex which binds
three DNA segments, manuscript in preparation).

We can use a theorem in [29] and tangle calculus [1] (or
tangle software [38]) to solve for one of these 2-string tan-
gles (Fig. 16, where the crossings are either all right-
handed or all left-handed).

Similarly, by [36] and tangle calculus [1] (or tangle soft-
ware [38]), we can solve for two more of these 2-string
tangles (Fig. 17, where the crossings are either all right-
handed or all left-handed).

This determines the remaining 2-string tangles in Fig. 15
since the last three tangles in Fig. 15 can be obtained from
the first three by adding a crossing. In fact solving the sys-
tem of tangle equations in Fig. 6 is equivalent to solving

the system of three tangle equations in Fig. 18 for the 3-
string tangle T. Observe, also, that the first 2-string tangle
in Fig. 18 contains four right-handed or four left-handed
crossings. Hence in order to obtain a five crossing knotted
product, the extra crossing in the green annulus in the top
right tangle equation in Fig. 6 must be of the same hand-
edness as these four crossings. Thus the crossings in the
five crossing knotted product must be either all right- or
all left-handed.

Checking the coloring invariants
We first check if a generated matrix could be the coloring
matrix of a 3-string tangle, T, which satisfies the system of
tangle equations in Fig. 18. In order to use the coloring
invariants, Ml(T), du(T), of this 3-string tangle, we must
first move the six columns corresponding to the endpoint
arcs so that they become the six rightmost columns of the
coloring matrix. For convenience, we will re-label these
endpoint arcs as x1, x2 ,..., x6 as shown in Fig. 19.

Given a 3-string tangle T with k crossings, let MT be its k ×
(k + 3) coloring matrix. Let Op × (k-3) be a p × (k - 3) matrix
with all zero entries. Suppose for some (k-3) × (k-3)
matrix A(k-3) × (k-3), 3 × 6 matrix M3 × 6 in standard echelon
form and some (k-3) × 6 matrix B(k-3) × 6, SF(MT) is as in
Eqn. (5):

If T is a solution to the system of tangle equations in Fig.
18, then connecting the endpoint arcs, x1 and x2 of T
results in the four crossing 2-string tangle T12 shown in
Fig. 20A. The coloring invariants of T12 are shown in Fig.
20B.

Connecting endpoint arcs x1 and x2 of T to obtain the 2-

string tangle T12 results in adding the equation x1 - x2= 0 to

the matrix MT to obtain the matrix  (Eqn. 6).
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2-string tangle analysis will be used to determine these 2-string tangles from Fig. 6Figure 15
2-string tangle analysis will be used to determine these 2-string tangles from Fig. 6. The ends of the two strings are marked by 
dots.

TT T T TT
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If T is a solution to the tangle equation in Fig. 20A, then

this (k + 1) × (k + 3) matrix, , is a coloring matrix for

T12. Since du(T12) = 1, we know that the upper left (k + 1 -

2) × (k + 3 - 4) submatrix of the (k + 1) × (k + 3) matrix

SF( ) has determinant equal to 1. Since this matrix is

in standard echelon form, this upper left (k - 1) × (k - 1)
submatrix must be the identity matrix, I(k-1) × (k-1), which

has 1's along the diagonal and zero's elsewhere. Thus A(k-

3) × (k-3) is the (k - 3) × (k - 3) identity matrix, I(k-3) × (k-3). We

also know that the lower right-hand corner 2 × 4 subma-

trix of SF( ) is equal to Ml(T12). Thus if T is a solution

to the tangle equation in Fig. 20A, SF( ) is as in Eqn.

7 where * represents an arbitrary integer.

Hence, in order to determine if a matrix could correspond
to a tangle, T, which is a solution to the tangle equation in

Fig. 20A, we check if  is row equivalent to one of the

two matrices in Eqn. (7). This is not a guarantee that T is
a solution as different tangles can have the same coloring
invariants [15], but our computational results show that it
is sufficient for solving the tangle equations in Fig. 18.

Similarly to determine if T could be a solution to the tan-
gle equation in Fig. 21A, we add the equation x3 - x4 = 0 to
the matrix MT and check if this matrix satisfies the coloring
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Tangle equations (crossings are either all right-handed or all left-handed)Figure 18
Tangle equations (crossings are either all right-handed or all left-handed). This system of tangle equations is equivalent to the 
system of tangle equation in Fig. 6 in that both systems have the same solution set.

T = T = =T

Solving for a 2-string tangleFigure 16
Solving for a 2-string tangle.

T T == implies T =

Solving for two more 2-string tanglesFigure 17
Solving for two more 2-string tangles.

T T= = implies T =

==T T implies =T
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invariants of T34 as shown in Fig 21B. Finally, we deter-
mine if T could be a solution to the tangle equation in Fig.
21C, by adding the equation x5 - x6 = 0 to the matrix MT

and checking if this matrix satisfies the coloring invariants
of T56 as shown in Fig. 21D.

Alternatively, we can determine what the entries of the
submatrix M3 × 6 of MT (Eqn. (5)) need to be in order for T
to satisfy the tangle equations in Fig. 18. To determine M3

× 6, we add the equations xi - x(i+1) for each i = 1, 3, 5, and
determine the constraints needed to satisfy the coloring
invariants of Ti(i+1). If T satisfies the tangle equations in
Fig. 18, then the determinant of A, the upper left (k - 3) ×
(k - 3) submatrix of MT, is 1 and M3 × 6 is as in Eqn. (8).

for some integer x, where r = 3 or -5, s = 2 or -4, and t = 2.
As a check, both methods were implemented.

Equivalence moves
Recall that a tangle can be represented by a number of dif-
ferent diagrams related by Reidemeister moves. While
generating matrices, we omit matrices where the corre-
sponding diagram can be simplified by RI or RII moves
and other matrix related moves (as described in the sub-
section Tangle generation). We also added two addi-
tional equivalence relations.

M t t s r x s r x

x x r x r x
3 6

1 1 1 1 1 1

0 1 1

0 0 1 1

8×

− − −
− − − − − + +

− + − − −
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⎟
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⎟

∼ (( )

A.) The 2-string tangle T34Figure 21
A.) The 2-string tangle T34. This 2-string tangle is obtained from the 3-string tangle, T, by connecting endpoint arcs x3 and x4. 
B.) The coloring invariants corresponding to the 2-string tangle T34. C.) The 2-string tangle T56. This 2-string tangle is obtained 
from the 3-string tangle, T, by connecting endpoint arcs x5 and x6. D.) The coloring invariants corresponding to the 2-string 
tangle T56.

A.)
T =

B.) du(T34) = 1, Ml(T34) =

(
1 0 3 −4

0 1 2 −3

)
or

(
1 0 −3 2

0 1 −4 3

)

C.)
=T

D.) du(T56) = 1, Ml(T56) =

(
1 0 3 −4

0 1 2 −3

)

Re-labeled endpoint arcsFigure 19
Re-labeled endpoint arcs. When the coloring invariants are 
determined, the columns corresponding to these endpoint 
arcs will be listed consecutively in the order shown and in 
the rightmost columns of the coloring matrix.

X1

X6 X5

X2

X4

X3

A.) The 2-string tangle T12Figure 20
A.) The 2-string tangle T12. This 2-string tangle is obtained from the 3-string tangle, T, by connecting endpoint arcs x1 and x2. 
B.) The coloring invariants corresponding to the 2-string tangle T12.

A.)
T =

B.) du(T12) = 1, Ml(T12) =

(
1 0 4 −5

0 1 3 −4

)
or

(
1 0 −4 3

0 1 −5 4

)
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We removed tangles containing the diagram shown in Fig.
22 by removing matrices containing the submatrices in
Eqn. (9).

This also eliminates other tangle diagrams whose matrices
contain these submatrices, but all such tangles can be sim-
plified.

A tangle diagram containing the left-hand side of an RIII
move (Fig. 8) will be equivalent to the tangle diagram
obtained after the RIII move has been performed. Hence
we choose one of these tangle diagrams and discard the
other. After the above equivalence moves, we are left with
thirteen possible tangles which can be checked by hand to
determine if they correspond to equivalent or non-equiv-
alent solutions to the tangle equations in Fig. 18 (or
equivalently, Fig. 6).
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