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Abstract
Background: Gene expression microarray is a powerful technology for genetic profiling diseases
and their associated treatments. Such a process involves a key step of biomarker identification,
which are expected to be closely related to the disease. A most important task of these identified
genes is that they can be used to construct a classifier which can effectively diagnose disease and
even recognize the disease subtypes. Binary classification, for example, diseased or healthy, in
microarray data analysis has been successful, while multi-class classification, such as cancer
subtyping, remains challenging.

Results: We target on the challenging multi-class classification in microarray data analysis,
especially on the cancer subtyping using gene expression microarray. We present a novel class
discrimination strength vector to represent individual genes and introduce a new measurement to
quantify the class discrimination strength difference between two genes. Such a new distance
measure is employed in gene clustering, and subsequently the gene cluster information is exploited
to select a set of genes which can be used to construct a sample classifier.

We tested our method on four real cancer microarray datasets each contains multiple subtypes of
cancer patients. The experimental results show that the constructed classifiers all achieved a higher
classification accuracy than the previously best classification results obtained on these four datasets.
Additional tests show that the selected genes by our method are less correlated and they all
contribute statistically significantly to the more accurate cancer subtyping.

Conclusion: The proposed novel class discrimination strength vector is a better representation
than the gene expression vector, in the sense that it can be used to effectively eliminate highly
correlated but redundant genes for classifier construction. Such a method can build a classifier to
achieve a higher classification accuracy, which is demonstrated via cancer subtyping.

1 Background
DNA microarray technology enables the measurement of
expression levels of thousands of genes simultaneously.
This unique feature has a fundamental role in a wide

range of current biological and medical research. One of
the most common applications is to compare the gene
expression levels in tissues extracted from different condi-
tions, such as healthy versus diseased tissues, and thus to
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characterize the genetic profiles of these conditions. Two
main genetic profiling tasks have been investigated exten-
sively in the past two decades: identification of biomarker
genes, which are the genes differentially expressed under
various experimental conditions; and the construction of
classifiers based on these identified genes, to effectively
recognize the experimental conditions. For example, rec-
ognizing the primary anatomical site of tumor origin is a
fundamental requirement for optimal treatment for can-
cer patients.

Early research on genetic profiling employed gene and
sample class simultaneous clustering to recognize expres-
sion patterns associated with samples inside a class, as
well as those genes whose expression levels characterize
the class [1,2]. Nevertheless, in general, among the thou-
sands of genes examined, only a small number of them
are significantly associated with the experimental condi-
tions. These genes, or biomarkers, would have their
expression levels increase or decrease under certain condi-
tions, compared to normal expression levels. Such dis-
criminatory genes are very important in genetic disease
studies as they often are set as targets for drug design [3-
5]. However, identification of discriminatory genes is not
an easy task, because there are usually only a small
number of experiments (chips, arrays, or samples) availa-
ble for a typical application, largely due to the high exper-
imental cost. The huge number of genes versus a tiny
number of experiments is a familiar machine learning
challenge, often labeled as "the curse of dimensionality".

There are many algorithms proposed in the past two dec-
ades for gene selection, most of which directly extend
ideas in the more general problem of feature selection/
extraction, which is a long-standing research topic in sta-
tistics and machine learning. Nevertheless, one should
keep in mind that gene selection in gene expression
microarray data analysis differs from the general feature
selection in many aspects, such as the dimensionality
issue and the subsequent data overfitting; consequently,
many general feature selection algorithms will not work
satisfactorily on microarray data. On the other hand, gene
selection is closely related to the other main task in
genetic profiling: to build a good sample classifier. Besides
validating selected genes via other biological experiments,
for example in which they are set as drug targets, another
way to confirm that the selected genes are biologically cor-
related to various experimental conditions is to use them
to build a sample classifier and to test its classification
accuracy. Clearly, high classification accuracy suggests the
good quality of the selected genes. In fact, much research
has followed this rule to compare their gene selection
methods, in addition to considering the detailed biologi-
cal annotations for the selected genes.

To name a few gene selection methods, Golub et al. [3]
developed a measure of correlation that emphasizes the
"signal-to-noise" (S2N) ratio in using the gene as a class
membership (acute myeloid leukemia or acute lymphob-
lastic leukemia) predictor, and selected a number of top
ranked genes as discriminatory genes. The S2N ratio cap-
tures the basic rule of gene selection: a discriminatory
gene must have close expression levels in samples within
a class, but significantly different expression levels in sam-
ples across different classes. Other approaches that follow
the same rule, with certain modification and refinement,
include t-test [4], regularized t-test [6], supervised gene
shaving [2], a method focusing on expression homogene-
ity in a certain class [7], a method which uses both small
within-class expression variance and large between-class
expression variance [5], as well as many other so-called
single gene scoring or univariate methods.

To further exploit the correlations amongst genes, Xiong et
al. [8] first ranked genes using their individual classifica-
tion accuracy and then selected a subset of genes with an
overall near maximal classification accuracy through
sequential (floating) forward selections (SFS, SFFS).
Guyon et al. [9] did not rank genes but suggested a gene
selection method to use support vector machines (SVMs)
combined with recursive feature elimination (RFE) to
select a subset of genes with an overall near maximal clas-
sification accuracy. Li et al. [10] combined a genetic algo-
rithm (GA) and a k-nearest neighbor (KNN) method to
identify a fixed number of genes that can correctly classify
binary samples, based on the occurrence frequency of the
gene in many gene subsets. Lee et al. [11] and Zhou et al.
[12] proposed to first constrain the number of genes to be
selected and then use a Markov Chain Monte Carlo
(MCMC) based stochastic search algorithm to discover
important genes. Shevade and Keerthi [13] proposed a
logistic regression for class membership estimation based
on a linear combination of all the genes, then further
reduced the density by setting up a sensitivity threshold to
prune genes. The resulting regression model is thus sparse
and the remaining genes are considered informative.
Díaz-Uriarte and Alvarez de Andres [14] defined a meas-
ure of gene importance with the random forest and itera-
tively removed the gene with the smallest importance
until the smallest out-of-bag error rate is yielded.

Jaeger et al. [15] proposed a pre-filtering approach where
fuzzy clustering was applied, using the gene expression
levels across all samples, followed by selecting a varying
number of representatives per cluster.

These representative genes were then ranked by the afore-
mentioned t-test to select the top-ranked as feature genes.
A similar approach was proposed by Hanczar et al. [16] to
cluster genes using their expression levels across all sam-
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ples and then to represent the clusters using their mean
expression levels (called prototype genes); this was fol-
lowed with single gene scoring methods on the prototype
genes to select a pre-specified number of top-ranked
genes. Noticing that in general the gene clustering algo-
rithms need the number of clusters as an input parameter
(which is often difficult to tune), the HykGene proposed
by Wang et al. [17] first applied single gene scoring meth-
ods to select a set of top-ranked genes, then performed a
hierarchical clustering on them, and lastly selected one
representative per cluster to form the final marker genes.
The number of clusters in HykGene was determined using
the leave-one-out cross validation classification accuracy.

It is worth pointing out that most of the proposed gene
selection methods are classifier independent, or they can
be combined with any classification methods, such as lin-
ear discrimination analysis [4,7,8,14], nearest neighbor
models [4,5,10,14,17], support vector machines
[5,8,9,14-17], and logistic regression models [8]. These
gene selection methods typically produce a small set of
biomarker genes which can be used in classifier construc-
tion. However, there are some other gene selection meth-
ods which are bound with specific classifiers [11-14].

It is also equally important to point out that most of these
gene selection methods, and the associated classifiers,
work only on two-class datasets, though through one-ver-
sus-all (OVA) they can be theoretically extended to multi-
class datasets. The methods that have been explicitly
tested on multi-class dataset(s) include [4,5,7,14,16,17].
In addition, Ramaswamy et al. [18], Su et al. [19], and
Pomeroy et al. [20] specifically dealt with classification of
multiple classes of human tumors through identification
of a set of tumor genes (see Results for more details).

In the context of gene selection and the subsequent classi-
fication, the performance of one method is normally val-
idated through a training stage that tunes the parameters
in the method, followed by a testing stage which estimates
the quality of the selected genes and the performance of
the resultant classifier. For some of the above mentioned
methods, such as the ones in [3] and [18], a given gene
expression dataset is partitioned into two parts, one called
training dataset and the other testing dataset. The class
memberships of training samples are used in the training
process while the class memberships of testing samples
are blinded to the classifier for estimating its classification
accuracy. Other methods adopt cross validation schemes
for performance evaluation. There are two popular cross
validation schemes, one is �-fold and the other is leave-
one-out (LOOCV). In �-fold cross validation [4,5,7], the
whole given dataset is (randomly) partitioned into �
equal parts, and (� - 1) parts of them are used to form the
training dataset while the other one to form the testing

dataset; the process is done when every part has been used
as a testing dataset. The classification accuracy is defined
as the ratio between the number of correctly predicted
samples and the total number of testing samples. Most of
the methods that adopt this cross validation scheme
repeat the (random) partition several times and the aver-
age classification accuracy is reported. However, most of
the methods, for example, Ramaswamy et al. [18], Su et al.
[19], and Wang et al. [17], adopt the LOOCV scheme, in
which only one sample is used as the testing sample while
all the others are used to form the training dataset; the
scheme goes over every sample in the given dataset. Again,
the ratio between the number of correctly predicted sam-
ples and the total number of samples is defined as the
classification accuracy. In this work, on each real cancer
microarray dataset, we adopt the same cross validation
scheme to the methods we are comparing with. We also
report the LOOCV results on all the datasets and some 5-
fold cross validation results.

While binary classification has been extensively explored,
multi-class classification remains challenging in microar-
ray data analysis. In this work, we focus on gene selection
for the multi-class classification and we demonstrate the
strength of the proposed method by applying it on cancer
subtype identification. Our main goal is to select genes
that, as a whole, have superior class discrimination
strength. To this purpose, for each gene we define its class
discrimination strength vector, and based on these vectors
we measure the similarity between two genes. Such a sim-
ilarity measurement is adopted in the k-means algorithm
to cluster genes. Subsequently, a single gene scoring
method is used to rank all the genes. Our method then
walks through this ordered gene list and picks up one gene
per cluster until a pre-specified number is reached. These
selected genes are then used to construct a classifier whose
performance is evaluated and measured by the LOOCV
(and 5-fold cross validation) classification accuracy.
Through experiments on four real multi-class human can-
cer microarray datasets, we demonstrate that our method
can achieve significantly higher classification accuracies
than the best previously published. In this sense, our
method can serve as a useful addition to existing methods
for highly accurate human tumor classification.

2 Methods
Assume in the given multi-class microarray dataset there
are n samples on p genes, and these n samples belong to
m classes. In the following, we define a novel vector repre-
sentation for genes, which can differentiate their class rec-
ognition strength.

Let gij denote the expression level of the i-th gene in the j-
th sample. That is, in the gene expression matrix, each row
represents a gene, Gi = gi1, gi2,...,gin, and each column rep-
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resents a sample. For the i-th gene, its mean expression
level in the k-th class is denoted as hik, for k = 1, 2,...,m. The
value |hik - hil| captures the difference between the mean
expression levels of the i-th gene in the k-th class and in
the l-th class. Obviously, if this value is small, then the i-
th gene would not be effective in discriminating samples
from these two classes, but it could be effective otherwise.
Therefore, we define the class discrimination strength vector
for the i-th gene as

Hi = |hi1 - hi2|, |hi1 - hi3|,...,|hi1 - him|, |hi2 - hi3|, |hi2 - 
hi4|,...,|hi2 - him|, |hi3 - hi4|,...,|hi,m-1 - him|.

Let d1(i1, i2) and d2(i1, i2) denote the Euclidean distances
between the i1-th and the i2-th genes based on their G-vec-
tors and H-vectors, respectively. Note that there are n
entries in the G-vectors and m(m - 1)/2 entries in the H-
vectors, respectively. We define

to be the distance between the i1-th and the i2-th genes.

We can calculate the Euclidean distance by Eq. (1)
between every pair of genes, and then call the k-means
algorithm to cluster genes, where the default value for the
number of gene clusters k is 160 (such a value is set based
on extensive empirical study, see Discussion). Essentially,
k-means is a centroid-based clustering algorithm that par-
titions the genes into k clusters based on their pairwise
distances, to ensure that intra-cluster similarity is high and
inter-cluster similarity is low.

At the same time, we run a gene ranking method to sort all
the genes into a decreasing order of their class discrimina-
tion strength. Such a method essentially assigns a score for
each gene, which approximates its class discrimination
strength. The gene scoring functions can be the classifica-
tion accuracy of individual genes [8], or can be designed
to capture the basic rule that discriminatory genes are
those having close expression levels in samples in a com-
mon class but significantly different expression levels in
samples from different classes [4-7]. The latter category of
gene ranking methods are also called single gene scoring
methods, which do not consider the correlation between
genes when assigning the scores. In our study, we adopt
the F-test [4,6] and the GS method [5] as our base gene
ranking methods.

Walking through the gene order and using the gene cluster
information obtained by the k-means algorithm, our
method picks up a pre-specified number of genes under
the constraint that at most T genes per cluster are
included. For ease of presentation, we call our gene selec-

tion method, which targets at selecting genes having dis-
similar class discrimination strength, the Disc-based
method, and use Disc-F-test and Disc-GS to denote the
facts that the base gene ranking method is the F-test and
the GS method, respectively. We remark that the Disc-
based method is generic, in that it can use any other single
gene scoring method, such as the Cho's gene ranking
method, to create the Disc-Cho's gene selection method.

To computationally evaluate the quality of the selected
genes as a whole, we use the classification accuracy of the
classifier built on the selected genes, under the LOOCV
scheme. In other words, for each gene selection method
(in this paper, they are F-test, GS, Disc-F-test, and Disc-
GS), the selected genes are used in the k nearest neighbor
model or the support vector machine model to construct
a classifier (the KNN-classifier and the SVM-classifier,
respectively), and then use the classifier to predict the
class memberships of the testing samples. The percentage
of correctly predicted memberships is defined as the clas-
sification accuracy of the classifier. Essentially, the KNN-
classifier [4] predicts the class membership of a testing
sample by a majority vote using its k nearest neighbors in
the training dataset; the linear kernel SVM-classifier
[21,22] finds decision planes to best separate the set of
training samples having different class memberships, then
uses these planes to predict the class memberships of the
testing samples. For each class membership prediction, we
have also calculated the associated confidence score as fol-
lows. Su et al. [19] adopt the Dixon metric to assign confi-
dence scores, where the distances between the testing
sample and all the training samples are calculated, then
the "class distance" between the testing sample and a class
is derived to be the average distance over all the distances
between the testing sample and all the training samples in
that particular class. These class distances are then sorted

in increasing order, say for example, D1 ≤ D2 ≤...≤ Dm

where m is the number of classes, to compute the value c
= (D2 - D1)/(Dm - D1) which is the confidence value for

assigning the closest class to the testing sample. A Dixon
threshold of 0.1 is generally accepted as conservative
boundary for high confidence prediction. Associated with
our KNN-classifier for k = 5, assuming the closest 5 neigh-
bors for the testing sample are at increasing distances d1,

d2,...,d5 and the k1-, k2-, k3-th neighbors form a majority

vote, then  is

assigned as the confidence value. The prediction is consid-
ered as highly confident if the value is greater than 0.75.
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The SVM-classifier [21] we adopt implements a decision
directed acyclic graph to combine several binary classifiers
into a multiclass classifier and does not produce all the
distances for confidence evaluation. We also calculated
the covariance of the selected genes, and conducted per-
mutation tests, to measure the extent of dissimilar class
discrimination strength of the selected genes as a whole.

3 Computational Results
3.1 The Carcinomas Dataset
The Carcinomas dataset contains in total 174 samples
(U95a GeneChip) in 11 classes: prostate, bladder/ureter,
breast, colorectal, gastroesophagus, kidney, liver, ovary,
pancreas, lung adenocarcinomas, and lung squamous cell
carcinoma, which have 26, 8, 26, 23, 12, 11, 7, 27, 6, 14,
14 samples, respectively [19]. Each sample contains 9,183
genes, whose maximum hybridization intensity is ≥ 200
in at least one sample. All hybridization intensity values <
20 were raised to 20. The data were subsequently log
transformed. We obtained this dataset through the web-
site provided by Su et al. [19,23].

On this dataset, Su et al. [19] applied a Wilcoxon score to
rank genes and selected the top ranked 100 genes for each
of the 11 classes. Using a subset of 100 samples, under the
OVA/LOOCV scheme, an SVM-classifier was used to fur-
ther select 110 best genes (10 genes per class), among the
1100 genes, which achieved the highest LOOCV classifica-
tion accuracy (97 out of the 100 predictions were correct;
94 out of the 100 predictions were confident, among
which 92 were correct). The classifier trained on these 100
samples was then tested independently on the other 74
samples (no Bladder/Ureter or Pancreas samples), and
achieved 70 correct predictions, amongst which 64 were
confident.

Our Disc-F-test method was trained on the same 100 sam-
ples by setting 160 gene clusters to select 80 genes. The
KNN-classifier was able to make 72 correct predictions on
the 74 testing samples, among which 71 were confident
and among the confident predictions 70 were correct. It
was pointed out that the samples not being correctly clas-
sified in the original paper are considered very difficult for
computational classification [19]. Therefore, our Disc-F-
test-KNN classifier can be regarded as a significant
improvement (the detailed predictions in Table 1). Alter-
natively, our Disc-GS-KNN classifier, with exactly the
same settings, performed slightly worse than the Disc-F-
test-KNN classifier, making only 70 correct predictions
out of 74, among which 70 are confident and 68 of them
are accurate. Nevertheless, the Disc-GS-KNN classifier also
outperformed the method by Su et al.

We have also performed a LOOCV on the F-test, GS, Disc-
F-test, and Disc-GS methods, combined with the SVM and

KNN (k = 5) classifiers, on the whole dataset of 174 sam-
ples. To run the Disc-based methods, we set the number
of gene clusters in the k-means algorithm to be 160. Figure
1 plots their classification accuracies with a number of
selected genes, ranging from 1 to 80. The plot clearly
shows that the Disc-based methods significantly outper-
formed the single gene scoring methods (p = 2.9762 × 10-

8), in terms of the classification accuracy, but there was a
convergence tendency with an increasing number of
selected genes. Typically, when 80 genes were selected, the
Disc-F-test-KNN classifier made 168 confidence predic-
tions out of 174, among which 159 are correct (confident
classification accuracy 94.6%). Among the other 6 non-
confident predictions, 4 are correct. The overall classifica-
tion accuracy is 93.7%.

3.2 The Embryonal Dataset
The Embryonal dataset [24] contains a total of 42 patient
samples analyzed with oligonucleotide microarrays con-
taining probes for 7,129 genes (HuGeneFL arrays; dataset
A in [20]). These 42 samples include 10 medulloblasto-
mas, 5 CNS AT/RTs, 5 renal and extrarenal rhabdoid
tumours, and 8 supratentorial PNETs, as well as 10 non-
embryonal brain tumours (malignant glioma) and 4 nor-
mal human cerebella. Note that there is a slight difference
between this dataset and the one mentioned in the origi-
nal paper [20], which contains 6,817 genes. Note also that
CNS AT/RTs and rhabdoid tumours are together consid-
ered as a class, so there are 42 samples in 5 separate
classes.

On this dataset, Pomeroy et al. [20] applied OVA S2N sta-
tistics (and the standard t-statistics) to select a number of
genes, and then built a weighted KNN (k = 5) to predict
class memberships. This method obtained 35 correct pre-
dictions of the 42 under the LOOCV scheme.

Table 1: The detailed predictions on the Carcinomas dataset. 
Carcinomas dataset: testing result of the Disc-F-test-KNN 
classifier trained on the 100 samples by setting 160 gene clusters 
to select 80 genes. 72 out of the 74 predictions are correct (in 
bold).

# Samples P B C G K LI O LA LS

Prostate (P) 16 16
Breast (B) 14 13 1
Colorectal (C) 12 12
Gastroesophagus 
(G)

1 0 1

Kidney (K) 1 1
Liver (LI) 1 1
Ovary (O) 18 18
Lung Adeno. (LA) 5 5
Lung Squamous 
(LS)

6 6
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Our Disc-GS-KNN classifier made 36 correct predictions
when the number of selected genes was 45 and the
number of clusters was set to 100 (Table 2). Note that
there is no confidence evaluation associated with the pre-
dictions reported in the original paper. For the Disc-GS-
KNN classifier, 28 out of the 36 correct predictions were
confident. The Disc-F-test-KNN classifier also made 34
correct predictions out of the 42.

Again we performed a complete LOOCV on the F-test, GS,
Disc-F-test, and Disc-GS methods, combined with the
SVM classifier and the KNN classifier, respectively. Since
the number of samples in each class is small, we set k = 2
in the KNN classifier. To run the Disc-based methods, we
set the number of gene clusters in the k-means algorithm
to be 100, since the number of genes is relatively small
compared to the other datasets. Figure 2 plots their classi-
fication accuracies when a number of genes are selected,
which ranges from 1 to 80. The plot clearly shows that the

Disc-based methods significantly outperformed the single
gene scoring methods (p = 1.1102 × 10-16), in terms of the
classification accuracy.

3.3 The Lung Carcinomas Dataset
The Lung Carcinomas dataset [25] contains 203 samples
(U95A oligonucleotide probe arrays; dataset A in [26]) on
12,600 genes. These 203 samples are distributed in 5
classes (Table 3). By removing those genes with standard
deviations smaller than 50 expression units, the resultant
dataset contains 3,312 genes.

Hanczar et al. [16] proposed a method that first uses the
k-means algorithm to cluster genes and then defines a pro-
gene as the mean expression vector of the genes in a clus-
ter. Subsequently, a single gene scoring method is run on
the progenes to select a subset of them to build an SVM-
classifier. Under the 3-fold cross validation (averaged over
several times of random partition), a highest classification

LOOCV classification accuracies on the Carcinomas datasetFigure 1
LOOCV classification accuracies on the Carcinomas dataset. LOOCV classification accuracies of the eight classifiers 
on the Carcinomas dataset.
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accuracy of 95.2% was obtained in [16], where 100 gene
clusters were formed and 100 progenes were selected.

Similarly, under the 3-fold cross validation in which 20
random partitions have been performed, our Disc-GS-
KNN and Disc-F-test-KNN classifiers were able to achieve

96.5% classification accuracy, when no more than 80
genes were selected.

Again we did a LOOCV on the F-test, GS, Disc-F-test, and
Disc-GS methods, combined with the SVM classifier and
the KNN classifier (k = 5), respectively, on the dataset. To

LOOCV classification accuracies on the Embryonal datasetFigure 2
LOOCV classification accuracies on the Embryonal dataset. LOOCV classification accuracies of the eight classifiers on 
the Embryonal dataset.

Table 2: The detailed predictions on the Embryonal dataset. 
Embryonal dataset: LOOCV result of the Disc-GS-KNN classifier 
by setting 100 gene clusters to select 45 genes. 36 out of the 42 
predictions were correct (in bold).

# Samples M CRE S MG N

Medulloblastomas (M) 10 9 1
CNS, renal and extrarenal rhabdoid 
(CRE)

10 1 9

Supratentorial PNETs (S) 8 2 6
Malignant glioma (MG) 10 1 9
Normal (N) 4 1 3

Table 3: The detailed predictions on the Lung Carcinomas 
dataset. Lung Carcinomas dataset: LOOCV result of the Disc-
GS-KNN classifier by setting 160 gene clusters to select 80 genes. 
197 out of the 203 predictions were correct (in bold).

# Samples A SQ P SM N

Adenocarcinomas (A) 139 137 1 1
Squamous cell lung carcinomas 
(SQ)

21 3 18

Pulmonary carcinoids (P) 20 20
Small-cell lung carcinomas (SM) 6 6
Normal (N) 17 1 16
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Table 4: The detailed predictions on the All Tumor dataset. All Tumor dataset: testing result of the Disc-GS-KNN classifier by setting 
160 gene clusters to select 80 genes. 36 out of the 46 predictions were correct (in bold).

# Samples BR PR LU C LY BL ML U LE R PA O MS CNS

Breast (BR) 3 2 1
Prostate (PR) 2 0 1
Lung (LU) 3 2 1
Colorectal (C) 3 3
Lymphoma (LY) 6 6
Bladder (BL) 3 2 1
Melanoma (ML) 2 2
Uterus-adeno (U) 2 2
Leukemia (LE) 6 5 1
Renal (R) 3 1 1 1 1
Pancreas (PA) 3 1 2
Ovary (O) 3 1 2
Mesothelioma (MS) 3 3
CNS 4 4

LOOCV classification accuracies on the Lung Carcinomas datasetFigure 3
LOOCV classification accuracies on the Lung Carcinomas dataset. LOOCV classification accuracies of the eight clas-
sifiers on the Lung Carcinomas dataset.
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run the Disc-based methods, we set the number of gene
clusters in the k-means algorithm to be 160. Figure 3 plots
their classification accuracies with respect to the number
of selected genes, ranging from 1 to 80. Their classification
accuracies clearly show that the Disc-based methods sig-
nificantly outperformed the single gene scoring methods
(p = 1.9447 × 10-10), in terms of the classification accu-
racy. For both Disc-based methods, the KNN classifiers
made 200 confident predictions out of the 203, among
which 195 were correct (see also Table 3 for the detailed
result by Disc-GS-KNN classifier).

3.4 The All Tumor Dataset
Ramaswamy et al. [18] targeted pure molecular classifica-
tion of tumor samples and assembled the All Tumor data-
set, which contains 218 tumor and 90 normal tissue
samples on 16,063 genes (Hu35KsubA oligonucleotide
microarrays) [27]. Using these samples, one training data-
set consists of 144 tumor samples (8 breast, 8 prostate, 8

lung, 8 colorectal, 16 lymphoma, 8 bladder, 8 melanoma,
8 uterus-adeno, 24 leukemia, 8 renal, 8 pancreas, 8 ovary,
8 mesothelioma, and 16 CNS). The testing dataset con-
sists of the other 46 tumor samples (Table 4).

Adopting OVA scheme, the authors proposed to use a lin-
ear SVM algorithm (a KNN algorithm was also tested) to
recursively eliminate the bottom 10% genes that show
low importance. Under the LOOCV scheme, on the train-
ing dataset, their method was able to make 115 (or
79.9%) confident predictions of which 103 (or 89.6%)
were correct. Only 8 (or 27.6%) of the other 29 (or
20.1%) predictions of low confidence were correct, which
gave an overall training classification accuracy of 78.5%.
The classifier thus trained on the 144 samples was tested
on the independent 46 samples, and achieved a classifica-
tion accuracy of 78.3% (among which, 30 of the 36 con-
fident predictions were correct, 6 of the 10 low-confidence
predictions were correct). The LOOCV classification accu-

LOOCV classification accuracies on the All Tumor datasetFigure 4
LOOCV classification accuracies on the All Tumor dataset. LOOCV classification accuracies of the eight classifiers on 
the All Tumor dataset.
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racy of our Disc-GS-KNN classifier on the training dataset
reached 78.5% too (the detailed predictions in Table 4),
the same as that in [18]. Nonetheless, with respect to con-
fident prediction, our Disc-GS-KNN classifier performed
much better on the testing dataset, where it made 41 (or
89.1%) confident predictions, of which 34 (or 82.9%)
were correct.

We have also performed a LOOCV on the F-test, GS, Disc-
F-test, and Disc-GS methods, combined with the SVM
classifier and the KNN classifier (k = 5), respectively. To
run the Disc-based methods, we set the number of gene
clusters in the k-means algorithm to be 160. Figure 4 plots
their classification accuracies with respect to the number
of selected genes, ranging from 1 to 80. The plot shows
that the Disc-based methods outperformed the single
gene scoring methods (p = 3.2538 × 10-8), typically when
combined with the KNN classifier, in terms of the classifi-
cation accuracy. For both Disc-based methods, when

selecting 80 genes, the KNN classifiers made 146 (or
76.8%) confident predictions out of the 190 predictions,
among which 124 (or 84.9%) were correct.

4 Discussion
4.1 The Number of Gene Clusters and the Maximum 
Number of Genes per Cluster
Based on the hypothesis that all strong gene clusters must
be identified, in order to support reasoning about biolog-
ically plausible causation, we have adopted Principal Com-
ponent Analysis and various hierarchical clustering
algorithms to find the most likely number of predictive
gene clusters in a dataset. Unfortunately, the determina-
tion was not uniformly successful, as on some datasets the
returned number of gene clusters is unreasonably small
(data not shown). Obviously, if too many gene clusters
are created, the Disc-based gene selection methods might
still include too many redundant genes. On the other
hand, if the number of gene clusters is too small, then the

Average 5-fold cross validation classification accuracies on the Carcinomas datasetFigure 5
Average 5-fold cross validation classification accuracies on the Carcinomas dataset. Average 5-fold cross validation 
classification accuracy with respect to selecting T genes per cluster, on the Carcinomas dataset.
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Disc-based methods would miss some useful genes. How-
ever, the true number of gene clusters must remain dataset
dependent, and the effective determination of that
number is challenging. We chose to examine several likely
values for the number of gene clusters, k, in the k-means
algorithm: k = 100 – 220 in tens. For each k, we examined
at most T genes per cluster, for T = 1 – 5. For the Carcino-
mas dataset, all the corresponding classification accura-
cies, with respect to the number of selected genes, are
plotted in Figures 5 and 6. In these plots, we used a 5-fold
cross validation scheme (20 random partitions) and com-
bined with the SVM and the KNN classifiers. (That is, each
reported classification accuracy was the average over 2000
or 5200 individual classification accuracies, respectively.)
Figures 5 and 6 show that the classification accuracy
reached the highest when T = 1, and the value of k had lit-
tle impact on the experimental results. In fact, the classifi-
cation accuracies were almost the same at all 13 different

values for k. We decided on a default setting of k = 160 and
T = 1.

Note that we randomly selected k genes as initial cluster
centers every time we ran the k-means algorithm. The
reported results in the last section are from the first run of
the k-means algorithm. We in fact have repeated the
whole process 100 times, but we found out that the
detailed gene clustering results from the k-means algo-
rithm do not affect the subsequent classification accura-
cies. For the LOOCV study on the whole Carcinomas
dataset of 174 samples, the standard deviations of the
classification accuracies of the four Disc-based classifiers
are all very small across all the numbers of selected genes,
and the reported classification accuracies of the four Disc-
based classifiers on the first run of the k-means algorithm
all have p values around 0.5, indicating that they are not
particularly correlated to the k-means gene clustering

Average 5-fold cross validation classification accuracies on the Carcinomas datasetFigure 6
Average 5-fold cross validation classification accuracies on the Carcinomas dataset. Average 5-fold cross validation 
classification accuracy with respect to k gene clusters, on the Carcinomas dataset.
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results. For the Disc-GS-KNN classifier, the LOOCV classi-
fication accuracies on the first run of the k-means gene
clustering algorithm are plotted in Figure 7, together with
the average classification accuracies and the standard devi-
ations over 100 runs of the k-means algorithm. For the
other three Disc-based classifiers, the results are similar
and we omit them from Figure 7 since plotting them all
makes the figure difficult to read.

4.2 The Impact of Class Discrimination Strength Vector
To increase our confidence on the independence of each
identified gene cluster and improve accuracy in sample
classification, we define the notion of a class discrimina-
tion strength vector for each gene, the H-vector, which
contains the absolute differences between all pairs of class
mean expression values. Subsequently, the distance
between two genes, d(·,·), is defined as a weighted linear

combination of the Euclidean distances, d1(·,·) and
d2(·,·) between their G-vectors and their H-vectors (see
Methods), respectively. For comparison purpose, we have
also experimented with the distance d1(·,·) in the k-
means algorithm, and the results showed that using the H-
vectors does improve the clustering quality, which in turn
results in a higher classification accuracy. On the Carcino-
mas dataset, applying the F-test method to rank all the
genes, and then using the gene cluster information
returned by both distance measures (160 gene clusters
were formed), d(·,·) and d1(·,·), to select one gene per
cluster, we collected the 5-fold classification accuracies for
both the KNN- and SVM-classifiers and plotted them in
Figure 8, where "Disc" and "Expression" indicate the gene
cluster information by the distance measures d(·,·) and
d1(·,·), respectively.

Standard deviations of the LOOCV classification accuracies on the Carcinomas datasetFigure 7
Standard deviations of the LOOCV classification accuracies on the Carcinomas dataset. On the Carcinomas data-
set, the LOOCV classification accuracies of the Disc-GS-KNN classifier for the first run of the k-means gene clustering algo-
rithm plotted together with the average classification accuracies and the standard deviations over 100 runs of the k-means 
algorithm.
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We have also looked into the percentage of the overlapped
genes selected using two different gene cluster informa-
tion. To this purpose, we allowed minor rank difference to
set T = 3, that is, up to three genes per cluster were
selected. In Figure 9, the x-axis labels the total number of
selected genes and the y-axis labels the percentage of the
overlapped genes between the gene sets selected using the
distance measures d(·,·) and d1(·,·), respectively, where
each of the F-test and the GS methods was applied to rank
all the genes. For the first 7 genes, the two distance meas-
ures voted the same. Though there are several local peaks,
the overall tendency of the overlapping percentage was
decreasing, which non-surprisingly indicates that the H-
vector did contribute to the gene clustering quality that
eventually improved the classification accuracy.

4.3 Covariance of Selected Genes and Their Permutation 
Tests
As we mentioned earlier, the underlying design idea in the
Disc-based gene selection methods is to avoid selecting
too many similar genes for classifier construction. Covar-
iance can be used to measure the correlation among two
or more sets of random variables, where a larger covari-
ance value indicates a stronger relationship among the
sets of variables. Table 5 shows the average absolute cov-
ariance value among all the pairs of gene sets selected by
different gene selection methods, on the Lung Carcino-
mas dataset. In this case, we ran the LOOCV to collect 203
sets of 80 selected genes each. Next, we calculated the fre-
quency of a gene occurring in these 203 sets. The 80 most
frequent genes were identified and their covariance was
calculated, based on their expression levels across all the
203 samples. The absolute covariance values are listed in

5-fold cross validation classification accuracies on the Carcinomas datasetFigure 8
5-fold cross validation classification accuracies on the Carcinomas dataset. 5-fold cross validation classification accu-
racies of the KNN- and SVM-classifiers, where genes are selected using d(·, ·) and d1(·,·) distances combined with the F-test 
method, on the Carcinomas dataset.
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Table 5, where one can see that the genes selected by the
F-test and GS methods have larger absolute covariance
values. This indicates that these two 80-gene sets have
stronger relationships to each other, or they share closer
expression patterns. The Disc-F-test and Disc-GS methods
produced gene sets of smaller covariance values, indicat-

ing that the selected genes are more dissimilar to each
other.

For each of these four 80-gene sets, we also examined its
quality by doing the permutation test under the 5-fold
cross validation scheme. Each time, the sample class
labels in the complete dataset were randomly permuted,

Table 6: Permutation test result on the Embryonal dataset. The 
p-values of the classification accuracies, under 10,000 
permutation tests, of the KNN- and SVM-classifiers built using 
the 80 genes selected by the Disc-F-test, F-test, Disc-GS, and GS 
methods, on the Embryonal dataset.

KNN-Classifier SVM-Classifier

F-test 6.1533 × 10-10 1.9375 × 10-11

Disc-F-test 5.1585 × 10-11 2.1727 × 10-13

GS 1.2128 × 10-9 9.0832 × 10-7

Disc-GS 1.3323 × 10-15 1.0000 × 10-15

The percentage of the overlapping genes selected on the Carcinomas datasetFigure 9
The percentage of the overlapping genes selected on the Carcinomas dataset. The percentage of the overlapping 
genes selected using d(·,·) and d1(·,·) distances combined with the F-test and GS methods, on the Carcinomas dataset.

Table 5: Statistical significance analysis of the selected genes on 
the Lung Carcinomas dataset. Covariance and standard 
deviation of the genes selected by the Disc-F-test, F-test, Disc-
GS, and GS methods, on the Lung Carcinomas dataset.

Method F-test GS

Covariance Standard 
Deviation

Covariance Standard 
Deviation

Disc-Based 0.3342 0.3851 0.3021 0.3534
Non-Disc-Based 0.7100 0.6502 0.5127 0.5001
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then the dataset was randomly partitioned into 5 equal
parts to build the KNN- and SVM-classifiers using these 80
genes, and lastly the average classification accuracy was
collected. The random permutation was repeated for
10,000 times and the 10,000 classification accuracies were
fitted into a normal distribution. On the Embryonal data-
set, the p-values of the achieved classification accuracies
on the original dataset, by all eight classifiers, are listed in
Table 6, where one can see that the p-values associated
with the Disc-based methods are much smaller, indicating
the higher quality of the selected genes.

5 Conclusion
In this paper, we aimed at solving the much more chal-
lenging multi-class classification problem in microarray
data analysis. We have examined a novel method to incor-
porate gene cluster information to identify many biologi-
cally relevant discriminatory genes, and to use that
information to construct classifiers for such a purpose. We
define a distance measurement between two genes to
approximate their difference in the class discrimination
strength, based on a novel class discrimination strength
vector representation. This Disc-based gene selection
method is generic, in that it can be combined with any
gene ranking method to identify genes that have dissimi-
lar strength in class discrimination, but together they
would have superior class discrimination strength. Our
experiments on four real human cancer microarray gene
expression datasets showed that the Disc-based gene
selection methods achieved significantly higher classifica-
tion accuracies, compared to the corresponding non-Disc-
based gene selection methods.
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