
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Evaluating different methods of microarray data normalization
André Fujita1,2, João Ricardo Sato1, Leonardo de Oliveira Rodrigues2, 
Carlos Eduardo Ferreira1 and Mari Cleide Sogayar*2

Address: 1Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010 – São Paulo, 05508-090 SP, Brazil and 2Chemistry 
Institute, University of São Paulo, Av. Lineu Prestes, 748 – São Paulo, 05513-970 SP, Brazil

Email: André Fujita - fujita@ime.usp.br; João Ricardo Sato - jsato@ime.usp.br; Leonardo de Oliveira Rodrigues - leonardo@iq.usp.br; 
Carlos Eduardo Ferreira - cef@ime.usp.br; Mari Cleide Sogayar* - mcsoga@iq.usp.br

* Corresponding author    

Abstract
Background: With the development of DNA hybridization microarray technologies, nowadays it
is possible to simultaneously assess the expression levels of thousands to tens of thousands of
genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression,
which define different cellular phenotypes or cellular responses to drugs. Due to technical biases,
normalization of the intensity levels is a pre-requisite to performing further statistical analyses.
Therefore, choosing a suitable approach for normalization can be critical, deserving judicious
consideration.

Results: Here, we considered three commonly used normalization approaches, namely: Loess,
Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for
normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained
were compared using artificial microarray data and benchmark studies. The results indicate that the
Support Vector Regression is the most robust to outliers and that Kernel is the worst
normalization technique, while no practical differences were observed between Loess, Splines and
Wavelets.

Conclusion: In face of our results, the Support Vector Regression is favored for microarray
normalization due to its superiority when compared to the other methods for its robustness in
estimating the normalization curve.

Background
DNA microarray technology is a powerful approach for
genomic research, playing an increasingly important role
in biomedical research. This technology yields simultane-
ous measurement of gene expression levels of thousands
of genes, allowing the analysis of differential gene expres-
sion patterns under different conditions such as disease
(pathological) states or treatment with different chemo-
therapeutic drugs. Due to small differences in RNA quan-

tities and fluctuations generated by the technique, the
intensity levels may vary from one replicate to the other
due to effects which are unrelated to the genes, requiring
data normalization before they can be compared.

Therefore, normalization is an important step for micro-
array data analysis. The purpose of data normalization is
to minimize the effects caused by technical variations and,
as a result, allow the data to be comparable in order to
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find actual biological changes. Several normalization
approaches have been proposed, most of which derive
from studies using two-color spotted microarrays. Some
authors proposed normalization of the hybridization
intensity ratios; others use global, linear methods, while
others use local, non-linear methods. Several authors sug-
gested using the spike-in controls, housekeeping genes, or
invariant genes [1-7].

Recently, some authors suggested the use of non-linear
normalization methods [8-10] which are believed to be
superior to the above mentioned approaches. The locally
weighed regression Lowess procedure [11] has been
widely used for this purpose and implemented by several
microarray analysis software packages [12,13], but similar
methods are suggested such as Splines [14,15] and Wave-
lets [16].

Here, we compare three different well-known microarray
data normalization methods, namely: Loess Regression
(LR), Splines Smoothing (SS) and Wavelets Smoothing
(WS). In addition, we propose two different normaliza-
tion approaches, called Kernel Regression (KR) [17,18]
and Support Vector Regression (SVR) [19], which, to the
best of our knowledge, have yet to be applied for micro-
array normalization. In order to assess the most appropri-
ate normalization technique, benchmark studies were
carried out using data derived from CodeLink™ mouse
microarray experiments [20], generated at our Cell and
Molecular Biology Laboratory (Chemistry Institute, Uni-
versity of São Paulo).

Results
We sought to highlight the performance of five different
methods of microarray normalization, namely: Loess,
Splines, Wavelets, Kernel and Support Vector Regression
in a simulated microarray and in an actual CodeLink™
microarray platform, which comprised ten thousand
mouse genes. Although we have focused on the use of
simulated two-color cDNA microarray data analysis, our
discussions are also applicable to the single-color oligo-
nucleotide microarrays.

The artificial microarrays composed by ten thousand
spots were generated using the model proposed by
Balagurunathan et al. (2002) [21]. The parameters used

were: (  = 0,  = 1001/0.7,  = -0.7,  = 1) and (

= 0,  = 1001/0.9,  = -0.9,  = 1) for sinusoid shape,

(  = 0,  = 500  = -1,  = 1) and (  = 0,  = 10,

 = -1,  = 1) for banana shape and, (  = 0,  = 10,

 = -1,  = 1) and (  = 0,  = 1001/0.7,  = -0.7, 

= 1) for mixed shape. Gene expression was generated by

an exponential distribution with parameter λ = 1/3000
and the outliers were generated by a Beta distribution with
parameters B(1.7,4.8). For more details, see Balaguru-
nathan et al. (2002).

The smoothing parameters used in each dataset are
described in Table 1. For SVR, we tested a range of values
and, as a result, we selected ε = 0.01 and C = 4 as the most
adequate one. It is important to highlight that the param-
eters are arbitrary; therefore, we chose the optimum
parameters for each method, i.e., the one which resulted
in the lowest mean square error. In Figure 1 are described
the mean square errors for each normalization method
applied to three different simulated microarrays with no
outliers.

In order to compare the perturbation caused by the pres-
ence of outliers and the robustness of each normalization
method, we randomly inserted 5, 10, 15, 20 and 40% of
outliers (genes which display very high differential expres-
sion) at three different expression levels (low, medium,
high), and the respective mean square errors between the
regression curve and the actual curve (the function from
which the microarray was generated) was calculated. This
step was repeated 100 times to estimate the average sum
of the squared errors and their variance. The Wilcoxon
and the Kolmogorov-Smirnov tests were performed in
order to determine whether the five regression methods
differ from one another in any significant manner.

A high performance normalization technique should
yield unbiased corrections and corrections with the small-
est standard deviation.

Comparison of the results presented in Table 2, 3 and 4
shows no important difference between LR, SS and WS.
Although the non-parametric KR method has been suc-
cessfully applied in econometrics data analysis [22], it dis-
played a poor performance for microarray normalization,
probably because it is highly sensitive to outliers [23].

Upon analyzing Table 2, it is possible to observe, in the
case of sinusoid shape, that when outliers are inserted in
regions of low gene expression, SVR, WS, SS, LR and KR,
in this order, have the lowest to the highest mean square
error, being statistically different (p value < 0.001) from
one another. For the banana and mixed shapes, LR and SS
presented a lower MSE than WS. In Table 3, it is interest-
ing to note that when outliers are inserted in regions of
medium gene expression, i.e., high density of genes, the
order of performance remains the same as in Table 2 and
SVR displays a mean square error which is significantly
different from the others (p value < 0.001). LR and SS
showed no significant difference (p value > 0.05) and KR
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is significantly worse than the other methods (p value <
0.001). In Table 4, the outliers are inserted in a high gene
expression region. Once more, the trend is maintained,
namely, KR is the most affected by outliers (p value <
0.001) and no differences between SS and WS (p value >
0.05) were observed for the sinusoid shape. For the other
two shapes, LR and SS were better than WS (p value <
0.001).

In all three cases (outliers at low, medium and high gene
expression), SVR is the affected by outliers (p value <
0.001), independently the microarray's shape. In addi-
tion, SVR yields the smallest standard deviation, followed
by LR, SS, WS, with KR displaying the largest deviation. In
addition, the five methods were applied to actual micro-
array data, with outliers inserted artificially, and the
results were the same when compared to those obtained
from artificial microarray experiments.

Table 1: Smoothing parameters used for each microarray dataset. For Loess, it is the span value, for Splines and Wavelets it is the 
number of functions, for Kernel and SVR it is the maximum value minus the minimum value multiplied by the number described in the 
table.

Banana Sinusoid Mixed

Loess 0.30 0.10 0.10
Splines 10.00 20.00 20.00

Wavelets 16.00 64.00 16.00
Kernel 0.50 0.50 0.70

SVR 0.20 0.20 0.60

The minimum mean square error for three different simulated microarray datasetsFigure 1
The minimum mean square error for three different simulated microarray datasets. From left to right: 1) sinusoid shape; 2) 
banana shape; 3) mix shape. The Kernel regression was not included in this figure because its MSE is 103 orders of magnitude 
greater than the other normalization methods.

Sinusoid MixedBanana
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In Figure 2, we illustrate the performance of the five nor-
malization methods applied to actual microarray data,
without the insertion of artificial outliers. A small differ-
ence could be observed in the normalization curves in
which the genes displayed low and high expression, due
to the low quantity of genes and the high variance.

Discussion
By analyzing the extent to which the outliers could disturb
the regression curve, we observed that KR is more highly
sensitive to outliers than LR, SS and WS in all three cases
(outliers in low, medium and high expression). In all
three cases, SVR is shown to be the least affected.

The superior performance of Splines, when compared to
KR, may be explained by the degree of smoothing, which
varies according to the density of points, differently from
KR, which has a fixed window size. Wavelet also has a
slightly better performance than KR, probably due to

multi-resolution properties. In general, SS and WS pre-
sented similar performance when we compared the
median of the mean square error using the Wilcoxon test.
However, when we used the Kolmogorov-Smirnov test,
they presented a statistically significant difference (p value
< 0.001). SS and WS constitute somewhat better normali-
zation techniques than LR when we analyzed the sinusoid
shape, but, for the other two shapes, LR is better than SS
and WS. For practical purposes, the differences between
them in terms of disturbance by outliers are too small to
be of any concern.

The SVR method is shown to be very robust to outliers
presented at different gene expression levels, becoming
the best normalization technique to identify actual differ-
entially expressed genes.

One well-known problem in identifying differentially
expressed genes is normalizing genes displaying low

Table 2: The mean square errors of estimated gene expression levels for simulated cDNA microarray data with differentially 
expressed genes inserted under the low expression levels condition.

Percentage 
of DEG

Sinusoid Banana Mixed

Method 25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

5% Loess 0.00038 0.00039 0.00040 0.00029 0.00029 0.00029 0.04806 0.04816 0.04825
Splines 0.00035 0.00036 0.00037 0.00027 0.00028 0.00028 0.04828 0.04839 0.04848

Wavelets 0.00033 0.00034 0.00035 0.00127 0.00128 0.00128 0.04816 0.04827 0.04835
Kernel 0.03781 0.03782 0.03783 0.14368 0.14404 0.14416 0.19869 0.19888 0.20098
SVR 0.00031 0.00032 0.00033 0.00016 0.00016 0.00017 0.04729 0.04733 0.04738

10% Loess 0.00047 0.00048 0.00050 0.00038 0.00038 0.00039 0.04631 0.04646 0.04661
Splines 0.00044 0.00045 0.00047 0.00037 0.00038 0.00039 0.04649 0.04663 0.04678

Wavelets 0.00042 0.00043 0.00045 0.00117 0.00118 0.00118 0.04637 0.04651 0.04666
Kernel 0.03780 0.03781 0.03783 0.15535 0.15574 0.15602 0.19177 0.19337 0.19596
SVR 0.00040 0.00041 0.00043 0.00031 0.00032 0.00033 0.04543 0.04548 0.04556

15% Loess 0.00055 0.00057 0.00059 0.00037 0.00038 0.00040 0.05157 0.05177 0.05194
Splines 0.00053 0.00055 0.00057 0.00036 0.00036 0.00038 0.05180 0.05199 0.05215

Wavelets 0.00050 0.00053 0.00054 0.00085 0.00087 0.00088 0.05165 0.05184 0.05199
Kernel 0.03779 0.03781 0.03784 0.16922 0.16965 0.17000 0.18852 0.18989 0.19142
SVR 0.00048 0.00050 0.00052 0.00033 0.00034 0.00035 0.05057 0.05069 0.05078

20% Loess 0.00064 0.00066 0.00068 0.00042 0.00043 0.00044 0.04780 0.04797 0.04819
Splines 0.00061 0.00063 0.00066 0.00040 0.00042 0.00043 0.04799 0.04818 0.04837

Wavelets 0.00059 0.00061 0.00064 0.00138 0.00140 0.00142 0.04786 0.04807 0.04825
Kernel 0.03778 0.03781 0.03785 0.14796 0.14841 0.14864 0.18435 0.18606 0.18721
SVR 0.00056 0.00058 0.00060 0.00035 0.00036 0.00037 0.04630 0.04638 0.04647

40% Loess 0.00098 0.00102 0.00104 0.00057 0.00061 0.00065 0.07937 0.07985 0.08031
Splines 0.00096 0.00099 0.00103 0.00060 0.00064 0.00069 0.07965 0.08014 0.08059

Wavelets 0.00095 0.00098 0.00101 0.00178 0.00182 0.00187 0.07954 0.08003 0.08047
Kernel 0.03771 0.03780 0.03786 0.14208 0.14235 0.14271 0.20321 0.20363 0.20426
SVR 0.00088 0.00091 0.00094 0.00047 0.00048 0.00049 0.06863 0.06901 0.06943

DEG: Differentially expressed genes
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expression levels, due to the low quantity of the corre-
sponding transcripts and the high spot intensity variance.
An equivalent problem occurs with genes presenting very
high expression levels due to the low frequency of these
genes. Once more, under these conditions, the SVR
method is shown to be better than other currently used
methods.

We performed the same tests for five other pairs of Code-
Link™ microarrays and the results obtained were the same:
the SVR is the most robust to outliers and the KR method
is the worst method, being highly sensitive to differen-
tially expressed genes and yielding poor regression curves.

Other methods, which are also robust to outliers and are
based on a new regression method called two-way semi-
linear model [24-27] have also been applied for micro-
array data normalization. This new approach developed

in the last few years, deserves further studies, which we are
planning to undertake in the future.

Conclusion
We have proposed a new approach to normalize micro-
array data and tested this SVR method by benchmark stud-
ies and by several simulations. The results obtained with
SVR were superior than those obtained with some widely
used normalization techniques such as LR, SS and WS.
SVR is shown to be more robust to outliers even at very
low and very high gene expression levels, being useful to
identify differentially expressed genes. Even tested in dif-
ferent microarray shapes, SVR was superior to the other
methods, while LR, SS and WS presented similar perform-
ances. Therefore, we have demonstrated that SVR is feasi-
ble and very promising for microarray data
normalization.

Table 3: The mean square errors of estimated gene expression levels for simulated cDNA microarray data with differentially 
expressed genes inserted under the medium expression levels condition.

Percentage 
of DEG

Sinusoid Banana Mixed

Method 25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

5% Loess 0.00356 0.00373 0.00389 0.00379 0.00392 0.00407 0.05214 0.05234 0.05259
Splines 0.00354 0.00370 0.00387 0.00379 0.00393 0.00407 0.05237 0.05258 0.05283

Wavelets 0.00351 0.00368 0.00384 0.00438 0.00450 0.00466 0.05227 0.05247 0.05272
Kernel 0.03799 0.03816 0.03838 0.17380 0.17441 0.17487 0.18858 0.18882 0.18904
SVR 0.00337 0.00353 0.00369 0.00357 0.00368 0.00382 0.05034 0.05049 0.05067

10% Loess 0.00709 0.00723 0.00743 0.00758 0.00780 0.00799 0.05483 0.05506 0.05532
Splines 0.00707 0.00721 0.00741 0.00763 0.00787 0.00805 0.05507 0.05532 0.05556

Wavelets 0.00705 0.00718 0.00739 0.00858 0.00881 0.00898 0.05497 0.05522 0.05547
Kernel 0.03837 0.03857 0.03886 0.15366 0.15461 0.15523 0.18801 0.18830 0.18867
SVR 0.00672 0.00688 0.00707 0.00709 0.00731 0.00750 0.05150 0.05164 0.05183

15% Loess 0.01041 0.01061 0.01094 0.01108 0.01136 0.01165 0.05964 0.05985 0.06012
Splines 0.01039 0.01060 0.01091 0.01109 0.01136 0.01165 0.05990 0.06013 0.06039

Wavelets 0.01038 0.01058 0.01089 0.01251 0.01276 0.01310 0.05978 0.06003 0.06029
Kernel 0.03867 0.03897 0.03927 0.12923 0.13026 0.13111 0.19337 0.19367 0.19414
SVR 0.00986 0.01006 0.01032 0.01027 0.01056 0.01081 0.05499 0.05526 0.05550

20% Loess 0.01393 0.01418 0.01444 0.01487 0.01519 0.01542 0.06362 0.06398 0.06432
Splines 0.01393 0.01415 0.01442 0.01486 0.01518 0.01542 0.06390 0.06425 0.06460

Wavelets 0.01390 0.01414 0.01440 0.01631 0.01666 0.01689 0.06375 0.06410 0.06445
Kernel 0.03915 0.03957 0.04004 0.12265 0.12366 0.12464 0.19808 0.19858 0.19909
SVR 0.01310 0.01334 0.01365 0.01365 0.01399 0.01416 0.05809 0.05835 0.05858

40% Loess 0.02772 0.02813 0.02862 0.02969 0.03004 0.03043 0.07856 0.07910 0.07975
Splines 0.02774 0.02814 0.02861 0.02966 0.03002 0.03038 0.07884 0.07937 0.08002

Wavelets 0.02771 0.02811 0.02859 0.03012 0.03049 0.03092 0.07873 0.07926 0.07995
Kernel 0.04195 0.04261 0.04316 0.15640 0.15816 0.16012 0.20368 0.20443 0.20518
SVR 0.02545 0.02581 0.02614 0.02656 0.02685 0.02724 0.06786 0.06830 0.06862

DEG: Differentially expressed genes
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Methods
Simulation
The program which generates the artificial microarray and
the analyses were implemented in R, a language for statis-
tical computing [28]. This script may be downloaded at:
[29].

CodeLink™ microarray
Cell lysis and RNA extraction
Cell cultures were lysed with guanidine isocyanate and
RNA was purified by of the cell lysates on a cesium chlo-
ride cushion (Chirgwin el al, 1979). Absorbance ratio at
260/280 nm was used to assess the RNA purity, a ratio of
1.8 – 2.0 indicating adequate purity.

Labeling and purification of targets
RNA samples were prepared and processed according to
protocols supplied by the manufacturer (Amersham Bio-
sciences). Briefly, cDNAs were synthesized from purified

RNA (2 μg) and control bacterial mRNAs. Samples were
purified using the QIAquick Spin kit (Qiagen) and con-
centrated by SpeedVac. Concentrated pellets were used in
a biotinylated-UTP based cRNA synthesis using the Code-
Link™ Expression Assay Reagent Kit (Amersham). Labeled
cRNAs were purified using the RNeasy kit (Qiagen) and
fragmented with supplied solution at 94°C for 20 min.

Hybridization and washing of arrays
Fragmented biotin-labeled cRNAs (10 μg) were incubated
with CodeLink™ bioarrays and shaken (300 rpm) for 20 h.
The bioarrays were then washed and incubated with Cy5-
Streptavidin (30 min). Scanning of the bioarrays was per-
formed in a GenePix 4000 B Array Scanner (Axon Instru-
ments) and the data were collected using the CodeLink™
System Software (Amersham), which provided the raw
data and invalidated data from irregular spots.

Table 4: The mean square errors of estimated gene expression levels for simulated cDNA microarray data with differentially 
expressed genes inserted under the high expression levels conditions.

Percentage 
of DEG

Sinusoid Banana Mixed

Method 25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

25% 
Quantile

Median 75% 
Quantile

5% Loess 0.00038 0.00039 0.00040 0.00081 0.00087 0.00094 0.04633 0.04639 0.04648
Splines 0.00035 0.00036 0.00037 0.00079 0.00086 0.00092 0.04658 0.04665 0.04674

Wavelets 0.00033 0.00034 0.00035 0.00115 0.00121 0.00129 0.04643 0.04650 0.04660
Kernel 0.03781 0.03782 0.03783 0.16417 0.16453 0.16513 0.17428 0.17436 0.17447
SVR 0.00031 0.00032 0.00033 0.00080 0.00087 0.00092 0.04527 0.04534 0.04544

10% Loess 0.00146 0.00153 0.00168 0.00145 0.00156 0.00167 0.04733 0.04748 0.04758
Splines 0.00142 0.00149 0.00160 0.00147 0.00157 0.00168 0.04756 0.04767 0.04779

Wavelets 0.00140 0.00147 0.00159 0.00160 0.00170 0.00182 0.04725 0.04736 0.04748
Kernel 0.02662 0.03454 0.03789 0.23086 0.23135 0.23245 0.18441 0.19003 0.19176
SVR 0.00126 0.00133 0.00144 0.00142 0.00154 0.00166 0.04678 0.04687 0.04696

15% Loess 0.00203 0.00217 0.00234 0.00199 0.00212 0.00224 0.04963 0.04976 0.04991
Splines 0.00198 0.00211 0.00223 0.00200 0.00211 0.00222 0.04987 0.05001 0.05014

Wavelets 0.00196 0.00209 0.00224 0.00219 0.00240 0.00257 0.04975 0.04989 0.05001
Kernel 0.02318 0.02992 0.03729 0.17578 0.20066 0.22763 0.18472 0.18898 0.18923
SVR 0.00178 0.00190 0.00200 0.00170 0.00180 0.00189 0.04885 0.04898 0.04912

20% Loess 0.00260 0.00275 0.00293 0.00259 0.00272 0.00289 0.04917 0.04930 0.04944
Splines 0.00254 0.00268 0.00286 0.00260 0.00270 0.00289 0.04933 0.04946 0.04961

Wavelets 0.00253 0.00267 0.00284 0.00289 0.00304 0.00320 0.04919 0.04933 0.04947
Kernel 0.02224 0.02819 0.03468 0.16500 0.17817 0.20385 0.18207 0.18716 0.19141
SVR 0.00226 0.00239 0.00255 0.00247 0.00258 0.00272 0.04839 0.04850 0.04863

40% Loess 0.00501 0.00520 0.00545 0.00518 0.00538 0.00555 0.04980 0.04999 0.05020
Splines 0.00498 0.00519 0.00539 0.00520 0.00538 0.00558 0.05002 0.05022 0.05038

Wavelets 0.00496 0.00517 0.00537 0.00535 0.00551 0.00572 0.04984 0.05004 0.05020
Kernel 0.02155 0.02487 0.02810 0.18250 0.20140 0.22296 0.17524 0.18072 0.18433
SVR 0.00446 0.00467 0.00489 0.00464 0.00483 0.00505 0.04809 0.04829 0.04860

DEG: Differentially expressed genes
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Loess regression
Consider we have n measurements, for each of which the
response expected is yi and let xi be the predictor, where x
is the log intensity of one microarray and y is the log inten-
sity of the other one, in case we are analyzing a single-
color microarrays. Whether the microarray is a two-color
platform, x is the log of one dye intensity and y is the log
of the other dye intensity.

In this model, they are supposed to be related by

yi = g(xi) + εi  (1)

where g is the regression function and εi is a random error.
The idea of local regression is that near x = x0, the regres-
sion function g(x) can be locally approximated by the
value of a function in some specified parametric class.
Such a local approximation is obtained by fitting a regres-
sion surface to the data points within a chosen neighbor-
hood of the point x0.

In this method, weighed least squares are used to fit linear
or quadratic functions of the predictors at the centers of
the neighborhoods. The radius of each neighborhood is
chosen so that the neighborhood contains a specified per-
centage of the data points. The fraction of the data, called
the smoothing parameter, in each local neighborhood is

weighted by a smooth decreasing function of their dis-
tance from the center of the neighborhood [30].

B-Splines smoothing
Due to its simple structure and good approximation prop-
erties, polynomials are widely used in practice for approx-
imating functions [31,32]. Let x and y as defined above
and

and

Therefore, let

... ≤ y-1 ≤ y0 ≤ y1 ≤ y2 ≤ ...  (4)

be a sequence of real numbers. Given integers i and m > 0,
we define

for all real x. We call  the m th order B-Spline associ-

ated with the knots yi ,..., yi + m.

For m = 1, the B-Spline associated with yi <yi + 1 is particu-
larly simple. It is the piecewise constant function

In our analysis, we applied the cubic Splines, i.e., Splines
of order 3.

We can also give explicit formulate for  in case either

yi or yi + m is a knot of multiplicity m.

Wavelet smoothing
The Wavelet transform is a relatively new approach and
has some similarities with the Fourier transform. Wavelets
differ from Fourier methods in that they allow the locali-
zation of a signal in both time and frequency. In the wave-
let theory, a function is represented by an infinite series
expansion in terms of dilated and translated version of a
basic function ψ called the "mother' Wavelet. A Wavelet
transformation leads to an additive decomposition of a
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Fitted normalization curves for actual cDNA microarray data using the five different normalization methods (Loess, Splines, Wavelets, Kernel, SVR)Figure 2
Fitted normalization curves for actual cDNA microarray data 
using the five different normalization methods (Loess, 
Splines, Wavelets, Kernel, SVR).
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signal into a series of different components describing
smooth and rough features of the signal.

The term Wavelets means small curves, therefore, they are
oscillations that rapidly decay. As the B-Splines functions
system, the Wavelets functions ψ(t) can be used to gener-
ate a function basis for certain spaces [33]. An ortonormal
basis can be generated by dyadic dilations and transla-
tions of a mother Wavelet ψ(t), by

ψj, k (t) = 2j/2 ψ (2j j - k),  j, k ∈ Z  (7)

Wavelets are functions which satisfy the following proper-
ties:

i) dt = 0  (8).

ii) dt < ∞  (9).

iii) , where the function Ψ(ω) is the

Fourier transform of ψ(t)  (10).

iv) ,  j = 0,1,..., r - 1  for r ≥ 1 and

  (11).

An important result is that any function f (t) with

 can be expanded as

In other words, any function f (t) can be represented by a
linear combination of functions ψj, k (t). The smoothing
procedure can be carried out by an approximation, choos-
ing a maximum resolution J (t) for j =1,2,..., J (t) and k =
1,2,..., 2j-1. Here, we considered the Mexican hat Wavelet
[34] defined by

rather than other functions such as Morlet or Shannon
since they do not have an analytic formula.

The Cjk coefficients are estimated via an ordinary least
square regression. An important feature in the wavelets
representation is that it allows the description of functions
belonging to both Sobolev and Besov spaces [35].

Kernel regression
KR is one class of modeling methods that belongs to the
smoothing methods family. It is part of the non-paramet-
ric regression methods. KR allows basing the prediction of
a value on passed observations, and weighing the impact
of past observations depending on how similar they are,
compared to the current values of the explanatory varia-
bles.

The KR is one of the most widely used procedures in non-
parametric curve estimation. Nadaraya (1964) and
Watson (1964) proposed an estimator for the curve g
given by

In our datasets, we used the Gaussian Kernel because it is
symmetric and centralized in the mean.

In addition to being easy to compute, the Nadaraya-
Watson estimator gh (x) is consistent. When h → 0 the esti-
mated curve presents a large variability and when nh → ∞,
we obtain an overly smooth curve [36]. The bandwidth h
controls the smoothness degree of the estimated curve. It
is easy to observe that this KR estimator is just a weighted
sum of the observed responses Yi. The denominator
ensures that the weights sum up to 1.

Support Vector Regression
SVR generalized algorithm is a non-linear regression from
the Generalized Portrait algorithm developed in Russia by
Vapnik and Lerner (1963) [37] and Vapnik and Chervo-
nenkis (1964) [38]. It is based upon the statistical learn-
ing theory which has been developed by Vapnik and
Chervonenkis (1974) [39]. In Bioinformatics, and, more
specifically, in microarray data analysis, to the best of our
knowledge, this algorithm has previously been used only
once, by Hisanori et al. (2004), to extract relations
between promoter sequences and strengths [40]. Here, we
propose the use of SVR to normalize microarray data.

Let {(x1, y1),..., (x1, y1)} ⊂ R × R be the gene expression
data derived from microarray experiments, where x is the
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log intensity of one microarray and y is the log intensity of
the other one, in case we are analyzing a single-color
microarrays. When the microarray is a two-color platform,
x is the log of one dye intensity and y is the log of the other
dye intensity. In ε-SVR [41], the goal is to obtain a func-
tion f (x) that has at the most ε deviation from the yi for all
the data, and is as flat as possible.

In the case of linear functions f :

f (x) = (wt x) + b with w ∈ Rn, b ∈ R  (15)

Flatness in (15) means

Minimize 

In (16) there is a function f which, with ε precision,
approximates all pairs (xi, yi). But there are cases where it

is necessary to allow for some errors. To solve this prob-

lem, one can introduce slack variables ξi,  to deal with

unfeasible constraints of the optimization problem (16)
arriving at the formulation stated in [41]

Minimize  + C ∑(ξi + )

where the constant C > 0 is the trade-off between the
amount up to which deviations larger than ε are tolerated,
maintaining the flatness of f. This corresponds to dealing
with the ε-insensitive loss function |ξ|ε :

It is necessary to construct a Lagrange function from the
primal objective function and the corresponding con-
straints by introducing a dual set of variables. According
to Mangasarian (1969) [42], McCormick (1983) [43], and
Vanderbei (1997) [44] it follows that:

where L is the Lagrangian and ηi, , αi,  are Lagrange

multipliers. Hence the dual variables in (19) have to sat-
isfy

Note that we refer to αi and  as .

From the saddle point condition, the partial derivatives of

L related to (w, b, ξi, ) have to vanish for optimality.

From the substitution of (21), (22) and (23) into (19) we
obtain a dual optimization problem.

Subject to  and αi,  ∈ [0, C]

Equation (22) can be rewritten as follows

, thus 

(25)

This is the Support Vector expansion, i.e., the description
of w as a linear combination of xi.

To compute b, it is necessary to use Karush-Kuhn-Tucker
(KKT) conditions [45,46]. These authors state that at the
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point of the solution the product between dual variables
and constraints has to vanish.

αi (ε + ξi - yi + (wt xi) + b) = 0  (26)

 (ε +  + yi - (wt xi) - b) = 0

and

(C - αi)ξi = 0  (27)

(C - )  = 0

From (26) and (27) it follows that:

(i) Only samples (xi, yi) with corresponding

 = C lie outside

the ε-insensitive tube;

(ii) αi  = 0

From (i) and (ii), it is possible to conclude that

ε - yi + (wt xi) + b ≥ 0 and ξi = 0 if αi <C  (28)

ε - yi + (wt xi) + b ≤ 0  if αi > 0  (29)

In conjunction with an analogous analysis on 

max{-ε + yi - (wt xi)|αi <C or  > 0} ≤ b ≤ min{-ε + yi - (wt

xi)|αi > 0 or  <C}  (30)

If some  ∈ (0, C) the inequalities become equalities.

To point out the sparsity of the SV expansion: from (26),
the Lagrange multipliers may be nonzero only for |f (xi) -
yi| ≥ ε.

Therefore, we have a sparse expansion of w in terms of xi
[47].

Abbreviations
LR: Loess Regression

SS: Splines Smoothing

WS: Wavelets Smoothing

KR: Kernel Regression

SVR: Support Vector Regression
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