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Abstract
Background: We investigate whether annotation of gene function can be improved using a
classification scheme that is aware that functional classes are organized in a hierarchy. The
classifiers look at phylogenic descriptors, sequence based attributes, and predicted secondary
structure. We discuss three Bayesian models and compare their performance in terms of predictive
accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model
based on a set of nested MNL models, and an MNL model with a prior that introduces correlations
between the parameters for classes that are nearby in the hierarchy. We also provide a new
scheme for combining different sources of information. We use these models to predict the
functional class of Open Reading Frames (ORFs) from the E. coli genome.

Results: The results from all three models show substantial improvement over previous methods,
which were based on the C5 decision tree algorithm. The MNL model using a prior based on the
hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In
contrast to previous attempts at combining the three sources of information in this dataset, our
new approach to combining data sources produces a higher accuracy rate than applying our models
to each data source alone.

Conclusion: Together, these results show that gene function can be predicted with higher
accuracy than previously achieved, using Bayesian models that incorporate suitable prior
information.

Background
Annotating genes with respect to the function of their pro-
teins is essential for understanding the wealth of genomic
information now available. A direct approach to identify-
ing gene function is to eliminate or inhibit expression of
a gene and observe any alteration in the phenotype. How-
ever, analysis of all genes for all possible functions is not
feasible at present. Statistical methods have therefore been
employed for this purpose. One statistical approach

attempts to predict the functional class of a gene based on
similar sequences for which the function is known. The
similarity measures used for this task are produced by
computer algorithms that compare the sequence of inter-
est against all other sequences with known function. Two
commonly used algorithms are BLAST [1] and FASTA [2].

A problem with using such similarity measures is that a
gene's function cannot be predicted when no homolo-
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gous gene of known function exists. To improve the qual-
ity and coverage of prediction, other sources of
information can be used. For example, King et al. [3] used
a variety of protein sequence descriptors, such as residue
frequency and the predicted secondary structure (the
structure of hydrogen bonding between different residues
within a single polypeptide chain). DeRisi et al. [4], Eisen
et al., [5] and Brown et al. [6] used gene expression data,
on the assumption that similarly expressed genes are
likely to have similar function. Marcotte et al. [7] recom-
mended an alternative sequence-based approach that
regards two genes as similar if they are together in another
genome. Deng et al. [8] predict the function of genes from
their network of physical interactions. To address some of
the problems associated with similarity-based methods,
such as their non-robustness to variable mutation rates
[9,10], annotation of protein sequences using phyloge-
netic information has been suggested by some authors
(e.g., [5,11,12]). In this approach, the evolutionary his-
tory of a specific protein, captured by a phylogenetic tree,
is used for annotating that protein [5].

The above-mentioned sources of data can be used sepa-
rately, or as proposed by several authors (e.g., [3,13,14]),
they can be combined within a predictive model. A variety
of statistical and machine learning techniques for making
such predictions have been used in functional genomics.
These include neighbourhood-count methods [15], sup-
port vector machines [6], and Markov random fields [8].
A common feature of these models is that they treat
classes as unrelated entities without any specific structure.

The assumption of unrelated classes is not always realistic.
As argued by Rison et al. [16], in order to understand the
overall mechanism of the whole genome, the functional
classes of genes need to be organized according to the bio-
logical processes they perform. For this purpose, many
functional classification schemes have been proposed for
gene products. The first such scheme was recommended
by Riley [17] to catalogue the proteins of Escherichia coli.
Since then, there have been many attempts to provide a
standardized functional annotation scheme with terms
that are not limited to certain types of proteins or to spe-
cific species. These schemes usually have a hierarchical
structure, which starts with very general classes and
becomes more specific in lower levels of the hierarchy. In
some classification hierarchies, such as the Enzyme Com-
mission (EC) scheme [18], levels have semantic values
[16]. For example, the first level of the EC scheme repre-
sents the major activities of enzyme like "transferaces" or
"hydrolases". In some other schemes, like the ones con-
sidered here, the levels do not have any uniform meaning.
Instead, each division is specific to the parent nodes. For
instance, if the parent includes "metabolism" functions,
the child nodes could be the metabolism of "large" or

"small" molecules. Rison et al. [16] surveyed a number of
these structures and compared them with respect to their
resolution (total number of function nodes), depth
(potential of the scheme for division into subsets) and
breadth (number of nodes at the top level).

All these hierarchies provide additional information that
can be incorporated into the classification model. The
importance of using the hierarchy in classification models
has been emphasized by many authors (e.g., [19-21]).
One approach for modelling hierarchical classes is to
decompose the classification model into nested models,
one for each node of the hierarchy. Goodman [22]
showed that using nested models can significantly reduce
the training time of maximum entropy-based language
models and results in slightly lower perplexities. He illus-
trated his approach using a word labelling problem, and
recommended that instead of predicting words directly,
we first predict the class to which the word belongs, and
then predict the word itself. Weigend et al. [23] also used
a two-level hierarchical model for document classifica-
tion. They evaluated their model on the Reuters-22173
corpus and showed significant improvement, especially
for rare classes. For text classification, McCallum et al. [24]
proposed a hierarchical naive Bayes model that smoothes
parameter estimates of a child node by shrinking toward
its parents in order to obtain more robust parameter esti-
mates. More recently, new hierarchical classification mod-
els based on large margin principles, specifically support
vector machines (SVM), have been proposed [25-29].
Dekel et al. [26] introduced a large margin hierarchical
classification model that uses the sum of parameters along
the tree for classifying cases to the end nodes. These
parameters are estimated based on a set of classifiers that
assign cases to the intermediate nodes. Cai and Hoffmann
[27] suggested a similar approach based on the generali-
zation of multiclass SVM.

Many approaches to using the hierarchy of gene functions
have been proposed. Eisner et al. [30] build multiple
binary classifiers with training sets modified according to
Gene Ontology (GO). For each classifier associated with a
node, they regard a gene as a positive example if it belongs
to that node, and as a negative example if it does not
belong to the node, or to the node's ancestors and
descendants.

Barutcuoglu et al. [31] also use a set of independent clas-
sifiers, whose predictions are combined using a Bayes net-
work defined based on the GO hierarchy. In the methods
recommended by both [30] and [31], the individual clas-
sifiers are built independently. Although the classifiers are
modified to become consistent, it is more natural to
model classes simultaneously. Many authors have shown
that learning a set of related tasks at the same time will
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improve the performance of models (e.g., [32,33]). King
et al. [3] attempted to use the additional information from
the hierarchical structure of gene functional classes by
simply using different decision tree models for each level
of the hierarchy. Clare and King [34] investigated a mod-
ified decision tree model, in which assignment of a func-
tional class to a node in the decision tree implies
membership of all its parent classes. They evaluated this
method based on Saccharomyces cerevisiae data and found
that the modified version is sometimes better than the
non-hierarchical model and sometimes worse. Blockeel et
al. [35] suggested an alternative modification of decision
trees for hierarchical classification models. Their model
uses a distance-based measure, where distances are
derived from the hierarchy. Struyf et al. [36] followed the
same idea but advocated a different distance measure,
which is easier to interpret and is guaranteed to be posi-
tive. They evaluated their approach based on different
datasets available for Saccharomyces cerevisiae, and showed
that their model has better precision than the hierarchical
C4.5 model proposed by [34].

In a previous paper [37], we introduced an alternative
Bayesian framework for modelling hierarchical classes.
This method, henceforth called corMNL, uses a Bayesian
form of the multinomial logit model (MNL), with a prior
that introduces correlations between the parameters for
classes that are nearby in the tree. We also discussed an
alternative hierarchical model that uses the hierarchy to
define a set of nested multinomial logit models, which we
refer to as treeMNL. In this paper, we apply these methods
(described further below in the methods section) to the
gene function classification problem.

Results and discussion
We used our Bayesian MNL, treeMNL and corMNL mod-
els to predict the functional class of Open Reading Frames
(ORFs) from the E. coli genome. E. coli is a good organism
for testing our method since many of its gene functions
have been identified through direct experiments. We used
the pre-processed data provided by [3]. This dataset con-
tains 4289 ORFs identified by [38]. Only 2122 of these
ORFs, for which the function was known in 2001, are
used in our analysis. The functional hierarchy for these
proteins is provided by [39]. This hierarchy has three lev-

els, with the most general classes at level 1 and the most
specific classes at level 3. For example, lipoate-protein
ligase A (lplA) belongs to class 'Macromolecule metabo-
lism' at level 1, to class 'Macromolecule synthesis, modifi-
cation' at level 2, and to class 'Lipoprotein' at level 3. After
excluding categories 0 and 7 at level 1, the data we used
had 6 level 1 categories, 20 level 2 categories, and 146
level 3 categories.

Since 2001 many additional gene functions have been
determined by direct experiment (see [40]). However, we
use the same dataset as [3], with the same split of data into
the training set (1410 ORFs) and test set (712 ORFs), in
order to produce comparable results. King et al. [3] further
divided the training set into two subsets and used one
subset as validation data to select a subset of rules from
those produced by the C5 algorithm based on the other
part of the training set. Our Bayesian methods do not
require a validation set, so we did not subdivided the
training set.

The covariates are based on three different sources of
information: phylogenic descriptors, sequence based
attributes, and predicted secondary structure. Following
[3], we refer to these three sources of data as SIM, SEQ and
STR respectively. Attributes in SEQ are largely based on
composition of residues (i.e., the number of residues of
type R) and of pairs of residues (i.e., the number of resi-
due pairs of types R and S) in a sequence. There are 933
such attributes (see Table 1 in [3]). Information in SIM
(see Table 2 in [3]) and STR (see Table 3 in [3]) is derived
based on a PSI-BLAST (position-specific iterative BLAST)
search with parameters e = 10, h = 0.0005, j = 20 from
NRProt 05/10/99 database. King et al. [3] used the Induc-
tive Logic Programming (ILP) algorithm known as Warmr
[41] to produce binary attributes based on the identified
frequent patterns (1 if the pattern is present and 0 other-
wise) in SIM and STR data. The rules created by Warmr
and their corresponding attributes can be found at [42].
There are 13799 such attributes generated for SIM and
18342 attributes for STR. As described below in the meth-
ods section, we reduced the dimensionality for each data-
set using Principal Component Analysis (PCA). We used
100 components for SEQ, 100 components for STR, and
150 components for SIM.

Table 1: Comparison of models based on their predictive accuracy (%) using each data source separately.

Accuracy (%) SEQ STR SIM
Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Baseline 42.56 21.21 8.15 42.56 21.21 8.15 42.56 21.21 8.15
MNL 60.25 33.99 20.93 50.98 25.14 15.87 69.10 45.79 30.76
treeMNL 59.27 34.13 18.26 52.67 27.39 16.29 67.70 45.93 30.34
corMNL 61.10 35.96 21.21 52.81 27.95 16.71 70.51 47.19 30.90
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Table 1 compares the three models with respect to their
accuracy of prediction at each level of the hierarchy. In
this table, level 1 corresponds to the top level of the hier-
archy, while level 3 refers to the most detailed classes (i.e.,
the end nodes). For level 3, we use a simple 0/1 loss func-
tion and minimize the expected loss by assigning each test
case to the end node with the highest posterior predictive
probability. We could use the same predictions for meas-
uring the accuracy at levels 1 and 2, but to improve accu-
racy, we instead make predictions based on the total
posterior predictive probability of nodes at level 1 and
level 2.

To provide a baseline for interpreting the results, for each
task we present the performance of a model that ignores
the covariates and simply assigns genes to the most com-
mon category at the given level in the training set.

As we can see in Table 1, corMNL outperforms all other
models. For the SEQ dataset, MNL performs better than
treeMNL. Compared to MNL, the corMNL model achieves
a slightly better accuracy at level 3 and more marked
improvements at level 1 and level 2. For the STR dataset,
both hierarchical models (i.e., treeMNL and corMNL) out-
perform the non-hierarchical MNL. For this dataset,
corMNL has a slightly better performance than treeMNL.
For the SIM dataset, the advantage of using the corMNL
model is more apparent in the first and second levels.

For analysing these datasets, King et al. [3] used a decision
tree model based on the C5 algorithm. They selected sets
of rules that had an accuracy of at least 50% with the cov-
erage of at least two correct examples in the validation set.
In Table 2, we compare the accuracy of our models to

those of [3]. In order to make the results comparable, we
used the same coverage values as they used. Coverage is
defined as the percentage of test cases for which we make
a confident prediction. In a decision tree model, these test
cases can be chosen by selecting rules that lead to a spe-
cific class with high confidence. For our models, we base
confidence on posterior predictive probability, which is
defined as the expected probability of each class with
regard to the posterior distribution of model parameters.
We assign each test case to a class with the maximum pos-
terior predictive probability. The higher this probability,
the more confident we are in classifying the case. We rank
the test cases based on how high the highest probability is,
and for a coverage of g, we classify only the top g percent
of genes. In Table 2, the coverage values are given in
parenthesis. All three of our models discussed here sub-
stantially outperform the decision tree model. Overall,
corMNL has better performance than MNL and treeMNL.

In an attempt to improve predictive accuracy, King et al.
[3] combined the three datasets (SEQ, STR and SIM).
Although one would expect to obtain better predictions
by combining several sources of information, their results
showed no additional benefit compared to using the SIM
dataset alone. We also tried combining datasets in order
to obtain better results. Initially, we used the principal
components which we found individually for each data-
set, and kept the number of covariates contributed from
each data source the same as before. Principal compo-
nents from each dataset were scaled so that the standard
deviation of the first principal component was 1. We did
this to make the scale of variables from different data
sources comparable while preserving the relative impor-
tance of principal components within a dataset.

Table 3: Accuracy (%) of models on the combined dataset with and without separate scale parameters. Results using SIM alone are 
provided for comparison.

Accuracy (%) SIM only Combined dataset single scale parameter Combined dataset separate scale parameters
Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

MNL 69.10 45.79 30.76 69.66 48.88 32.02 70.65 49.16 33.71
treeMNL 67.70 45.93 30.34 68.26 46.63 30.34 68.82 46.63 31.74
corMNL 70.51 47.19 30.90 71.49 49.30 32.87 72.75 49.16 34.41

Table 2: Comparison of models based on their predictive accuracy (%) for specific coverage (%) provided in parenthesis. The C5 results 
and the coverage values are from [3].

Accuracy (%) SEQ STR SIM
Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

(20) (18) (4) (10) (1) (5) (29) (26) (16)

C5 64 63 41 59 44 17 75 74 69
MNL 81 79 88 83 100 67 96 90 84
treeMNL 81 76 70 70 86 69 95 87 84
corMNL 84 82 89 83 100 73 97 90 82
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Using the combined dataset, all our models provided bet-
ter predictions, although the improvement was only mar-
ginal for some predictions. We speculated that some of
the covariates may become redundant after combining
the data (i.e., are providing the same information). One
may often obtain better results by removing redundancy
and reducing the number of covariates. To examine this
idea, we kept the number of principal components from
SIM as before (i.e., 150) but only used the first 25 princi-
pal components from SEQ and STR. The total number of
covariates was therefore 200. Reducing the number of
covariates from SEQ and STR may also prevent them from
overwhelming the covariates from SIM, which is the most
useful single source. This strategy led to even higher accu-
racy rates compared to when we used the SIM dataset
alone. The results are shown in Table 3 (middle section).
It is worth noting that when SEQ and STR are used alone,
using 25 principal components (rather than 100 before)
results in lower accuracy (results not shown).

To improve the models even further, we tried an alterna-
tive strategy in which different sources of data are com-
bined such that their relative weights are automatically
adjusted. As we can see in Table 3 (right section), this
strategy, which is described in more detail in the method-
ology section, resulted in further improvements in the
performance of the models. We also examined this
approach with larger numbers of covariates. We found
that when we increased the number of principal compo-
nents for SEQ and STR back to the original 100, the accu-
racy of predictions mostly remained the same, though a
few dropped slightly.

In practice, we might be most interested in genes whose
function can be predicted with high confidence. There is a
trade-off between predictive accuracy and the percentage
of the genes we select for prediction (i.e., coverage). Table
4 shows this trade-off for results on the test set from the
corMNL model applied to the combined dataset. In this
table, the accuracy rates for different coverage values are
provided. As we can see, our model can almost perfectly
classify 10% of the genes in the test set.

Finally, we trained the corMNL model on all ORFs with
known function to annotate the function of unknown

ORFs. Many of these ORFs, whose function was previ-
ously unknown, have been recently annotated using
direct biological experiments. However, since the func-
tional ontology of E. coli genome (provided by the Riley
group) has changed over time, it is not possible to com-
pare our results directly. King et al. [40] also faced this
problem. They evaluated their predictions manually for a
subset of ORFs. We present our predictions for the same
set of ORFs [see Additional file 1]. We use the MultiFun
Classification System [43] to obtain the function(s) asso-
ciated with each ORF through direct experiments.

For many of these ORFs, our prediction is closely related
to the confirmed function. For example, we classified yojH
(b2210) hierarchically as "Metabolism of small mole-
cules" at the first level, "Degradation of small molecules"
at the second level, and "Carbon compounds" at the third
level. Through a direct experiment, the function of this
gene was classified as "Metabolism", "Energy metabolism
(carbon)", and "Tricarboxylic acid cycle", at levels 1, 2,
and 3 respectively. In some cases, such as ybhO (b0789),
there is an exact match between our prediction (Macro-
molecule metabolism : Macromolecule synthesis : Phos-
pholipids) and the function provided by MultiFun
(Metabolism : Macromolecule (cellular constituent) bio-
synthesis : Phospholipid). For some other cases, although
our prediction does not exactly match the functions pro-
vided by MultiFun Classification System, the results are
comparable up to the first or second level of the hierarchy.
For example, we predicted that ydeD (b1533) is "Trans-
port/binding proteins" and belongs to "ABC super-
family". Direct experiment also show that in fact this gene
does belongs to the "Transport" group, however, it is more
specifically in the "Major Facilitator Superfamily" (MFS)
class instead of ABC. The comparison of our predictions
with MultiFun Classification System is not always as
straightforward as the examples provided above. For
instance, we predicted bfd (b3337) to be in the "Metabo-
lism of small molecules : Energy metabolism, carbon :
Anaerobic respiration" categories. The hierarchical func-
tion provided by MultiFun is "Cell processes : Adaptation
to stress : Fe aquisition". At the first glance, these two seem
to be unrelated. However, it is known that oxygen induces
stress and results in enormous changes in E. coli [44,45].
E. coli adapts to this environmental change by switching
from aerobic respiration (which is its preferred metabolic
mode) to anaerobic respiration. More detailed examina-
tion of these predictions will be needed to definitively
evaluate performance.

Our predictions for ORFs of unknown function (in 2001)
are available online at [46]. In this website, we also pro-
vide the combined dataset for E. coli, and the MATLAB
programs for MNL, treeMNL and corMNL along with their
respective outputs for the test set.

Table 4: Predictive accuracy (%) for different coverage values (%) 
of the corMNL model using all three sources with separate scale 
parameters.

Accuracy (%) Coverage (%)
5 10 20 50 90 100

Level 1 100 98 96 92 76 73
Level 2 100 98 96 71 53 49
Level 3 100 97 80 52 36 34
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Conclusion
In this paper, we investigated the use of hierarchical clas-
sification schemes to perform functional annotation of
genes. If the hierarchy provides any information regarding
the structure of gene function, we would expect this addi-
tional information to lead to better prediction of classes.
To examine this idea, we compared three Bayesian mod-
els: a non-hierarchical MNL model, a hierarchical model
based on nested MNL, referred to as treeMNL, and our
new corMNL model, which is a form of the multinomial
logit model with a prior that introduces correlations
between the parameters of nearby classes. We found
corMNL provided better predictions in most cases. More-
over, we introduced a new approach for combining differ-
ent sources of data. In this method, we use separate scale
parameters for each data source in order to allow their cor-
responding coefficients have appropriately different vari-
ances. This approach provided better predictions
compared to other methods.

While our emphasis in this paper was on the importance
of using hierarchical schemes in gene classification, we
also showed that even the non-hierarchical Bayesian MNL
model outperforms previous methods that used the C5
algorithm. Overall, our results are encouraging for the
prospect of accurate gene function annotation, and also
illustrate the utility of a Bayesian approach with problem-
specific priors. For our experiments, we used the pre-proc-
essed datasets provided by [3], who used the Warmr [41]
algorithm to generate binary attributes. It is conceivable
that the accuracy of predictions can be further improved
by using other data processing methods. Similarly, it is
possible that a method other than our use of PCA might
be better for reducing dimensionally before doing classifi-
cation.

In the E. coli dataset we used here, each ORF was assigned
to only one function. In the more recent classification sys-
tem provided by Riley's group [43], ORFs may belong to
more than one class. For such problems, one can modify
the likelihood part of the models described here so that if
a training case belongs to several classes, its contribution
to the likelihood is calculated based on the sum of proba-
bilities of those classes.

The functional hierarchies considered here are simple
tree-like structures. There are other hierarchical structures
that are more complex than a tree. For example, one of the
most commonly used gene annotation schemes, known
as Gene Ontology (GO), is implemented as a directed acy-
clic graph (DAG). In this structure a node can have more
than one parent. Our method, as it is, cannot be applied
to these problems, but it should be possible to extend the
idea of summing coefficients along the path to the class in
order to allow for multiple paths.

Our approach can also be generalized to problems where
the relationship among classes can be described by more
than one hierarchical structure. For these problems, differ-
ent hyperparameters can be used for each hierarchy and
predictions can be made by summing the parameters in
branches from all these hierarchies.

Methods
In this section, we first explain our models using a simple
hierarchy for illustration. Consider Figure 1, which shows
a hierarchical classification problem with four classes. By
ignoring the hierarchy, a simple multinomial logit (MNL)
can be used for classifying cases to one of the four classes.
If the class for a case is denoted by y, and the covariates for
this case are x, then the MNL model is

For each class j (for j = 1, ..., 4), there is an intercept αj and
a vector of p unknown parameters βj, where p is the
number of covariates in x. The inner product of these
parameters with the covariate vector is shown as xβj.

Alternatively, we can use the hierarchy to decompose the
classification model into nested models (e.g., MNL). For
example, in Figure 1, class 1 can be modeled as the prod-
uct of two independent MNL models:

P (y = 1|x) = P (y ∈ {1, 2}|x) × P (y ∈ {1}|y ∈ {1, 2}, x)

We refer to models in which the tree structure is used to
define a set of nested MNL models as treeMNL.

For modelling hierarchical classes, we propose a Bayesian
MNL with a prior that introduces correlations between the
parameters of nearby classes. Our model, called corMNL,
includes a vector of parameters, φ, for each branch in the
hierarchy (Figure 1). We assign objects to one of the end
nodes using an MNL model whose regression coefficients
for class j are represented by the sum of the parameters for
all the branches leading to that class. Sharing of common
parameters (from common branches) introduces prior
correlations between the parameters of nearby classes in
the hierarchy. This way, we can better handle situations in
which these classes are hard to distinguish. In Figure 1,
parameter vectors denoted as φ11 and φ12 are associated
with branches in the first level, and φ21, φ22, φ31 and φ32
with branches in the second level. We assign objects to
one of the end nodes using an MNL model with regression
coefficients β1 = φ11 + φ21, β2 = φ11 + φ22, β3 = φ12 + φ31 and
β4 = φ12 + φ32 for classes 1, 2, 3 and 4 respectively. Note
that the intercept parameters, αj, are not treated hierarchi-
cally.

P y j x
x

x

j j

j jj

( | , , )
exp( )

exp( )
= =

+

+′ ′′=∑
α β

α β

α β
1

4
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We first used these models (i.e., MNL, treeMNL and
corMNL) to predict gene function using each data source
(SIM, STR and SEQ) separately. Since the numbers of cov-
ariates in these datasets are large, we applied Principal
Component Analysis (PCA). Prior to applying PCA, the
variables were centred to have mean zero, but they were
not rescaled to have variance one. We selected the first p
components with the highest eigenvalues. The cutt-off, p,
was set based on the plot of eigenvalues against PCs (i.e.,
the scree plot). Since there was not a clear cut-off point at
which the magnitude of eigenvalues drops sharply, the
plots could only help us to narrow down the appropriate
values for p. We decided to choose a value at the upper
end of the range suggested by the scree plot. We selected
100 components from SEQ, 100 components from STR,
and 150 components from SIM.

Principal components are derived solely based on the
input space and do not necessarily provide the best set of
variables for predicting the response variable. In order to
find the relevant variables (among the principal compo-
nents) for the classification task, we use the Automatic
Relevance Determination (ARD) method suggested by
[47]. ARD employs a hierarchical prior to determine how
relevant each covariate is to classification. In the MNL
model, for example, one hyperparameter, σl, is used to
control the variance of all coefficients, βjl (j = 1, ..., c), for
covariate xl. If a covariate is irrelevant, its hyperparameter
will tend to be small, forcing the coefficients for that cov-

ariate to be near zero. We also use a set of hyperparame-
ters, τj, to control the magnitude of the β's for each class.
We use a third hypeparameter, ξ, to control the overall
magnitude of all β's. This way, σl controls the relevance of
covariate xl compared to other covariates, τj controls the
usefulness of covariates in identifying class j, and ξ con-
trols the overall usefulness of all covariates in separating
all classes. The standard deviation of βjlis therefore equal
to ξτjσl.

For the MNL model we used the following priors:

αj|η~N(0, η2)

βjl|ξ, σl, τ ~ N (0, ξ2 )

log(η) ~ N(0, 1)

log(ξ) ~ N(-3, 22)

log(τj) ~ N(-1, 0.52)

log(σl) ~ N(0, 0.32)

Since the task of variable selection is mainly performed
through PCA, the ARD hyperparameters, τ's, are given pri-
ors with fairly small standard deviation. The priors for τ's
are set such that both small values (i.e., close to zero) and

τ σj l
2 2

The corMNL model for a simple hierarchyFigure 1
The corMNL model for a simple hierarchy. The coeffcient parameter for each class is a sum of parameters at different 
levels of the hierarchy.

φ11 φ12

φ21 φ22 φ31 φ32

Class 1 Class 2 Class 3 Class 4

β1 = φ11 + φ21 β2 = φ11 + φ22 β3 = φ12 + φ31 β4 = φ12 + φ32

��
��

1

��
��

��
��

2 3
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large values (i.e., close to 1) are possible. The overall scale
of these hyperparameters is controlled by ξ, which has a
broader prior. Note that since these hyperparameters are
used only in the combination ξτjσl, only the sum of the
means for log(ξ), log(τj), and log(σl) really matters.

Similar priors are used for the parameters of treeMNL and
corMNL. For these two models, we again used one hyper-
paramter, σl, to control all parameters (β's in treeMNL, φ's
in corMNL) related to covariate xl. We also used one scale
parameter τk for all parameters related to branch k of the
hierarchy. The overall scale of all parameters is controlled
by one hyperparameter ξ. When we combine different
sources of information, we sometimes used separate scale
parameters, ξ, for each data source. This allows the coeffi-
cients from different sourcecs of data to have appropri-
ately different variances in the model. This is additional to
what ARD hyperparameters provide.

The setting of priors described in this paper is different
from what we used in a previous paper [37], where we
used one hyperparameter to control all the coefficients
(regardless of their corresponding class) in the MNL
model, and we used one hyperparameter to control the
parameters of all the branches that share the same node in
treeMNL and corMNL. The scheme used in this paper pro-
vides an additional flexibility to control β's. In this paper,
the hyperparameters are given log-normal distributions
instead of the gamma distributions used in [37]. Using
gamma priors has the advantage of conjugacy and, there-
fore, easier MCMC sampling. However, we prefer log-nor-
mal distributions since they are more convenient for
formalizing our prior beliefs.

Implementation
These models are implemented using Markov chain
Monte Carlo [48]. We use Hamiltonian dynamics [48] for
sampling from the posterior distribution of coefficients
(with hyperparameters temporarily fixed). The number of
leapfrog steps was set to 50. The stepsizes were set dynam-
ically at each iteration, based on the current values of the
hyperparameters [47]. In the MNL and corMNL models,
new values are proposed for all regression parameters
simultaneously. Nested MNL models in treeMNL are
updated separately since they are regarded as independent
models. The coefficient parameters within each nested
model, however, are updated at the same time.

We use single-variable slice sampling [49] to sample from
the posterior distribution of hyperparameters. At each
iteration, we use the "stepping out" procedure to find the
interval around the current point and the "shrinkage" pro-
cedure for sampling from the interval. The initial values of
the ARD hyperprameters, σ's, were set to the inverse of the

standard deviation of their corresponding covariates. The
initial values of τ's and ξ were set to 1.

Convergence of the Markov chain simulations was
assessed from trace plots of hyperparameters. We ran each
chain for 5000 iterations, of which the first 1000 were dis-
carded. Simulating the Markov chain for 10 iterations
took about 2 minutes for MNL, 1 minute for treeMNL,
and 3 minutes for corMNL, using a MATLAB implementa-
tion on an UltraSPARC III machine.
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