
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Towards a better solution to the shortest common supersequence
problem: the deposition and reduction algorithm
Kang Ning and Hon Wai Leong*

Address: Department of Computer Science, National University of Singapore, Science Drive, Singapore 117543, Singapore

Email: Kang Ning - ningkang@comp.nus.edu.sg; Hon Wai Leong* - leonghw@comp.nus.edu.sg

* Corresponding author

Abstract
Background: The problem of finding a Shortest Common Supersequence (SCS) of a set of
sequences is an important problem with applications in many areas. It is a key problem in biological
sequences analysis. The SCS problem is well-known to be NP-complete. Many heuristic algorithms
have been proposed. Some heuristics work well on a few long sequences (as in sequence
comparison applications); others work well on many short sequences (as in oligo-array synthesis).
Unfortunately, most do not work well on large SCS instances where there are many, long sequences.

Results: In this paper, we present a Deposition and Reduction (DR) algorithm for solving large SCS
instances of biological sequences. There are two processes in our DR algorithm: deposition process,
and reduction process. The deposition process is responsible for generating a small set of common
supersequences; and the reduction process shortens these common supersequences by removing
some characters while preserving the common supersequence property. Our evaluation on
simulated data and real DNA and protein sequences show that our algorithm consistently produces
the best results compared to many well-known heuristic algorithms, and especially on large
instances.

Conclusion: Our DR algorithm provides a partial answer to the open problem of designing
efficient heuristic algorithm for SCS problem on many long sequences. Our algorithm has a
bounded approximation ratio. The algorithm is efficient, both in running time and space complexity
and our evaluation shows that it is practical even for SCS problems on many long sequences.

Background
The problem of finding a Shortest Common Supersequence
(SCS) of a given set of sequences is a very important prob-
lem in computer science, especially in computational
molecular biology. The SCS of a set of sequences can be
stated as follows: Given two sequences S = s1s2...sm and T =

t1t2...tn, over an alphabet set Σ = {σ1, σ2,...,σq}, we say that

S is the subsequence of T (and equivalently, T is the superse-

quence of S) if for every sj, there is for some 1 ≤ i1

<i2 < ... <im ≤ n. Given a finite set of sequences S = {S1,

from Symposium of Computations in Bioinformatics and Bioscience (SCBB06) in conjunction with the International Multi-Symposiums on Computer and
Computational Sciences 2006 (IMSCCS|06)
Hangzhou, China. June 20–24, 2006

Published: 12 December 2006

BMC Bioinformatics 2006, 7(Suppl 4):S12 doi:10.1186/1471-2105-7-S4-S12
<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB06)</p> </title> <editor>Youping Deng, Jun Ni</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S4-info.pdf</url> </supplement>

© 2006 Ning and Leong; licensee BioMed Central Ltd
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

s tj ij
=

Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7(Suppl 4):S12
S2,...,Sk}, a common supersequence of S is a sequence T such

that T is a supersequence of every sequence Sj (1 ≤ j ≤ k) in

S. Then, a shortest common supersequence (SCS) of S is a
supersequence of S that has minimum length. In this
paper, we shall assume that k is the number of sequences

in S, n is the length of each sequence, and q = |Σ| is the size
of the alphabet.

The SCS problem has applications in many diverse areas,
including data compression [1], scheduling [2], query
optimization [3], text comparison and analysis, and bio-
logical sequence comparisons and analysis [4,5]. As a
result, the SCS problem has been very intensively
researched [6,7]. One basic result is that the SCS of two
sequences of length n can be computed using dynamic
programming in O(n2) time and O(n2) space (see, for
example, [8]). There are also several papers that reported
improvements on the running time and space required for
dynamic programming algorithms [7]. For a fixed k, the
dynamic programming algorithm can be extended to
solve the SCS problem for k sequences of length n in O(nk)
time and space. Clearly, this algorithm is not practical for
large k. The general SCS problem on arbitrary k sequences
of length n is well-known to be NP-hard. In fact, Jiang and
Li [8] showed that even the problem of finding a constant-
ratio approximation solution is also NP-hard.

A trivial algorithm, called Alphabet [6] gives an approxi-
mation ratio of q = |Σ|. In practice, it is well known that
heuristic algorithms produce results that are better than
the Alphabet algorithm. Many heuristic algorithms have
been proposed for the general SCS problem, including
Alphabet [6], Majority Merge [8], Tournament [9], Greedy
[9], and Reduce-Expand [6]. Several heuristic algorithms
were also proposed specifically for computing the SCS of
DNA sequences (with alphabet size of 4). These include
Min-Height [10], Sum-Height [10] heuristics. (Interest-
ingly, the Majority Merge [8] and Sum-Height [10] heuris-
tic are the same algorithm.) Recently, we [11] proposed
look-ahead extensions of these heuristics, as well as a post-
processing reduction procedure and studied the perform-
ances of these algorithms on DNA sequences to be used
for the synthesis of oligo-array.

This paper focuses on algorithms for solving large SCS
instances. By large SCS instances, we mean SCS instances S
in which

(a) the sequences in S are long (n is 100 to 1000),

(b) there are many sequences (k is 100 or more), and

(c) the alphabet set may be big (q is 20 for protein
sequences).

Large SCS instances arise more frequently in the post-
genome era in biological applications dealing with DNA
and protein sequences.

In this paper, we propose to solve large SCS instances with
our Deposition and Reduction algorithm (DR). The DR algo-
rithm is based on the post processing algorithm that we
have proposed on the SCS problem for DNA oligos [11].
The DR algorithm is suitable for solving large SCS
instances – for example, SCS instances with up to 5,000
DNA and protein sequences each of length 1000. We
present experimental evaluation using simulated data and
real DNA and protein sequences to show that our DR
algorithm outperforms the other heuristic algorithms for
the SCS problem on these large SCS instances.

Previous research of the SCS problem
We now present a brief survey of several heuristic algo-
rithms for the SCS problem. Due to space limitation, we
will focus only on algorithms that we have included in our
comparative study.

Let S be any instance of the SCS problem and let CSA(S)
be the supersequence of S computed by a heuristic algo-
rithm A. Let opt(S) denote an optimal solution for the
instance S. Then, we say that A has an approximation ratio
of λ if |CSA(S)|/|opt(S)| ≤ λ for all instances S.

Alphabet algorithm [6]
The Alphabet algorithm is a very simple algorithm. Let S
be a set of sequences of maximum length n over the alpha-
bet Σ = {σ1, σ2,...,σq}, then the Alphabet algorithm out-
puts a common supersequence of (σ1σ2...σq)n. The
Alphabet algorithm has an approximation ratio of q = |Σ|.
The time complexity of the Alphabet algorithm is O(qn).
There have also been modifications of the Alphabet algo-
rithm that uses information from S to "remove" redun-
dant characters in (σ1σ2...σq)n. These methods improve
the performance in practice, but not in the worst case
approximation ratio of q.

Majority-Merge algorithm [8]
The Majority-Merge algorithm (MM) is a simple, greedy
heuristic algorithm. Suppose we analyze every sequence
from left to right, the frontier is defined as the rightmost
characters to be analyzed. Initially, the supersequence CS
is empty. At each step, let s be the majority among the
"frontier" characters of the remaining portions of the
sequences in S. Set CS = CS||s (where "||" represent con-
catenation) and delete the "frontier" s characters from
sequences in S. Repeat until no sequences are left. This
algorithm is the same as the Sum Height algorithm (SH)
proposed in [10]. This algorithm does not have any worst-
case approximation ratio, but performs very well in prac-
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
tice. The time complexity of the Majority-Merge algorithm
is O(qkn).

Greedy and Tournament algorithms [12]
The Greedy algorithm (GRDY) and Tournament algo-
rithm (TOUR) studied in [12] are two variations of an iter-
ative scheme based on combining "best" sequence pairs.
Given any pair of sequences, Si and Sj, an optimal superse-
quence of the pair, denoted by SCS(Si, Sj), can be com-
puted in O(n2) using dynamic programming. The Greedy
algorithm first chooses the "best" sequence pair – the pair
that gives the shortest SCS(Si, Sj). Without loss of general-
ity, we assume that these two sequences are S1 and S2. The
algorithm then replaces the two sequences S1 and S2 by
their supersequence, SCS(S1, S2). The algorithm proceeds
recursively. Thus, we can express it as follows:

Greedy(S1, S2,...,Sk) = Greedy(SCS(S1, S2), S3,...,Sk).

The Tournament algorithm is similar to the Greedy algo-
rithm. It builds a "tournament" based on finding multiple
best pairs at each round and can be expressed schemati-
cally as follows:

Tournament(S1, S2,...,Sk) = Tournament(SCS(S1, S2),
SCS(S3, S4),...,SCS(Sk-1, Sk)).

Both Greedy and Tournament algorithms have O(k2n2)
time complexity and O(kn + n2) space complexity. Unfor-
tunately, it was shown in [9] that both Greedy and Tour-
nament do not have approximation ratios.

Reduce-Expand algorithm [6]
The Reduce-Expand algorithm (RE) is based on reducing
sequences to basic sequences, which are sequences that
have no adjacent characters of the same alphabet. For
example, sequence "AACGG" can be reduced to basic
sequence of "AG". The expand process tries to add charac-
ters into the common subsequence of the sequences,
while preserving the common subsequence property.
Using a process of reduce, auxiliary set and expand, this
algorithm can produce short SCS on binary sequences as
well as datasets with few sequences and more alphabets.
The RE algorithm has an approximation ratio of q = |Σ|
and has time complexity O(q2+αkn2+αlogn) and space
complexity O(nk + n2), where α ≥ 0 is a constant integer.
It was shown in [6] that RE performs well on longer
sequences (up to 300) with larger alphabets. However, the
experimental studies were confined to datasets with rela-
tively few sequences (k is small, up to about 20). For large
SCS instances, the space and time requirements of RE may
be a limiting factor.

We next survey heuristic algorithms [10,11,13] that were
designed specifically to target the SCS of DNA sequences

– to be used for synthesis of DNA microarrays and oligo-
arrays. To describe these methods, we adopt the notations
used in [10], and used examples in DNA sequences. An
example of sequence deposition is shown in Figure 1.
After t cycles, a partial sequence has been synthesized. The
height of each partially constructed sequence is defined as
the number of bases in it. Indication of how much work
that has been accomplished after t cycles is measured in
terms of (i) the Min-Height (MH) – the height of the short-
est partially constructed sequences after t cycles, or (ii) the
Sum-Height (SH) – the sum of the heights of the partially
constructed sequences.

Min-Height [10]
The Min-Height (MH) greedy method, denoted here by
MH, selects a character that will extend the shortest partially
constructed oligo by one base (thus, potentially increas-
ing the minimum height). When there is a tie, we ran-
domly pick one such character.

Sum-Height [10,11]
The Sum-Height (SH) greedy method, denoted by SH,
selects a character that will result in the largest increase in
the sum-height. This method is the same as the Majority
Merge (MM) algorithm. Again, ties are broken randomly.

Both MH and SH are very fast algorithms, with time com-
plexity of O(qkn) time. In general, they work well for DNA
sequences.

Look-ahead extensions of SH and MH
A natural way to improve the fast greedy algorithms MH
and SH is to apply a "look-ahead" strategy to it [11]. This
strategy looks at a number of steps ahead before deciding
which character(s) is the best to be added. More specifi-
cally, choose two integers m and l such that l ≤ m. Then,
the look-ahead extension of the SH method works as follows:
(i) Examine all possible partial sequences that can be gen-
erated in m cycles; (ii) for each such generated partial
sequences, compute the resulting sum height; and (iii)
select the partial sequence that will result in the largest
increase of sum-height in m cycles. Then, we extend the cho-
sen sequence by l (≤m) characters. (It can be shown that
extending by l characters (instead of m) gives the potential
of obtaining even better increase in the sum-height after m
cycles.) Here we break the tie arbitrarily. This look ahead
algorithm is called the (m, l)-look-ahead SH, and is
abbreviated to (m, l)-LA-SH.

The look-ahead extension of MH is defined in a similar
fashion, and is denoted by (m, l)-LA-MH.

It is easy to see that an increase in m naturally leads to a
shorter SCS, but at a cost of a substantial increase in com-
puting time. Experimentation done in [11] indicated that
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
LA-SH gives the best performance and that (3,1)-LA-SH
gives the best trade-off between running time and quality
of the SCS solution.

Look-Ahead Post Processing algorithm [11]
Finally, we recently proposed a Look-Ahead Post Process-
ing (LAP) algorithm to solve the SCS problem on many
DNA sequences that produce very good results for the case
when the number of sequences k is large (k reaching
100,000) and sequence length n is relatively small (n up
to 60). The LAP algorithm outperforms Alphabet, SH, and
MH heuristics on these SCS instances.

Hubbell-Morris-Winkler algorithm [13]
The Hubbell-Morris-Winkler algorithm is another heuris-
tic algorithm specifically designed for SCS of DNA oligos
(short DNA sequences). The method consists of two key
steps. First, it finds a shortest periodical strategy (one out
of 44 periodical strategies) corresponding to the following
string: (XYZ) (XYZ) ... (XYZU)(XYZU), where X, Y, Z, U
denote the four different characters in some order. Sec-
ond, examine each character in a cycle from the first to the

last and remove the character if either (a) it is not needed
by any oligo, or (b) it can be added in a later cycle. Hub-
bell-Morris-Winkler algorithm has comparable perform-
ance compared to our LAP algorithm on DNA sequences.
However, the algorithm is only suitable for sequences small
alphabet size q such as DNA sequences. For protein
sequences (where q = 20), there are 2020 periodical strate-
gies and so the Hubbell-Morris-Winkler algorithm is not
practical any more.

Other algorithms
Other SCS algorithms have also been proposed [14-16],
but were not included in this study because they involve
meta-heuristic search (genetic algorithms, ant colony
optimization) and have very long running times. Thus,
they are not practical for the large SCS instances consid-
ered in this paper.

Performance ratio
To compare the performances of different algorithms
across different instances of different sizes, we define the
notion of performance ratio. For any instance S, the perform-

A step-by-step illustration of the process of finding a common supersequence via depositionFigure 1
A step-by-step illustration of the process of finding a common supersequence via deposition. The characters
above bar represents the sequences have yet to be deposited. The underlined blue characters are the characters that are
deposited in the current step. The final result is CS = "ACGCT", which, for this example, is also the optimal result.

(a) Input 3mers (b) CS = [A] (c) CS = [AC]

(e) CS = [ACGC]

 G T T C T
 C G C G G
 A A C C C

 T C T
 G T C G G
 C G C C C

A A

 T T C T
 G G C G G

C
A A C C C

 T
 T C C T

G
 C G G G
A A C C C

 T T T

 G C
 C G C G G
A A C C C

 G T T C T
 C G C G G
 A A C C C

(d) CS = [ACG](f) CS = [ACGCT]
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
ance ratio, RA(S), of algorithm A on instance S is defined by
RA(S) = |CSA(S)|/|opt(S)|, where opt(S) is an optimal SCS
solution to the instance S.

However, |opt(S)| is unknown – it is not feasible to com-
pute |opt(S)| since the SCS problem is NP-hard. Luckily, it
is possible to compute a lower bound for |opt(S)|. We
choose a small sample set, SS, of representative sequences
in S and use an exact dynamic programming algorithm to
compute opt(SS), the shortest common supersequence of
the sample set SS. Clearly, |opt(SS)| is a lower bound on
the optimum length, namely, |opt(SS)| ≤ |opt(S)|. Then
the performance ratio RA(S) can also be upper bounded by
the estimate R'A(S) = |CSA(S)|/|opt(SS)|. We shall use the
estimated performance ratio bounds as a "metric" for
comparing different algorithms later in this paper.

The gap between |opt(S)| and the computed lower bound,
|opt(SS)| depends on how the sample set SS is chosen and
also on its size. However, a large SS will render the com-
putation infeasible. For DNA sequences, we use the sam-
ple set SS = {SSA, SSC, SSG, SST} of 4 representative
sequences from S, where each representative sequence SSA
(and similarly, SSC, SSG, SST) is a sequence in S that has
the largest number of A's (and C, G, T, respectively). Then
dynamic programming is applied on {S1, S2,...Sq} to
obtain a lower bound of the SCS length. For protein
sequences with q = 20, we choose only top few (usually 4)
such representative sequences in the sample set SS.

Method
Since biological datasets usually contain many long
sequences (namely large SCS instances), it is important to
devise an effective algorithm that works well on large SCS
instances (for both DNA and protein sequences). Among
the existing heuristic algorithms, several of them (Greedy,
Tournament, Reduce-Expand and to a less extend, Major-
ity Merge) perform well on SCS instances where there are
few long sequences (small k and large n). Several heuristic
algorithms (Majority Merge, Min Height and their Look-
Ahead variants, and LAP) perform well on SCS instances
with many short sequences (large k and small n). How-
ever, relatively few research studies have been carried out
to see how they perform on large SCS instances dealing
with many long sequences (where both k and n are large).
In fact, Barone et al. had in [6], raised the question on
"how to design efficient (both in terms of time and space)
heuristic algorithm on many long sequences".

In our recent work [11], we have compared the perform-
ances of several algorithms (MH, SH, (3,1)-LA-SH, and
LAP) on SCS instances where k is large, but n is relatively
small. The good performance of our LAP algorithm [11],
indicates that the post processing approach may also be
effective on large SCS instances (such as large sets of long

DNA and protein sequences). This paper discusses how
we modify the LAP algorithm to solve large SCS instances.

Our DR algorithm for large SCS instances
In the Deposition and Reduction algorithm that we pro-
posed, there are two processes: in the deposition process, we
first generate a template pool – a small set of SCS templates
(or templates, in short). Each template is a common
supersequence of the SCS instance S. The reduction process
shortens these templates by attempting to remove some
characters while preserving the common supersequence
property. This uses the post processing procedure intro-
duced in [11].

Deposition process (template generation)
For the deposition process, we use two algorithms to pro-
duce candidate templates that will be included in the tem-
plate pool. Clearly, the performance of the algorithm is
dependent on obtaining good SCS templates. Based on
results from our previous study [11], we have selected
(3,1)-LA-SH as one of the algorithms used to generate one
of the templates. Another template used was that gener-
ated by Alphabet (largely so that the algorithm will have a
worst-case performance guarantee).

Reduction process
In the reduction process, we apply a reduction procedure
to each SCS template in the template pool to obtain a
shorter SCS. Finally, the shortest result obtained after this
reduction process is selected as the final output of the
algorithm. The reduction procedure we use is just a simple
extension of the post-processing procedure in [11]. We
give a brief description here. We are given a SCS template
S = S[1]S[2]...S[m], with m characters (S is, of course, a
common supersequence). The following approach, using
S as a template and a method A, seeks to reduce the
number of characters in S. The detailed algorithm is given
in Figure 2.

In the current implementation of our Deposition and
Reduction algorithm (DR), we have included the template
generated by the Alphabet algorithm. Thus, our DR algo-
rithm also has an approximation ratio of q = |Σ|. However,
in practice, our experiment show the results from the
(3,1)-LA-SH template is much better than those obtained
from Alphabet and the performance ratios of the DR algo-
rithm is much lower than q.

The time complexity of the deposition process is O(q3kn),
the time complexity of the reduction process is O(q3kn2),
so the total time complexity of the Deposition and Reduc-
tion algorithm is O(q3kn2). This is larger than that of
Alphabet algorithm, but smaller than Greedy algorithm
and Tournament algorithm where q is not very large and
k is large. It is also smaller than that of the Reduce-Expand
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
algorithm, especially when n is large. The space complex-
ity of the Deposition and Reduction algorithm is O(q3kn).

Results
Our post process algorithm is written in Java and Perl. The
experiments are performed on a PC with 3.0 GHz CPU
and 1.0 GB memory, running on a Linux operating sys-
tem. We have selected Alphabet (ALPHA) [6], Reduce-
Expand (RE) [6], Tournament (TOUR), Greedy (GRDY)
[12] and Majority Merge (MM) [8] algorithms, as well as
Lower Bound (LB) for comparison with our Deposition
and Reduction (DR) algorithm on large SCS instances. We
also used abbreviations defined above for the different
heuristic algorithms. We note here that the RE algorithm
was not included in the comparative study of large SCS
instances as the RE algorithm took too long to run on
these large SCS instances. Instead, we compare the RE
algorithm with our DR algorithm directly on smaller SCS
instances in the subsection on "Comparison with Reduce-
Expand Algorithm".

For the large SCS instances, we use both simulated
sequences as well as real (DNA and protein) sequences. It
is easy to see that results on datasets with sequences of dif-
ferent lengths are similar to those results on datasets with
sequences of same lengths. Therefore, in this study, we

have only used simulated sequences of same length in the
dataset, and also truncated real sequence to same lengths
in each datasets. In the tables of experimental results
below, k denotes the number of sequences, and n denotes
the length of the sequence. For DNA sequences, the size of
alphabet q = 4, while for protein sequences q = 20.

Results on simulated sequences
We first carry out comparative study on simulated DNA
sequences. For each value of k = 100, 500, 1000, 5000,
and n = 100, 1000, we generated 10 random datasets of
DNA sequences. These datasets are shown in Tables 1 and
2 where each row represents the composite result for the
10 instances. For each row, we also compute the average
lower bound (denoted by LB in Tables 1 and 2) over the
10 instances. Then, each algorithm, A, is run on these 10
instances to get an average (and standard deviation) of
|CSA(S)|, the length of the SCS. The estimated perform-
ance ratios of the different algorithms (denoted by Ratio
in Tables 1 and 2) are obtained by dividing the average
SCS lengths by the lower bound LB. As mentioned earlier,
these are upper bounds on the true performance ratios of
the algorithms.

In Table 1, we first study the effect of Deposition process
and Reduction process in our DR algorithm. To this end,

The procedure of the reduction processFigure 2
The procedure of the reduction process.

Input: A template S=S[1]S[2]…S[m], a sequence set P,
 and a deposition algorithm A

Iterate the following two steps until no further improvement is
achieved:

1. For each position i from 1 to m {
Sleft = S[1]S[2]…S[i]; Sright = S[i+1]S[i+2]…S[m];
a. For each sequence p = p[1]p[2]…p[n],
Identify the longest suffix p’ of p that occurs in Sright
(p’ = p[jp] p[jp+1] … p[n], where jp = n−|p’|+1)
b. Apply the method � to the sequence set

{p[1]p[2]…p[jp−1] | p∈P} to get a superseq S’
c. Break from Step 1 if S’ is shorter than Sleft

 }
2. Replace S = Sleft||Sright with S’||Sright
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
we define CSD and CSR to be the common supersequences
obtained after the Deposition and Reduction process,
respectively. From Table 1, we observed that both the
Deposition and the Reduction processes are effective. The
Deposition process always output templates with |tem-
plateD| /|opt(S)| less than 1.8 for both long (n = 1000) and
short (n = 100) sequences. In the following tables, we will
see that this is much better than results of Alphabet, indi-
cating the superiority of (3,1)-LA-SH template. The Reduc-
tion process can further reduce the lengths of the results
by between 2 to 6 characters for n = 100, and by about 20
characters for n = 1000, and the performance ratios are
correspondingly reduced. The standard deviations for the
results of both Deposition and Reduction processes are
not big, indication that both the Deposition process and
the Reduction process give stable results.

In Table 2, we then compared the various heuristic algo-
rithms – Alphabet, Tournament, Greedy, Majority Merge
(or Sum Height) with our DR algorithm on these simulated

DNA datasets. To assist the comparison, we have also
included the lower bound (LB), and the average estimated
performance ratios.

The results in Table 2 show very clearly that for the datasets
with large k and n, the DR algorithm consistently gives the
best results, followed quite closely by MM, while algo-
rithms TOUR and GRDY are quite a bit worse. Generally,
we observe that the length of the SCS obtained increases
with the number of sequences, which is to be expected.

The performances of the algorithms on medium length
sequences (n = 100) also differ slightly from those for long
sequences (n = 1000). For n = 100, our DR algorithm pro-
duces results that are, on average, shorter than those of
MM by 13.5 characters, by 49.4 characters than those of
GRDY, and by 54 characters than those of TOUR. For long
sequences (n = 1000), the difference are more pro-
nounced, by 55.6 characters for MM, by 539 characters for
GRDY, and by 557 characters for TOUR.

Table 2: A comparison of the lengths of the SCS results obtained by different algorithms on simulated DNA sequences.

Sequences Length of CS (averaged over 10 instances)

k n LB ALPHA Ratio TOUR Ratio GRDY Ratio MM Ratio DR Ratio

100 100 158.0 400 2.53 304.6 (15.3) 1.93 303.9 (11.9) 1.92 276.8 (5.5) 1.75 264.5 (6.8) 1.67
500 100 160.6 400 2.49 329.0 (18.2) 2.05 321.6 (9.1) 2.00 286.4 (7.7) 1.78 273.0 (7.1) 1.70

1000 100 161.3 400 2.48 335.4 (19.9) 2.08 329.0 (17.8) 2.04 289.1 (8.2) 1.79 275.6 (6.2) 1.71
5000 100 162.9 400 2.46 339.8 (21.2) 2.09 336.2 (21.2) 2.06 294.8 (10.6) 1.81 279.9 (4.2) 1.72
100 1000 1441.8 4000 2.77 2936.7 (146.6) 2.04 2921.5 (143.4) 2.03 2547.1 (24.7) 1.77 2480.2 (55.5) 1.72
500 1000 1457.6 4000 2.74 3049.6 (150.0) 2.09 3043.6 (145.2) 2.09 2578.0 (23.3) 1.77 2527.2 (52.1) 1.73

1000 1000 1472.3 4000 2.72 3142.3 (176.9) 2.13 3115.5 (173.6) 2.12 2590.9 (26.5) 1.76 2540.0 (47.4) 1.73
5000 1000 1481.6 4000 2.70 3194.5 (221.9) 2.16 3172.8 (199.0) 2.14 2602.1 (25.6) 1.76 2548.3 (39.7) 1.72

The average and standard deviation (in parenthesis) over 10 randomly generated instances are given. The estimated performance ratios are also
given for each algorithm.

Table 1: The results of the Deposition process and the Reduction process.

Sequences Length of CS (averaged over 10 instances)

k n LB |CSD| R'D |CSR| R'R

100 100 158.0 267.8 (7.1) 1.69 264.5 (6.8) 1.67
500 100 160.6 274.9 (7.3) 1.71 273.0 (7.1) 1.70

1000 100 161.3 277.1 (6.0) 1.72 275.6 (6.2) 1.71
5000 100 162.9 281.6 (4.0) 1.73 279.9 (4.2) 1.72
100 1000 1441.8 2495.4 (50.6) 1.73 2480.2 (55.5) 1.72
500 1000 1457.6 2543.9 (48.6) 1.75 2527.2 (52.1) 1.73

1000 1000 1472.3 2557.5 (45.1) 1.74 2540.0 (47.4) 1.73
5000 1000 1481.6 2566.6 (35.1) 1.73 2548.3 (39.7) 1.72

Each row of the table represents 10 randomly generated instances. For each row, we list the average value for LB (the lower bound), |CSD|, and
|CSR| (the length of the common supersequences after Depostion and Reduction), their standard deviations (in parenthesis), and the estimated
performance ratios R'D and R'R (|CSD|/LB and |CSR|/LB)
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
Similar to the results observed in [1], the performance
ratios obtained by all the algorithms are quite a bit below
the worst-case ratio of 4 for the trivial Alphabet algorithm.
The standard deviation results in Table 2 also show that
DR algorithm is relatively stable – more stable than GRDY
and TOUR, but not as stable the MM algorithm.

We have not done a similar comparison on simulated pro-
tein sequences, but we expect that the relative perform-
ances of these algorithms on random protein sequences
would be similar to those for random DNA sequences. In
the next section, we show results on real DNA and protein
sequences.

Results on real biological sequences
In this section, we compared the algorithms Alphabet and
MM with our DR on datasets obtained from real DNA and
protein sequences. For this study, we have to exclude the
GRDY and TOUR algorithms since their performances are
much worse than MM or DR, and they are also very time-
consuming on these datasets.

For this experimental comparison, we have randomly
selected DNA sequences from the NCBI viral genomes
[17]. These DNA sequences are truncated so that they have
lengths (n) of 500 and 1000 and combined to obtained
many datasets that are grouped into four cases (DNA-1 to
DNA-4) with k = 100 and 500, and 10 randomly selected
datasets for each setting, as shown in Table 3. The protein
sequences (with q = |Σ| = 20) are from SwissProt [18] and
these have been truncated to length 500 and we have used
k = 100, 500, and 1000 to truncate datasets, and 10 ran-
domly selected datasets for each setting. These datasets are
grouped into three cases (PROT-1 to PROT-3) as shown in
Table 3. Both real DNA and protein sequences datasets are
available as additional supplemental materials.

The comparison results for MM and DR algorithms on
these selected DNA and protein sequences are shown in
Table 3. The results for real DNA sequences are similar to
those for simulated DNA sequences. Again, the results
clearly show that DR consistently outperform the MM
algorithm for both type of sequences. The performance
ratio |CSDR(S)|/|opt(S)| of DR algorithm is about 2.1 for
DNA sequences with length 500 and 1000, and 6.0~7.51
for protein sequences with length 500. These are much
less than the approximation ratios. We also observe that
the length of the SCS obtained increases with the number
of sequences.

Comparing Table 3 with Table 2, we also observed that
the performance ratios for MM and DR are generally a lit-
tle bigger for real DNA sequences as compared to simu-
lated DNA sequences for similar values of k and n. This
may be attributed to the fact that the real DNA sequences
are selected from different viral genomes and thus, there
is high variance in the GC contents and this may have
resulted in longer SCS. Whereas, in the simulated DNA
sequences, the GC content is predefined for each of the
simulated DNA sequences datasets and this may have
resulted in the shorter SCS obtained by the algorithms.
This observation is also consistent with results in [11].

The results for protein sequences show a similar trend as
those for DNA sequences. Note that the approximation
ratio for the Alphabet algorithm is 20 for protein
sequences. Our results show that for DR on protein
sequences with n = 500, the performance ratio is smaller
than those for MM. The difference in the performance
ratios of DR and MM is larger for protein sequences that
have a larger alphabet. In terms of the length of the SCS
result, DR obtains SCS results that are between 300 to 450
characters shorter compared to those obtained by MM.

Table 3: The comparison of the lengths of the SCS results obtained by different algorithms on selected DNA and protein sequences.

Sequences Length of CS (averaged over 10 instances)

k n LB ALPHA Ratio MM Ratio DR Ratio

DNA sequences

DNA-1 100 500 686.6 2,000 2.91 1359.7 (18.7) 1.98 1346.4 (19.6) 1.96
DNA-2 500 500 689.5 2,000 2.90 1430.5 (22.1) 2.07 1420.7 (18.1) 2.06
DNA-3 100 1000 1361.0 4,000 2.94 2698.0 (39.9) 1.98 2675.7 (37.2) 1.97
DNA-4 500 1000 1364.4 4,000 2.93 2822.3 (43.4) 2.07 2769.1 (32.7) 2.03

Protein sequences

PROT-1 100 500 800.6 10,000 12.49 5312.7 (81.9) 6.64 4846.3 (73.9) 6.05
PROT-2 500 500 803.5 10,000 12.45 5935.6 (61.8) 7.39 5548.6 (54.3) 6.91
PROT-3 1000 500 809.8 10,000 12.35 6082.4 (44.9) 7.51 5734.0 (43.9) 7.08

The average and standard deviation (in parenthesis) are given. The estimated performance ratios are also given for each algorithm.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
The standard deviations observed in Table 3 for DNA and
protein sequences are relatively small, again indicating
that both MM and DR algorithms give relatively stable
performance.

Comparison with Reduce-Expand algorithm
The Reduce-Expand (RE) algorithm [1] is currently one of
the best algorithms for the general SCS problem for small
SCS instances. Because of the high running time of the RE
algorithm, we have only compared RE with our DR algo-
rithm on simulated datasets with relatively few, short
DNA sequences (q = 4, k = 5, 10, 50, 100, n = 10, 100, and
with 10 randomly generated datasets for each setting), as
well as small datasets of real DNA and protein sequences.
The results on simulated datasets are shown in Table 4.

The results in Table 4 indicate that DR is only comparable
to (and for n = 100, even longer than) RE in the lengths of
the results when there are only 5 sequences, but outper-
form RE in the lengths of the results when the number of
sequences is over 10. The more sequences, and the longer
the sequences, the larger differences between the length of
the results of DR and RE. Especially for longer (length of
100) sequences, the results of DR can be about 5 to 20
characters shorter than the results of RE.

We have also compared the algorithms Alphabet and RE
with our DR on datasets obtained from real DNA and pro-
tein sequences. The sequences in datasets (DNA-5, DNA-
6, PROT-4 and PROT-5, and 10 randomly selected data-
sets for each setting) are shorter from those in Table 3, and
the results are shown in Table 5.

The results on real DNA and protein sequences are con-
sistent with the results on simulated sequences. The DR
algorithm can outperform the RE algorithm by about 10
characters for DNA sequences of length 100. The SCS
results of the DR algorithm are also shorter than the
results of the RE algorithm by more than 20 characters on
protein sequences. The more sequences, and the longer

the sequences, the larger differences between the length of
the results of the DR and RE algorithm.

Computational efficiency
Our Deposition and Reduction (DR) algorithm has time
complexity of O(q3kn2) and space complexity of O(q3kn).
In our experiments, the DR algorithm is very fast, even for
large SCS datasets – for example, for 1000 sequences of
length 1000 each, it take an average of 5–10 minutes per
instance. In comparison to existing algorithms, it is slower
than Majority Merge, Min Height (less than 1 minute),
but it is much faster than Greedy and Tournament algo-
rithms (both of which need more than 60 minutes). The
DR algorithm is also much faster than the Reduce-Expand
algorithm (our Perl implementation). For a simulated
DNA dataset with 100 sequences each of length 100, the
DR algorithm can get result in less than 10 seconds, while
the Reduce-Expand algorithm needs more than 10 min-
utes. The actual computer memory used by the DR algo-
rithm is about 50 M for some of our very large datasets;
Majority Merge needs about 10 M for these same datasets.
The software is available upon request, and the web serv-
ices portal will be available soon.

Conclusion
In this paper, we have proposed a Deposition and Reduc-
tion (DR) algorithm for solving large SCS instances. The
DR algorithm is composed of the Deposition process to
generate good templates, and the Reduction process to
reduce templates from template pool to get short result.
These processes are shown to be powerful for the SCS
problem.

We have compared the performance of our DR algorithm
with some of the best heuristic algorithms on different
sequences datasets, especially on many long sequences.
The DR algorithm has superior performance than Alpha-
bet, Tournament, Greedy and Majority Merge algorithms
in practice, especially on many long sequences. It also out-
performs the Reduce-Expand algorithm for sequences of

Table 4: The comparison of the lengths of the SCS results between RE and DR on simulated DNA sequences.

Sequences Length of SCS (averaged)

k n ALPHA RE DR

5 10 40 20.45 (0.53) 20.05 (1.36)
10 10 40 26.04 (0.93) 25.00 (1.76)
50 10 40 35.00 (1.00) 29.90 (1.55)

100 10 40 34.69 (0.97) 30.10 (1.30)
5 100 400 188.08 (5.55) 195.60 (6.27)

10 100 400 229.28 (7.61) 224.20 (6.28)
50 100 400 286.12 (13.34) 257.85 (6.80)

100 100 400 281.95 (10.86) 264.45 (6.86)

In each cell, the average and standard deviation (in parenthesis) over 10 randomly generated instances are given.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S12
length 50~100. The DR algorithm is also very efficient in
time and space, which partially answer the question that
Barone et al. raised [6] about how to design efficient (both
in terms of time and space) heuristic algorithm on many
long sequences.

The Deposition and Reduction algorithm is an extension
of our previous study for SCS problem on DNA oligos
[11]. To our best knowledge, our Deposition and Reduc-
tion is one of the best heuristic algorithms (both in terms
of performance ratios and in terms of time and space
needed) for the SCS problem on biological sequences
such as the DNA and protein sequences, especially for
datasets with many long sequences. We believe that the
use of the Deposition and Reduction algorithm can facili-
tate the biological sequencing process for bioinformatics
researches.

There are many other post process strategies for the SCS
problem, such as better look ahead strategies, which may
lead to better performance. We are currently trying to fur-
ther analyze these strategies for SCS problems by compar-
ing the results of different strategies.

As a general computational framework, this Deposition
and Reduction algorithm can also be applied on more
general applications such as text comparison and com-
pression, query optimization and scheduling. We will also
work on these more general problems in the future.

Additional material

Additional file 1
Real DNA sequences DNA sequences are obtained from NCBI Viral
Genomes, Accessed on 01/01/2006. http://www.ncbi.nlm.nih.gov/
genomes/VIRUSES/viruses.html. Sequences are randomly selected from
different genome sequences. The specific length and number of sequences
are specified for each dataset. There are 60 randomly selected datasets.
File name indicate the number of sequences, sequence length, and dataset
number. For example, file name "DNA_N100_K500_5" indicate that it
is DNA sequences dataset, with 500 sequences, each truncated to length
of 100. And this is number 5 datasets for this setting. Each sequence is
represented as a row in the dataset file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-S4-S12-S1.zip]

Additional file 2
Real Protein sequences PROTEIN sequences are obtained from Swiss-
Prot Release 45.5 of 04-Jan-2005. http://us.expasy.org/sprot. Sequences
are randomly selected from different protein sequences. The specific length
and number of sequences are specified for each PROTEIN dataset. There
are 60 randomly selected datasets. File name indicate the number of
sequences, sequence length, and dataset number. For example, file name
"PROTEIN_N100_K500_5" indicate that it is PROTEIN sequences
dataset, with 500 sequences, each truncated to length of 100. And this is
number 5 datasets for this setting. Each sequence is represented as a row
in the data file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-S4-S12-S2.zip]

Table 5: The comparison the lengths of the SCS results between RE and DR on selected DNA and protein sequences.

k n ALPHA RE DR

DNA

DNA-5 100 100 400 301.04 (8.85) 284.40 (4.54)

DNA-6 500 100 400 308.87 (7.61) 296.80 (3.66)

Protein

PROT-4 100 100 2,000 1028.90 (35.54) 1008.70 (14.29)

PROT-5 500 100 2,000 1232.10 (31.03) 1199.80 (13.80)

In each cell, the average and standard deviation (in parenthesis) over 10 randomly generated instances are given.
Page 10 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
http://www.biomedcentral.com/content/supplementary/1471-2105-7-S4-S12-S1.zip
http://us.expasy.org/sprot
http://www.biomedcentral.com/content/supplementary/1471-2105-7-S4-S12-S2.zip

BMC Bioinformatics 2006, 7(Suppl 4):S12
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
We thank anonymous reviewers for valuable comments on the paper. This
work was partially supported by the National University of Singapore under
grant R252-000-199-112.

This article has been published as part of BMC Bioinformatics Volume 7, Sup-
plement 4, 2006: Symposium of Computations in Bioinformatics and Bio-
science (SCBB06). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/7?issue=S4.

References
1. Storer JA: Data compression: methods and theory. Computer

Science Press; 1988.
2. Foulser DE, Li M, Yang Q: Theory and algorithms for plan merg-

ing. Artificial Intelligence 1992, 57(2–3):143-181.
3. Sellis TK: Multiple-query optimization. ACM Transactions on Data-

base Systems (TODS) 1988, 13(1):23-52.
4. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to

Algorithms. Second edition. MIT Press and McGraw-Hill; 2001.
5. Sankoff D, Kruskal J: Time Warps, String Edits and Macromol-

ecules: the Theory and Practice of Sequence Comparisons.
Addison Wesley; 1983.

6. Barone P, Bonizzoni P, Vedova GD, Mauri G: An approximation
algorithm for the shortest common supersequence prob-
lem: an experimental analysis. Symposium on Applied Computing,
Proceedings of the 2001 ACM symposium on Applied computing: 2001
2001:56-60.

7. Gusfield D: Algorithms on strings, trees, and sequences: com-
puter science and computational biology. New York, NY, USA:
Cambridge University Press; 1997.

8. Jiang T, Li M: On the approximation of shortest common
supersequences and longest common subsequences. SIAM
Journal of Computing 1995, 24(5):1122-1139.

9. Timkovsky VG: On the approximation of shortest common
non-subsequences and supersequences. Technical report 1993.

10. Kasif S, Weng Z, Derti A, Beigel R, DeLisi C: A computational
framework for optimal masking in the synthesis of oligonu-
cleotide microarrays. Nucleic Acids Research 2002, 30(20):e106.

11. Ning K, Choi KP, Leong HW, Zhang L: A Post Processing Method
for Optimizing Synthesis Strategy for Oligonucleotide
Microarrays. Nucleic Acids Research 2005, 33:e144.

12. Irving RW, Fraser C: On the Worst-Case Behaviour of Some
Approximation Algorithms for the Shortest Common
Supersequence of k Strings. Proceedings of the 4th Annual Sympo-
sium on Combinatorial Pattern Matching 1993:63-73.

13. Hubbell EA, Morris MS, Winkler JL: Computer-aided engineering
system for design of sequence arrays and lithographic masks.
US Patent no 5571639 1996.

14. Branke J, Middendorf M, Schneider F: Improved heuristics and a
genetic algorithm for finding short supersequences. OR Spec-
trum 1998, 20(1):39-45.

15. Nicosia G, Oriolo G: An approximate A* algorithm and its
application to the SCS problem. Theoretical Computer Science
2003, 290(3):2021-2029.

16. Michels R, Middendorf M: An Island Model based Ant System
with Lookahead for the Shortest Common Supersequence
Problem. Fifth International Comference On Parallel Problem Solving
From Nature (PPSN'98): 1998 1998.

17. NCBI Viral Genomes [http://www.ncbi.nlm.nih.gov/genomes/
VIRUSES/viruses.html]. Accessed on 01/01/2006

18. Swiss-Prot Release 45.5 of 04-Jan-2005 [http://us.expasy.org/
sprot/]
Page 11 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7?issue=S4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192568
http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
http://us.expasy.org/sprot/
http://us.expasy.org/sprot/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Previous research of the SCS problem
	Performance ratio

	Method
	Our DR algorithm for large SCS instances
	Deposition process (template generation)
	Reduction process

	Results
	Results on simulated sequences
	Results on real biological sequences
	Comparison with Reduce-Expand algorithm
	Computational efficiency

	Conclusion
	Additional material
	Acknowledgements
	References

