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Abstract
Background: In studies that use DNA arrays to assess changes in gene expression, our goal is to
evaluate the statistical significance of treatments on sets of genes. Genes can be grouped by a
molecular function, a biological process, or a cellular component, e.g., gene ontology (GO) terms.
The meaning of an affected GO group is often clearer than interpretations arising from a list of the
statistically significant genes.

Results: Computer simulations demonstrated that correlations among genes invalidate many
statistical methods that are commonly used to assign significance to GO terms. Ignoring these
correlations overstates the statistical significance. Meta-analysis methods for combining p-values
were modified to adjust for correlation. One of these methods is elaborated in the context of a
comparison between two treatments. The form of the correlation adjustment depends upon the
alternative hypothesis.

Conclusion: Reliable corrections for the effect of correlations among genes on the significance
level of a GO term can be constructed for an alternative hypothesis where all transcripts in the
GO term increase (decrease) in response to treatment. For general alternatives, which allow some
transcripts to increase and others to decrease, the bias of naïve significance calculations can be
greatly decreased although not eliminated.

Introduction
The purpose of this work is to evaluate the statistical sig-
nificance of treatments on the expressions in subsets of
the genes on an array; for example, sets defined by gene
ontology terms (GO terms, http://www.geneontol
ogy.org). GO terms group genes according to a biological
process, molecular function, or cellular component. Infer-
ences about the impact of a treatment are usually more

straightforward when based on GO terms or equivalent
groupings as opposed to lists of significant genes. Hence,
we want to assess the statistical significance of the treat-
ments on the group.

mRNA levels measured among genes within a GO group
will be correlated. Correlations among genes involved in
a common biological task are likely, and correlations are
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also expected simply because the set of expressions are
measured within an animal and array, i.e., under shared
conditions. The p-values computed in many pack-
ages[1,2] assume independence and therefore could be
misleading.

The statistical significance of a GO group is commonly
assessed by counting the number of statistically signifi-
cant genes in the group. The null hypothesis that this
count is a random sample of the significant genes on the
array is tested versus an alternative hypothesis that the
count is enriched [1-3]. The test is Fisher's exact test (prob-
abilities computed using a hypergeometric distribution)
or one of its many approximations (e.g., chi-squared test
which approximates the hypergeometric distribution with
a binomial distribution) [4].

We do not test for enrichment primarily because the null
distribution depends upon effects among interrogated
genes that are unrelated to genes in the evaluated GO
term. Put another way, the significance of a GO term
should not depend upon whether or not other genes on
the array (not in GO term) were affected by the treat-
ments. This approach is not amenable to corrections for
correlations among the p-values, since the test inherently
assumes exchangeability among genes; an assumption
which is not met under arbitrary correlation structures.
Furthermore, the usual implementation simply counts
'significant' genes which precludes extracting supporting
evidence from the 'not significant' genes.

The distribution of p-values for the individual genes on
the array allows one to estimate the number of affected
genes, and this estimate typically is larger than any list of
'significant' genes, which can be compiled with an accept-
ably low rate of misclassification [5-7]. Conceptually,
methods that collate individual p-values within biologi-
cally meaningful groups can extract any supporting evi-
dence for treatment effects from group members that
individually cannot be identified as affected by the treat-
ments.

We prefer an approach that is based on a p-value having a
uniform distribution under the null hypothesis [8]. For
any continuous probability distribution, x = F-1(1-p)
transforms p to the distribution specified by F. Two
choices for F, which are in common use for combing p-
values, are the standard normal distribution, Φ(x), and
the chi-square distribution with 2 degrees of freedom,
F(x) = 1 - exp(-x/2). When p-values are independent, the
distribution of the sum is straightforward for either nor-
mal or chi-squared deviates, and serves as a basis for test-
ing the significance of a GO term. This is elaborated for
the normal distribution in the next section, where we also
develop a correction for correlations. The test based on the

chi-squared deviate can also be corrected for correlation at
least in a 'one-sided' case [9-12].

Randomization tests can deal with correlations among the
genes in a GO term, and, when applicable, they should
generate uniformly distributed null p-values [13-15]. Our
studies usually process samples in batches and the estima-
tion of treatment differences is essentially done within
batches [6,16-18]. Such analyses usually cannot be imple-
mented as randomization tests and our motivation to
develop the presented methods is largely in this context.
We will present adjustments for a one-sample t-test
because the results are transferable to pair-wise contrasts
in a fixed-effects linear model. While the pair-wise con-
trasts are our real concern, their presentation carries alge-
braic baggage that is largely irrelevant to correcting for
correlation and we have opted for streamlined notation,
which focused on the fundamental issues in correcting for
correlation. A one-sample t-test can also be implemented
as a randomization test, which suggests presenting it as a
competitor. The randomization test is constructed to have
a uniform distribution under the null although for sample
sizes as small as n = 5 the number of possible permuta-
tions may be a complicating factor. When both methods
are applicable, we would not choose between them based
upon their abilities under the null distribution but rather
on a consideration of their power and/or robustness,
which is well beyond the scope of this paper.

We will assume that the data are n observations coming
from a population with mean vector, Δ and covariance
matrix, Σ. Although simple, this model is directly applica-
ble to some of our studies, and it serves here to focus on
basic issues with relatively simple mathematics. For an
example where this model can be used directly, see the test
for gender differences in gene expression as estimated in
Delongchamp et al. (2005)[16].

Methods
Meta-analyses
Several methods are used in meta-analyses to combine a
set of p-values into an overall significance level. Under a
null hypothesis, the p-value for a corresponding statistic is
a random variable with a uniform distribution and it can
be transformed to a convenient probability distribution
[8]. Here, we use the inverse of the standard normal distri-
bution. Then

zi = Φ-1(1 - pi)

is a random variable from the standard normal distribu-
tion, and when the set of p-values, {pi : i = 1,...,m}, are also
independent, the statistic,
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where m11 = (1,1,...,1)', also has a standard normal distri-
bution. So, the p-value,

gives an overall significance level for the set. We refer to
this as the naïve estimate because it naively assumes that
covariance of z is the identity matrix, cov(z) = I.

Adjusting for correlation
In studies which use DNA arrays, the expressions meas-
ured on an array will be correlated and these correlations
imply that the set of p-values, {pi : i = 1,...,m}, are not
independent. If the covariance of z is known, it is straight-
forward to modify the statistic so that it accommodates
correlations. Suppose that cov(z) = R, then the variance of
1'z is 1'R1 and the appropriate p-value is

Note that the naïve estimator takes R = I implying no cor-
relations among the m p-values.

When R is unknown, it must be estimated. In this context,
it is useful to 'adjust' the variance of the naïve estimator.
Let  be the average value of the off-diagonal elements of

R, i.e.,  = (1'R1 - m)/(m(m - 1)), then the implied adjust-
ment is

That is,

The correction for Ponly depends on the average correla-
tion, , and not on the individual correlations. We
believe that this allows one to generate an acceptable esti-
mate in small data sets even though the individual corre-
lations will be poorly estimated.

A couple of insights can be drawn from Equation (1).
Since the adjustment is less than 1 when  > 0; a signifi-
cance level based upon the naïve version is too small. Fur-

ther, the need for adjustment increases with the size of the
subset, i.e., m.

Estimating a correction for correlation

Continuing with the data model described in the Intro-
duction, the mean of n observations is assumed to have a

multivariate normal distribution with mean vector, Δ, and

covariance matrix, ; that is,

Let

• S estimate Σ; 

• D be a diagonal matrix; ; estimated by

The element-wise t-statistic for the null hypothesis, Δ = 0,
can be written in vectorial form as

Since  is a consistent estimate of D, the t-test approxi-

mates the z-test for large n, i.e.,  as n

increases. The cov(z) = DΣD, which is estimated by

S .

Then for a one-sided p-value with an increasing alterna-

tive, t → z implies that the appropriate correlation matrix

in Equation 1 is R = DΣD, which is approximated by  =

Σ . Note that for a decreasing alternative, the same

correlation applies for z = Φ-1 (p).

t-test

The one-sided p-value for a null hypothesis on Δ is based

on the distribution of the statistic, . Let

 and uj = ayj, and note that

Further, the variance of  satisfies
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So

This provides an alternative way to compute Equation (1),
which has some advantages. First, one only needs to know

, which is computed in the by-gene analyses. Second,

the by-gene analysis applied to {uj : j = 1,...,n} computes

the statistic and its p-value directly. So algorithms are sim-
pler. Finally, the p-value is based on a t-distribution,
which better reflects the effect of small samples.

Morrison [19] derives Hotelling's T2 test in the context of
t-statistics of linear combinations, and presumably such
statistics have a history nearly as long as multivariate sta-
tistics. O'Brien [20] examined this specific statistic as a
method for comparing multiple endpoints in clinical tri-
als. Lauter [21] noted that the null distribution is not the
t-distribution with small sample sizes and explained a
modified statistic, which corrects this. While the modified
statistic controls the Type 1 error, the modification seems
to reduce the power relative to O'Brien's statistic (simula-
tions not reported).

One- versus two-sided tests

So far, we have been discussing the case where pi is a one-

sided p-value. Essentially, Equation 1 applies whether pi is

a p-value from a one-sided test or a two-sided test. How-
ever, the covariance of z is not the same as the covariance
of its absolute value, |z|. Consequently a two-sided test in

which , needs a different adjustment

than a one-sided test in which p = 1 - Φ(z).

For a two-sided test, the null distribution of 1'|z| can be
generated through Monte Carlo samples from the null
distribution of z, MVN(0, cov(z)). That is, let z1,...,zk be
pseudo-random samples from the multivariate normal
distribution, MVN(0, cov(z)), and directly compute the p-
value for the observed value, ψ = 1'|z|, as

where I(A) is an indicator function which gives 1 if A is

true, or 0 otherwise. In simulations where Σ is specified,

the adjustment  can be implemented

based upon R,  or I. In the two-sided case, it is also of
interest to generate samples from MVN(0, cov(z)) where

 is computed from  and

. In theory, adjustments

based upon R correct the p-value for correlations, and for

large enough n so will  and . In practice,  or  must
be useful when n is quite small. Their utility in this regard
can be illustrated with simulated data.

Results
Simulation
The theory outlined in the previous sections provides
adjustments which will work well for large sample sizes. It
does not guarantee much when sample sizes are as small
as is seen in most studies that use DNA arrays. We simu-
lated a few 'representative' cases to illustrate that P com-
puted from the naïve statistic can be very inaccurate and
to demonstrate that the adjustments proposed herein give
useful corrections with small sample sizes.

The 'representative' simulations assumed a covariance

matrix, Σ, for m = 20 correlated genes. We constructed Σ =
D-1RD-1 by specifying R and D. The correlation matrix, R,

is given in Table 1,  ≈ 0.45. These correlations were ran-
domly selected to be between 0.35 and 0.55. Correlations
in this range are commonly observed in our studies. Like-
wise, we randomly selected 20 variances in the range typ-
ical of our studies (Table 2). For a given sample size, n,
pseudo-random samples y1,y2,...,yn were generated from a

multivariate normal distribution, MVN(0,Σ), and P was

computed using Equations 1 or 2. Since Σ is known, these

computations can be based upon R, ,  or I. This pro-
cedure was iterated at least 10,000 times to observe
enough P-values to adequately estimate the empirical dis-
tribution.

Figure 1 plots the cumulative distributions of P-values
from a one-side test with n = 5. Ideally the null p-values
follow a uniform distribution, the diagonal line in this fig-
ure. The naïve P-value (cyan line) grossly overstates the
significance of the test statistic with roughly 30% of these
P-values being less than 0.05. The P-values (red line) com-
puted using Equation 1 with the true correlation, R, have
the expected distribution; the observed departures from
the diagonal are within the variation associated with esti-
mating the uniform distribution by an empirical distribu-
tion (Kolmogorov-Smirnov test, p = 0.21). The corrected
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Table 1: Correlation matrix, R, used in the simulations. The representative correlations were randomly selected to be between 0.35 and 0.55. These correlations in this range are 
commonly observed in our studies.

1 0.3722 0.412 0.3719 0.5174 0.3699 0.478 0.4798 0.4496 0.5085 0.5058 0.3705 0.3524 0.4731 0.4538 0.4057 0.4246 0.443 0.3885 0.4519

0.3722 1 0.3527 0.4034 0.5445 0.4073 0.522 0.5225 0.5097 0.5239 0.3733 0.5298 0.5443 0.3895 0.4547 0.5036 0.3541 0.5071 0.429 0.4089

0.412 0.3527 1 0.5456 0.359 0.5349 0.398 0.4338 0.3809 0.4903 0.409 0.3718 0.3743 0.5229 0.3965 0.5091 0.5334 0.413 0.3691 0.428

0.3719 0.4034 0.5456 1 0.5345 0.514 0.409 0.4894 0.5176 0.4007 0.3824 0.4371 0.3679 0.4261 0.4772 0.3796 0.3906 0.4217 0.4393 0.4452

0.5174 0.5445 0.359 0.5345 1 0.4061 0.418 0.4092 0.5346 0.5224 0.4241 0.3802 0.3807 0.5035 0.4824 0.4953 0.4104 0.3501 0.5438 0.5125

0.3699 0.4073 0.5349 0.514 0.4061 1 0.351 0.5327 0.434 0.4566 0.4948 0.4281 0.4867 0.4563 0.4714 0.5291 0.4009 0.354 0.503 0.4166

0.4776 0.5225 0.3979 0.4092 0.4176 0.3505 1 0.4777 0.4354 0.4761 0.4109 0.3624 0.5064 0.4444 0.4038 0.3903 0.4479 0.407 0.5217 0.5469

0.4798 0.5225 0.4338 0.4894 0.4092 0.5327 0.478 1 0.3583 0.444 0.4546 0.4606 0.4706 0.4674 0.4813 0.4581 0.5171 0.4625 0.4332 0.3834

0.4496 0.5097 0.3809 0.5176 0.5346 0.434 0.435 0.3583 1 0.5184 0.548 0.4173 0.5257 0.4726 0.3544 0.4549 0.4734 0.5458 0.4346 0.5143

0.5085 0.5239 0.4903 0.4007 0.5224 0.4566 0.476 0.444 0.5184 1 0.5253 0.5161 0.4758 0.3904 0.4799 0.4291 0.5031 0.473 0.3508 0.4288

0.5058 0.3733 0.409 0.3824 0.4241 0.4948 0.411 0.4546 0.548 0.5253 1 0.4822 0.4519 0.4779 0.4359 0.3542 0.4875 0.4398 0.3992 0.4385

0.3705 0.5298 0.3718 0.4371 0.3802 0.4281 0.362 0.4606 0.4173 0.5161 0.4822 1 0.5422 0.4317 0.4011 0.5234 0.4553 0.4305 0.432 0.391

0.3524 0.5443 0.3743 0.3679 0.3807 0.4867 0.506 0.4706 0.5257 0.4758 0.4519 0.5422 1 0.3732 0.352 0.4682 0.4535 0.3799 0.3696 0.5219

0.4731 0.3895 0.5229 0.4261 0.5035 0.4563 0.444 0.4674 0.4726 0.3904 0.4779 0.4317 0.3732 1 0.4225 0.3962 0.478 0.4375 0.5188 0.4279

0.4538 0.4547 0.3965 0.4772 0.4824 0.4714 0.404 0.4813 0.3544 0.4799 0.4359 0.4011 0.352 0.4225 1 0.4796 0.3642 0.5126 0.364 0.3575

0.4057 0.5036 0.5091 0.3796 0.4953 0.5291 0.39 0.4581 0.4549 0.4291 0.3542 0.5234 0.4682 0.3962 0.4796 1 0.41 0.5454 0.4097 0.3597

0.4246 0.3541 0.5334 0.3906 0.4104 0.4009 0.448 0.5171 0.4734 0.5031 0.4875 0.4553 0.4535 0.478 0.3642 0.41 1 0.3866 0.4484 0.5465

0.443 0.5071 0.413 0.4217 0.3501 0.354 0.407 0.4625 0.5458 0.473 0.4398 0.4305 0.3799 0.4375 0.5126 0.5454 0.3866 1 0.4062 0.3617

0.3885 0.429 0.3691 0.4393 0.5438 0.503 0.522 0.4332 0.4346 0.3508 0.3992 0.432 0.3696 0.5188 0.364 0.4097 0.4484 0.4062 1 0.3759

0.4519 0.4089 0.428 0.4452 0.5125 0.4166 0.547 0.3834 0.5143 0.4288 0.4385 0.391 0.5219 0.4279 0.3575 0.3597 0.5465 0.3617 0.3759 1
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Table 2: Variances used in the simulations. 20 variances are 
randomly selected in the range typical of our studies.

0.058864
0.034697
0.025862
0.023389
0.002802
0.00839
0.000179
0.003993
0.014377
0.002584
0.000641
0.000972
0.003201
0.047617
0.051366
0.003047
0.004786
0.000368
0.007916
0.010357

Cumulative distribution of p-values for one-sided test case with sample size n = 5Figure 1
Cumulative distribution of p-values for one-sided test 
case with sample size n = 5. The corrected p-values 

based on a t-distribution (blue line) and the  (green line) 
are near diagonal, while the naïve p-value (cyan line) over-
states the significance of the test. We can correct the prob-
lem when we know the true correlation, R between the 
genes in a GO term (red line).

R̂

p-values based on the t-test method (blue line) and the

estimated correlation,  (green line), are near the diago-
nal albeit not perfect. However, they offer a big improve-
ment over naïve values.

The corrections are expected to improve with larger sam-
ple sizes, and this is illustrated for n = 15 in Figure 2 where
all of the correction methods are fairly accurate. Note also
that the distribution for the naïve P-value does not
respond to increasing sample size and remains very inac-
curate. Figures 1 and 2 were generated from 10,000 itera-
tions. Essentially, the empirical distributions for the
corrections plotted in Figure 2 are not statistically differ-
ent, and discrepancies with our expectations most likely
reflect the variability among the plotted distributions. For
example, we would expect the t-test version to be at least

as good as the correction based on , and this is not
apparent in Figure 2.

In practice we use the t-test correction because it is easiest
to compute. Figure 3 plots the interval, 0.0001 to 0.1, for
the t-test correction where the empirical distributions
were estimated from 1 million iterations. This figure illus-
trates the convergence toward the diagonal as sample sizes

R̂

R̂

Cumulative distribution of p-values for one-sided test case with sample size n = 15Figure 2
Cumulative distribution of p-values for one-sided test 
case with sample size n = 15. The corrections become 
better with a larger sample size. All of the correction meth-
ods give right adjustment as the prediction of the correlation 
becomes fairly accurate.
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increase. Even at n = 5, the accuracy is acceptable for our
purposes and represents a substantial improvement over
the naïve calculation. For example, the nominal level of
0.05 would actually be 0.08; much closer to the nominal
level than the naïve test at approximately 0.3 (Figure 1).

Figure 4 and Figure 5 show the results for simulations of
the two-sided case, n = 5, 15 respectively. Clearly, the
naïve P-values should not be used because they are inac-
curate. The empirical distributions for the other methods
in these figures involve considerable computation since
each P-value is generated by Monte Carlo sampling. To
speed up computations, we terminated Monte Carlo sam-

pling when  or k = 106. Conse-

quently, small values of P are more accurately estimated
than large values. In practice, we do not need to estimate
large values with as much accuracy as small values so this
is not a bad strategy. However, it makes it more difficult
to evaluate whether the correction follows the diagonal.
For small values, say < 0.1, the corrections are comparable
in accuracy to those in the one-sided simulations. The cor-

rection based upon  (blue line) seems preferable since

it appears to be more consistent with the correction based
upon the true correlation, R (red line).

Discussion
Correlations among gene expressions within a GO term
invalidate the computed p-value when it is based upon
assumed independence. Such estimates overstate the sig-
nificance when the correlations are positive. This behavior
was demonstrated analytically through a specific statistic,
Equation (1), as well as through simulations. The simu-
lated data show that the bias of the naïve p-value can be
substantial with moderate correlation.

For didactic reasons, we used a statistic and a scenario,
which is mathematically tractable. However, it should be
understood that overstating statistical significance is a
problem for any statistic where the computed p-value for
the GO term assumes independence among gene expres-
sions. This is true for widely implemented tests which
evaluate if significant genes are 'over-represented' within a
GO term. In these tests, p-values are based upon the
hypergeometric distribution (Fisher's Exact Test) or its
binomial or chi-squared approximations, and an assump-
tion of independence is essential to the construction of
the null distribution. In addition to the presented statistic,
there are other meta-analysis tests based upon a uniform

I
i

k
ψ >( ) =

=
∑ | |1’z

1

100

R

Cumulative distribution of p-values for two-sided test case with sample size n = 5Figure 4
Cumulative distribution of p-values for two-sided test 
case with sample size n = 5. P-values calculated from ran-

dom samples based on  (blue line) gives a reliable correc-
tion, which is comparable with the p-values from the true 
correlation R (red line).

R

Cumulative distribution of p-values for t-test correction with sample size n = 5, 10, 15, 20Figure 3
Cumulative distribution of p-values for t-test correc-
tion with sample size n = 5, 10, 15, 20. The convergence 
toward the diagonal as sample sizes increase is illustrated by 
the p-values in the interval, 0.0001 to 0.1, for the t-test cor-
rection where the empirical distributions were estimated 
from 1 million iterations.
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distribution of null p-values. A theory-based adjustment
for correlation is difficult to construct for these tests. Naïve
versions are biased, but not always as severe as the esti-
mate presented here. So, we have been pursuing correc-
tions for them.

For the illustrated statistic, the naïve p-value is easy to cor-
rect when the correlation is known. In practice the corre-
lation must be estimated from limited data. Under the
one-sample t-test scenario, we can estimate the applicable
correlation. The simulation of a 'representative' group of
20 genes shows that estimating the correlation improves
upon the naïve p-value with as few as 5 samples.

In the one-sided case, a t-statistic can be computed which
implicitly adjusts for the presence of correlations. This sta-
tistic is easy to implement in existing computer programs;
essentially the program that computed by-gene p-values
can be used. This procedure can be extended to any statis-
tical test that can be applied to the individual genes. As
presented here, the one-sided alternative specifies that all
genes change in the same direction. It is trivial to apply the
procedure for any pre-specified direction of change for
each gene. As our knowledge of expression profiles from
responses to toxicity grows, this approach might become
a standard test in screening chemicals for toxicity.

In an exploratory context, it is not possible to pre-specify
how individual genes will respond to treatment, and p-
values must reflect the two-sided alternative. At least with

the simulated data, the  method worked well to control

the size of the test. Because  misrepresents the true cor-
relation structure, we are cautious in recommending its
general use and plan to simulate a broader set of scenar-
ios.

Conclusion
Reliable corrections for the effect of correlations among
genes on the significance level of a GO term can be con-
structed for a one-sided alternative hypothesis. For general
two-sided alternatives the bias of naïve significance calcu-
lations can be greatly decreased although not eliminated.
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