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Abstract

Background: Although the prediction of protein-protein interactions has been extensively
investigated for yeast, few such datasets exist for the far larger proteome in human. Furthermore,
it has recently been estimated that the overall average false positive rate of available computational
and high-throughput experimental interaction datasets is as high as 90%.

Results: The prediction of human protein-protein interactions was investigated by combining
orthogonal protein features within a probabilistic framework. The features include co-expression,
orthology to known interacting proteins and the full-Bayesian combination of subcellular
localization, co-occurrence of domains and post-translational modifications. A novel scoring
function for local network topology was also investigated. This topology feature greatly enhanced
the predictions and together with the full-Bayes combined features, made the largest contribution
to the predictions. Using a conservative threshold, our most accurate predictor identifies 37606
human interactions, 32892 (80%) of which are not present in other publicly available large human
interaction datasets, thus substantially increasing the coverage of the human interaction map. A
subset of the 32892 novel predicted interactions have been independently validated. Comparison
of the prediction dataset to other available human interaction datasets estimates the false positive
rate of the new method to be below 80% which is competitive with other methods. Since the new
method scores and ranks all human protein pairs, smaller subsets of higher quality can be generated
thus leading to even lower false positive prediction rates.

Conclusion: The set of interactions predicted in this work increases the coverage of the human

interaction map and will help determine the highest confidence human interactions.

Background

Protein-protein interactions perform and regulate funda-
mental cellular processes. The comprehensive study of
such interactions on a genome-wide scale will lead to a
clearer understanding of diverse cellular processes and of
the molecular mechanisms of disease. Although the deter-
mination of interactions by small-scale laboratory tech-
niques is impractical for a complete proteome on the

grounds of cost and time, several experimental techniques
now exist to determine protein-protein interactions in a
high-throughput manner [1]. High-throughput datasets
have been generated for model organisms such as yeast [2-
6], worm [7] and fly [8,9] as well as Escherichia coli [10].
In addition, the first broad-focus experimental datasets for
the human interactome have recently been published
[11,12]. Interactions determined by high-throughput
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methods are generally considered to be less reliable than
those obtained by low-throughput studies [13,14] and as
a consequence efforts are also underway to extract evi-
dence for interactions from the literature [15-17]. Analysis
of the high-throughput datasets has shown that they over-
lap very little with each other, suggesting that their cover-
age is low. Indeed, it has been estimated recently that the
current yeast and human protein interaction maps are
only 50% and 10% complete, respectively [18].

The low coverage and variable quality of the experimental
interaction datasets have prompted many groups to inves-
tigate computational methods to predict interactions or to
determine the most likely interactions seen in the high-
throughput datasets. The different approaches to predict
interactions can be grouped into five main categories:

1) Predictors based on sequence and structure exploit the
observation that some pairs of sequence motifs, domains
and structural families tend to interact preferentially.
Some methods predict interaction from sequence-motifs
found to be over-represented in interacting protein pairs
[19], or by considering the physico-chemical properties
and the location of groups of amino acids in the sequence
[20,21]. Others investigate the co-occurrence in interact-
ing proteins of specific protein domains or their structural
family classification [22,23]. When three-dimensional
structures are available for both proteins thought to inter-
act, high quality predictions and additional information
such as the residues involved in the interaction and their
binding affinity may be estimated (reviewed in [24]). Sim-
ilarly, when two proteins show clear sequence similarity
to proteins that exist in a complex for which the three-
dimensional structure is known, detailed predictions of
the atomic-level interactions may be made. For example,
the major complexes in yeast have been predicted by this
strategy [25].

2) Predictors based on comparative genomics have been
exploited primarily in prokaryotes. They consider the
physical location of genes, as well as their pattern of
occurrence and evolutionary rate, to predict interactions
or functional relationships between protein pairs. Some
predictors make use of the observation that neighboring
genes whose relative location is conserved across several
prokaryotic organisms are likely to interact [26]. Other
predictors exploit the observation that gene pairs that co-
occur in related species or that co-evolve also tend to be
more likely to interact [27-30]. In addition, domains that
exist as separate proteins in some genomes but are also
seen fused in a single protein in other genomes have been
used to suggest the isolated domains may interact [31,32].

3) Predictors based on orthology work on the assumption
that the orthologs of a protein pair that are known to
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interact in one organism will also interact. Such relation-
ships are often referred to as interologs [33]. For example,
at BLAST e-values below 10-19, it has been shown that 16—
30% of yeast interactions can be transferred to the worm
[34] while further studies have estimated that a joint e-
value below 10-70is required to transfer interactions relia-
bly between organisms [35]. Interologs have been used to
predict protein-protein interactions in human [36].

4) Predictors based on functional features exploit non-
sequence information to infer interactions. Some predic-
tors exploit the observation that there is a significant cor-
relation in the expression levels of transcripts encoding
proteins that interact [37]. Since proteins must be co-
localized in order to interact, protein subcellular localiza-
tion has often been used to assess the quality of interac-
tion datasets [38,39]. Similarly, interacting proteins are
also often involved in similar cellular processes, so Gene
Ontology "process" and "function" annotations have
been exploited to predict interactions and validate high-
throughput datasets [16,36,38].

5) Predictors have exploited similarities in the network
topology of known interaction datasets to predict novel
interactions. In one study, the local topology of small-
world networks has been used to assess the quality of
interaction datasets and predict novel interactions [40]
while Gerstein and colleagues have investigated the pre-
diction of interactions by the identification of missing
edges in almost fully connected complexes [41].

In addition to these diverse approaches, some groups
have combined concepts from several of the above catego-
ries in integrative frameworks. The first such predictor
integrated co-expression data, co-essentiality as well as
biological function in a naive Bayes network to provide
proteome-wide de novo prediction of yeast protein interac-
tions [37]. Subsequently, the combination of many more
diverse features was investigated using different frame-
works to predict yeast protein-protein interactions,
increasing the prediction accuracy and allowing an assess-
ment of the limits of genomic integration [42-44]. The
integration of diverse genomic features has also been use-
ful in the investigation of the related but broader problem
of predicting protein-protein associations as well as com-
plex and pathway membership (see for example [45]).

Although, many computational methods have investi-
gated the prediction of protein-protein interactions, few
have so far been applied to the human proteome. The first
large-scale prediction of the human interactome map
involved transferring interactions from model organisms
[36]. This resulted in over 70000 predicted physical inter-
actions involving approximately 6200 human proteins. A
second method integrated expression data, orthology,
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protein domain data and functional annotations into a
probabilistic framework and resulted in the prediction of
nearly 40000 human protein interactions [46]. It has
recently been estimated that the false-positive rates of
these computational datasets as well as of available high-
throughput human interaction datasets are, on average, as
high as 90% and their coverage is only approximately
10%, indicating that more such efforts are needed to
increase the coverage and confidence we have in current
maps of the human interactome [18].

In this paper, the prediction of physical interactions
between human proteins has been investigated by inte-
grating in a Bayesian framework several different pieces of
evidence including orthology, functional features and
local network topology. In order to increase the accuracy
and coverage of the predictions, different types of negative
data (non-interacting protein pairs) were explored to train
the predictor. The most accurate of the predictors was then
used to assess the likelihood of pair-wise interaction for
over 20000 human proteins from the IPI (International
Protein Index) database. These predictions provide a like-
lihood of interaction for over 260 million human protein
pairs and lead to the prediction of over 37000 human
interactions. They should thus augment current knowl-
edge of the human interactome as well as the understand-
ing of the relationship between distinct cellular processes.

Results and discussion

Architecture of the predictor and training of the modules
The prediction of human protein-protein interactions was
investigated in a Bayesian framework by considering com-
binations of individual protein features known to be
indicative of interaction. The seven individual features
considered are summarized in Table 1 and detailed in the
Methods section. As indicated in Table 1, the different fea-
tures were grouped into five distinct modules: Expression
(E), Orthology (O), Combined (C), Disorder (D) and
Transitive (T). Figure 1 illustrates the training scheme and
architecture of the method. The Expression, Orthology,
Combined and Disorder modules can calculate likelihood
ratios (LR) of interaction independently and are referred
to as the Group A modules (Figure 1A). The product of
their likelihood ratios is referred to as the Preliminary
Score. The Transitive module considers the local topology
of the network predicted by the group A modules and thus
requires the completion of their analysis to calculate its
own likelihood ratios of interaction (Figure 1B). As such,
all combinations of the Group A modules can be used to
predict interaction in the presence or absence of the Tran-
sitive module. In the absence of the Transitive module,
the Preliminary Score is used as the final likelihood ratio
output by the predictor.
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The likelihood ratios of interaction are evaluated for each
module by considering the relative proportions of posi-
tive and negative training examples that have a specific
state (i.e. that fall in a particular bin of a module). The
datasets used to train the predictor consisted of 26896
known human protein interactions extracted from the
Human Protein Reference Database (HPRD) [15] and
approximately 100 times more randomly chosen protein
pairs used as negative examples. The composition of the
datasets and likelihood ratio calculations are explained in
greater detail in the Methods section. Once the final like-
lihood ratio of interaction (LRg,,,) is calculated for a given
protein pair as shown in Figure 1B, it is possible to esti-
mate the posterior odds ratio of interaction by multiply-
ing the final likelihood ratio by the prior odds ratio of
interaction. Protein pairs that have a posterior odds of
interaction above 1 are more likely to interact than not to
interact, thus providing an obvious threshold to predict
interacting proteins. Estimates for the prior odds ratio of
interaction vary. Previous interaction studies on yeast and
human use prior odds ratios that range from 1/600 to > 1/
400 [37,43,46,47]. The evaluation of this ratio is difficult
because not all true interactions are known. As detailed in
Methods, the prior odds ratio for human protein interac-
tion was explored by considering different versions and
subsets of human interaction datasets. This suggested that
there is insufficient data currently available to determine
areliable ratio for human. Accordingly, we selected a prior
odds ratio of interaction of 1/400 which is similar to cur-
rent estimates for yeast and is probably still quite conserv-
ative. Thus, the likelihood ratio threshold to predict
interactions is 400.

Likelihood ratios of the modules

Figure 1 summarizes the likelihood ratios computed for
the five modules. The different modules differ in the range
of likelihood ratio values achieved by their different
states. The Orthology and Combined modules both have
states that achieve likelihood ratios above 400 (as high as
1207 for the Orthology module and 613 for the Com-
bined module), indicating that both these modules can,
on their own, predict some interacting protein pairs with
a posterior odds ratio above 1.

The Expression module follows trends seen in previous
studies with increasing likelihood ratios of interaction
reflecting increasing expression correlation [37,46]. How-
ever, since the highest likelihood ratio for the expression
datasets that we consider is 33, they are not sufficient on
their own to predict interacting protein pairs with a poste-
rior odds ratio above 1. Similarly, but in a much more
pronounced way, the Disorder module is only slightly
predictive of interaction, with a maximum likelihood
ratio of 1.8.
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Table I: Features considered in the prediction of interactions for each module

Module
abbreviation

Features considered

Data source

Description

Scoring function

Bins

E Expression GDS596 from the Gene Gene expression profiles from 79 Pearson correlation of co- 20 of equal size covering
Expression Omnibus [70] physiologically normal tissues expression over all the correlation value
obtained from various sources [71] conditions range (-1 to +1)
o Orthology InParanoid [72], BIND Interactions of homologous protein Organism-based using 13

[66], DIP [65] and GRID
[69] databases

pairs from yeast, fly, worm and
human

InParanoid score

C (Combined)

Localization PSLT predictions [54] PSLT is a human subcellular Qualitative score: 4 (same, neighboring,
localization predictor that considers proximity of different compartments,
nine different compartments (ER, compartments or not localized)
Golgi, cytosol, nucleus, peroxisome,
plasma membrane, lysosome,
mitochondria and extracellular)
Domain co-occurrence InterPro [73] and Pfam Protein domains and motifs Chi-square 5 covering range of Chi-
square scores
PTM co-occurrence HPRD [15] and UniProt Post-translational modifications 4 covering range of PTM
76 . . scores
el P(PTM[i], PTM]j]

P(PTM[i] | I) * P(PTA

D Disorder VLS2 predictions [78] Prediction of protein intrinsic Sum of the percent 6 covering range of
disorder disorder for each protein scoring function (0 to
in a pair 200%)
T Transitive - Module that considers local topology 5 covering range of

of underlying network predicted

scoring function

using combinations of above features

2 Se
ecE,

T=— %%
1+ | By \Ec | +]

Most states of the Orthology module achieve higher like-
lihood ratios than the highest obtained by the Expression
and Disorder modules. This is not surprising as the trans-
fer of interacting orthologs (known as interologs [33])
from one organism to another is a popular method to pre-
dict interactions (see for example [34,48]), particularly in
the case of organisms like human for which only a small
proportion of interactions are known. The direct transfer
of interactions to human from either yeast, fly or worm
does not alone result in a posterior odds ratio above 1 (as
the likelihood ratios of interaction for all yeast, fly and
worm bins in the Orthology module are below 400). This
is not surprising as previous studies have indicated that
quite stringent joint E-values must be used to transfer
interactions safely between organisms [34,35]. In con-
trast, the consideration of human interactions paralogous
to the human protein pairs under investigation results in
likelihood ratios of 431 and 1034 (depending on how
close the paralogs are as described in Methods) which is
much higher than those obtained for any single model
organism. This agrees with a recent report that suggested
protein-protein interactions are more conserved within
species than across species [49].

The Combined module uses domain co-occurrence, post-
translational modification (PTM) co-occurrence and sub-
cellular localization information to predict interaction.
These features were originally investigated separately, as
shown in Figure 3, but their combination into one mod-
ule that considers all dependencies between them
achieves higher accuracy (data not shown) and higher
likelihood ratios (as can be seen by comparing to Figure
1) while still being computationally feasible. Addition-
ally, this combination circumvents possible problems of
dependence between these features.

Previous methods have investigated the use of co-occur-
ring domains to predict interaction (see for example
[23,46]). Many pairs of domains co-occur in proteins
known to interact. When investigated as a separate fea-
ture, the chi-square score of co-occurrence of domain
pairs correlates well with the likelihood of interaction of
protein pairs that contain these domains, with the highest
chi-square score bin obtaining a likelihood ratio of 14, as
shown in Figure 3A. Similarly, the co-occurrence of PTMs
is also predictive of interaction, with its highest scoring
bin obtaining a likelihood ratio of 6 as shown in Figure
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Architecture of the predictor and likelihoods of the modules. The predictor consists of two different parts (A and B) which are

trained consecutively. The Group A modules (shown in panel A)

are trained in parallel. The likelihood ratios (LR) for most of

their states are shown in panel A (their complete likelihood ratios are available in Additional File 4). The product of the likeli-
hood ratios of all Group A modules considered in a given prediction is referred to as the preliminary score (PS) and can be cal-
culated for all human protein pairs. If the Transitive module is not considered, the final likelihood ratios assigned to all protein
pairs is the preliminary score (PS). If the Transitive module is considered, the local topology of the network determined by the
assignment of preliminary scores to all protein pairs considered in the training set is used to calculate the likelihood ratios for
the transitive module (shown in panel B) for every protein pair in the training set. The final likelihood ratio is then the product
of the preliminary score calculated in panel A and the likelihood ratio output by the transitive module in panel B. For the
Orthology module: YL, YM, YH: yeast low, medium and high scoring bins; FL, FM, FH: fly low, medium and high scoring bins;
WL, WM, WH: worm low, medium and high scoring bins; HM and HL: medium and low scoring bins for human protein pairs
that have human paralogs; > | organism: bin for human protein pairs that have interologs in more than one organism. For the
Combined module, — refers to the lowest scoring bin (for the domain (Dom), post-translational modification (PTM) and sub-
cellular localization (Loc) features), — refers to the second lowest scoring bin and +, ++, +++ refer respectively to the third

highest, second highest and highest scoring bins.

3B. Lists of high scoring domain pairs and PTM pairs are
shown in Additional Files 1 and 2.

Subcellular localization has been extensively used both to
assess the quality of interaction datasets [11,50,51] and to
generate examples of non-interacting protein pairs to use
as negative datasets when training and testing predictors

[37,46]. In the present study, the use of localization was
investigated as a feature predictive of interaction. Four
possible localization states were considered for protein
pairs: same compartment, neighboring compartments,
different non-neighboring compartments and absence of
localization annotation (more details are given in the
Methods section). As shown in Figure 3C, the likelihood
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Figure 2

Transitive module hypothesis. The Transitive module investi-
gates whether two proteins (such as i and j) that share many
common interactors and have few additional interactors that
are not common to both proteins are more likely to interact
than two proteins (such as i' and j') that share few common
interactors.

ratio of same compartment protein pairs was found to be
twice as high as that of randomly chosen or non-anno-
tated protein pairs whereas different non-neighboring
protein pairs are more than three times less likely to inter-
act than random protein pairs Individual localization fea-
tures achieve low interaction likelihood ratios. However,
when integrated into the Combined module, domain,
PTM and localization information together achieve likeli-
hood ratios that are high enough to predict interaction on
their own (i.e. above 400). As expected, the highest likeli-
hood ratio bins for the Combined module are those rep-
resenting the highest combinations of the three features
separately.

The transitive module enhances the preliminary likeli-
hood score (PS) (calculated using the group A modules)
by considering the local topology of the resulting network
which is assessed using the neighborhood topology score
as detailed in the Methods section. The likelihood ratios
for different values of the neighborhood topology score
are shown in Figure 1B. The Transitive module is highly
predictive of interaction and achieves likelihood ratios as
high as 229. This module cannot be used alone as it
requires as input the output of at least one group A mod-
ule. However, it can predict interacting protein pairs with
a posterior odds ratio above 1.0 when used in combina-
tion with any single module in group A (as the product of
the highest likelihood ratios of the transitive module and
any group A module is greater than 400 as can be seen
from Figure 1).

Independence of the modules

The final likelihood ratio output by the predictor is only
representative of the true likelihood of interaction of a
protein pair if the modules considered are independent. If
the modules were not independent, some likelihood
ratios would likely be overestimated, particularly for pro-
tein pairs that achieve simultaneously high likelihoods for
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3
o 254
B o
3
8 1.5+
=
3 1 —
E
=1 0.5
0
different non- neighbouring same
neighbouring compartments compartments
compartments

Figure 3

Likelihood ratios of the features that form the Combined
module, considered separately. The Combined module con-
siders simultaneously three distinct features: the co-occur-
rence of both domains and PTMs as well as the subcellular
co-localization of proteins. Here the likelihood ratios of
these features considered separately are shown. In panel A,
all domain pairs considered were given scores and likelihood
ratios were estimated for different values of these scores.
Similarly, shown in panel B are the likelihood ratios for differ-
ent values of PTM co-occurrence scores. Panel C shows the
likelihood ratios for protein pairs localized to different sets
of cellular compartments.

non-independent features. Conversely, some likelihood
ratios would be underestimated for protein pairs achiev-
ing simultaneously low likelihoods for non-independent
features. Previous studies have demonstrated that some of
the features considered here are indeed independent [43].
Independence of all modules used in our predictor was
verified by calculating Pearson correlation coefficients for
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all pairs of modules. As shown in Table 2, all modules
considered are independent, since the highest Pearson
correlation coefficients computed are well below any
value considered significant.

Accuracy of the predictors

All combinations of modules were examined to deter-
mine which of the resulting predictors achieved the high-
est prediction accuracy. In order to analyze the
predictions, five-fold cross validation experiments were
performed and the area under partial ROC (receiver oper-
ator characteristic) curves (partial AUCs) measured.
ROC50 and ROC100 curves were selected as they consider
a large enough number of positives to include all protein
pairs predicted to have a posterior odds ratio above 1.0 by
all the predictors investigated. Protein pairs predicted to
have a posterior odds ratio below 1.0 have an estimated
true positive rate below 50% and thus are more likely not
to interact than to interact. These protein pairs are there-
fore not of interest in this context. The area under all
ROCn curves considered is relatively low because of the
high proportion of negatives with respect to positives in
the training and test sets (100:1).

Table 3 summarizes the characteristics of 19 different pre-
dictors and shows accuracy measures. Individual modules
do not achieve high scores for the areas under the ROC50
and ROC100. In fact, all ROC50 AUC values achieved by
individual modules are below 0.025 and the Expression
and Disorder modules do not predict any protein pairs
(positive or negative) above a posterior odds ratio of 1,
which is expected as the highest likelihood ratios they
achieve are lower than 400 (see Figure 1A). As more
Group A modules are considered within the same predic-
tor, the ROCn AUC scores increase significantly, as would
be expected since these features are independent (as
shown in Table 2) and thus contribute different informa-
tion to the prediction. For example, the predictor that con-
siders both the Expression and Combined modules
achieves a ROC50 AUC of 0.033 compared to 0.003 and
0.022 respectively for the individual modules. However,
the Disorder module does not contribute significantly to
the prediction as predictors that consider it do not, in gen-
eral, do better than their counterparts that do not use it.
For example, both the Expression-Orthology predictor

Table 2: Pairwise Pearson correlation for all modules

http://www.biomedcentral.com/1471-2105/8/239

and the Expression-Orthology-Disorder predictor achieve
a ROC50 AUC of 0.024. The Disorder module offers the
advantage of increasing the coverage of the prediction as a
disorder score is calculated for all protein pairs. However,
this appears to add more noise to the prediction without
increasing the accuracy.

As the scores of the predictors increase, so do the number
of interactions predicted above different posterior odds
ratio thresholds (see lower portion of Table 3). For exam-
ple, the Expression-Orthology predictor achieves a
ROC50 AUC of 0.024 and predicts 5670 interactions at a
posterior odds ratio greater than 1 whereas the Expres-
sion-Orthology-Combined predictor achieves a ROC50
AUC of 0.044 and predicts over 15000 interactions at a
posterior odds ratio above 1. The best combination of
Group A modules is the predictor consisting of the Expres-
sion, Orthology and Combined modules.

The Transitive module, which can only be used in combi-
nation with other modules, increases substantially the
scores and number of interactions predicted. The right-
hand portion of Table 3 shows the accuracy measures for
the highest scoring subset of predictors that consider the
Transitive module. The Transitive module enhances the
prediction by identifying among protein pairs with a rela-
tively high preliminary score those that are most likely to
interact, by considering the local topology of the network
around them. For example, the ROC50 AUC rises from
0.044 to 0.075 when the Transitive module is added to the
Expression-Orthology-Combined predictor, and the
number of predictions above a posterior odds ratio of 1
doubles from 15330 to 34780. Once again, the Disorder
module does not contribute positively to the prediction.
Its inclusion does not increase any of the measures of
accuracy considered. The predictor that considers the
Expression, Orthology, Combined and Transitive mod-
ules is the one that achieves the highest accuracy overall.
It is this predictor that is further analyzed in the next sec-
tions.

Comparison to predictions generated using alternative
training sets

In this work training sets were used that comprised 100
times more negatives than positives, with the negatives

Expression Orthology Combined Disorder Transitive
Expression - 0.00460 0.01299 0.00995 0.00562
Orthology - - 0.01000 0.00977 0.01555
Combined - - - 0.02086 0.02380
Disorder - - - - -0.01702
Transitive - - - - -
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randomly selected and filtered to remove any known or
suspected positives (see Methods). Other groups have
used negative:positive ratios ranging from 1 to more than
600 (see for example [37,47,52]). In addition, several
groups use localization-derived negatives (i.e. protein
pairs that are not annotated as being localized to the same
cellular compartment) rather than randomly chosen neg-
atives (see for example [37,43,46]). These issues have
been investigated previously [53].

Since the choice of negative training data may influence
the method, the choice of different training sets in the
context of the probabilistic predictor presented here was
investigated to determine which type of training set offers
the highest accuracy.

Table 4 compares the accuracy of predictors trained with
negative:positive ratios of 1:100 and 1:1 and tested by
five-fold cross validation. Ratios greater than 100 were not
considered because they are computationally infeasible
given the size of our datasets and the architecture of the
predictor. To perform such a comparison, the EOCT pre-
dictor (Expression, Orthology, Combined and Transitive
modules) was trained on datasets consisting of either
equal numbers of positives and negatives or 100 times
more negatives than positives and then tested on both
types of datasets. As shown in Table 4, the predictors
trained on datasets containing 100 times more negatives
than positives perform significantly better than those
trained on datasets containing equal numbers of positives
and negatives. For example, the 1:1 pos:neg trained pre-
dictor achieves a ROC50 AUC of 0.0645 whereas its 1:100
pos:neg trained counterpart achieves a 0.0747 ROC50
AUC. This could be due to the fact that the number of
non-interacting protein pairs outweighs greatly the
number of interacting protein pairs in cells. When equal
numbers of positives and negatives are used in training,
the diversity that exists in the non-interacting protein pair
space may not be captured, thus resulting in misleading
likelihood ratios for the predictive modules. It should be
noted that predictors tested on datasets consisting of
equal numbers of positives and negatives achieve much
higher accuracy measures than those tested on datasets
containing 100 times more negatives than positives. This
is because the number of positives scoring higher than the
highest scoring n negatives, for a given value of n and a
given predictor, will be greater if there are equal numbers
of positives and negatives in the test set than if there are
more negatives than positives.

The effect of localization-derived negatives rather than
randomly chosen negatives was also investigated to see if
it would increase the prediction accuracy. A criticism of
randomly chosen negatives is that they will contain some
true interactors. However, the set of interacting pairs in
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the full protein pair space is small and thus the contami-
nation rate of randomly chosen negative datasets will in
fact be very low. Contamination is probably below 1%,
which is likely lower than the contamination rate of the
positive dataset as discussed in [47]. Localization-derived
negatives, on the other hand, should be free of contami-
nation, if the localization annotations are complete and
accurate, both conditions that are difficult to obtain as
discussed in [54]. However, one can argue that localiza-
tion-derived negatives might not be able to capture the
full diversity of the non-interacting protein space since
many proteins in the same cellular compartment do not
interact. In addition, proteins specific to a cellular com-
partment may have different characteristics to proteins in
other compartments. Such predictors may not generalize
well when predicting on cell-wide protein pairs which
consist not only of non-colocalized non-interacting pairs
but also numerous protein pairs that do not interact but
are present in the same cellular compartment. These issues
have been discussed previously [52]. In order to see if dif-
ferent types of negatives could influence the accuracy of
the predictors developed here we generated negative train-
ing/test sets as in [46] by identifying all pairs of human
proteins for which one protein is annotated as being
nuclear and the other is annotated as being localized to
the plasma membrane in the HPRD database [15]. The
Combined module for these predictors only considers
domains and PTMs but not subcellular localization as this
would result in using this feature both in the selection of
the training set and as a feature predictive of interaction.
The localization-derived negative trained predictor tested
on sets containing localization-derived negatives achieves
a lower accuracy than that of the random negative trained
predictor tested on a test set containing randomly-gener-
ated negatives (0.0686 +/- 0.0010 vs 0.0747 +/- 0.0022).
This is most likely due to the fact that the localization-
derived negative trained predictor cannot take full advan-
tage of the Transitive module, since the network resulting
from the predictions of the Group A modules likely does
not sample the whole protein pair space well.

Our predictor trained with randomly generated negatives
and a negative:positive ratio of 100 performs the best out
of all the combinations of training sets investigated. It is
this predictor that is further analyzed in subsequent sec-
tions.

Contribution of the modules

The relative contribution of the modules to the prediction
of interaction was investigated in order to gain a better
understanding of the predictive power and areas of high-
est usefulness of the different modules. To do this, all pro-
tein pairs were considered that achieve an estimated
posterior odds ratio > 1 when the EOCT predictor was
trained on the full datasets without cross-validation. This
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Table 3: Prediction accuracy of different combinations of modules
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Modules included in prediction

Expression
Ortho
Combined
Disorder
Transitive
Coverage of the Informative Protein Set (%)
22 23 32 929 40 43 99 49 99 99 57 99 99 99 99 90 95 99 99
Measures of accuracy
ROC50 AUC 0.003 0018 0022 0 0024 0033 0003 0042 0021 0030 0044 0031 0024 0038 0042 0071 0.075 0069 0.072
ROCI100 0.003 0026 0032 0 0030 0045 0005 0.054 0027 0041 0058 0044 0029 0049 0058 0.09 0.094 0088 0.093
AUC
Estimation of number of interactions predicted
posterior 0 420 0 0 1050 630 0 2520 0 0 3780 630 0 2888 2520 14200 16590 13400 16800
odds ratio > 4
posterior 0 630 1050 0 2520 2100 0 3780 210 2100 7980 2100 1050 4200 5460 21340 24570 21200 24200
odds ratio > 2
posterior 0 840 4830 0 5670 7140 0 11760 1890 4200 15330 5460 3990 13125 13860 28500 34780 28600 33180
odds ratio > |

set consists of 37606 distinct predicted interactions and is
referred to as the LR400 dataset (all these interactions are
listed and ranked in Additional File 3). These protein pairs
represent the most probable interactors with respect to the
features considered, among all protein pairs examined by
the predictor.

To investigate the individual contribution of each mod-
ule, we looked at the number of interactions predicted out
of all LR400 pairs as a function of the minimum likeli-
hood ratio of each module. As shown in Figure 4A, all
modules contribute positively (i.e. contribute a likelihood
ratio greater than 1.0) to the prediction of a certain pro-
portion of the interactions in the LR400 dataset. The Tran-
sitive module and to an even greater extent, the
Combined module contribute positively to the prediction
of a very high proportion of the LR400 protein pairs (73%
and 91% of the LR400 interactions have likelihood ratios
greater than 1 for the Transitive and Combined modules
respectively). The Transitive module provides a likelihood
ratio of 91 for the prediction of over 70% of the LR400
interactions. The Combined module provides positive
evidence for the highest number of interactions of the
LR400 dataset. However, the value of the likelihood ratio
it contributes is below 20 for over 50% of protein pairs in
the LR400 dataset (which means that for these protein
pairs, the Combined module must be used in combina-
tion with other modules to achieve a total likelihood ratio
above 400). The Combined module does, however,
achieve likelihood ratios high enough to predict over two
thousand interactions of the LR400 dataset on its own,

less than 15% of which are present in the training set. The
Orthology module contributes to the prediction of only
8474 protein pairs in the LR400 dataset (23%). However,
a large majority (> 75%) of these 8474 predicted interac-
tions achieve likelihood ratios above 200 from this mod-
ule. In fact, almost 40% of these LR400 interactions
achieve a likelihood ratio above 400 from the Orthology
module. This indicates that most interactions predicted by
the Orthology module (alone or in combination with
other modules) are based on the highest scoring Orthol-
ogy bins (see Figure 1A) which are the most conserved
yeast interactions (whose bin achieves a likelihood ratio
of 237), as well as human paralogous interactions and
interactions found in more than one model organism
(both of which achieve a likelihood well above 400). Few
interactions in the LR400 dataset are predicted on the
basis of having interacting orthologs in worm or fly alone.
The Expression module provides positive evidence for a
little less than half the predictions in the LR400 dataset.
However, as previously noted, the highest likelihood pro-
vided by this module is 33 and thus the Expression mod-
ule cannot predict interaction on its own.

Figure 4B summarizes the contributions of different com-
binations of modules. The Combined and Transitive
modules contribute the most to the prediction of interac-
tions. They alone can predict approximately 27000 of the
37606 interactions of the LR400 dataset. When they are
both present, regardless of which other modules are also
present, they predict over 70% of the LR400 interactions.
When either of these two modules is absent, fewer than

Page 9 of 21

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:239

http://www.biomedcentral.com/1471-2105/8/239

Table 4: Influence of the negative:positive training set ratio on the prediction accuracy

Neg:pos testing ratio

ROC50 AUC (std)?

I:1 100:1 100:1

ROCI00 AUC (std)»  ROC50 AUC (std):  ROCI00 AUC (std)?

Neg:pos training ratio I:1 0.300 (0.008)
100:1 0.325 (0.004)

0.385 (0.006)
0.403 (0.003)

0.0645 (0.0019)
0.0747 (0.0022)

0.0814 (0.0009)
0.0944 (0.0028)

aThe ROCn AUC:s are an average of five separate experiments (each of which is itself a five-fold cross validation experiment). Their standard

deviation is shown in parenthesis.

12500 interactions are predicted. In contrast, the two
remaining modules (Expression and Orthology) can pre-
dict approximately 5000 interactions together. This is
interesting as many of the publicly available predicted
interaction datasets mentioned in the Background section
use mainly orthology transfer from model organisms to
identify interactions. As the majority of the LR400 interac-
tions are derived from the Combined and Transitive mod-
ules, it is possible that the method is identifying a large
subset of interactions that are not common to previous
human protein interaction datasets. This is discussed fur-
ther in the next section. The curve representing the full
predictor (consisting of the Expression, Orthology, Com-
bined and Transitive modules) is also represented in Fig-
ure 4B (the dark green squares). By definition, it predicts
all proteins in the LR400 dataset at likelihood ratios equal
to or above 400 (this is how the LR400 dataset was gener-
ated). The right side of the curve illustrates the number of
interactions that are predicted above likelihood ratios of
400 and more. As shown in Figure 4B, the full predictor
predicts approximately 20000 interactions at a total like-
lihood ratio of 1600 (which is equivalent to an estimated
posterior odds ratio of 4). At a likelihood ratio of 4000,
approximately 11000 interactions are predicted and at a
likelihood ratio of 8000, approximately 6500 interactions
are predicted. We verified that the increasing estimated
posterior odds ratios translated into better predictive
value. Figure 5 shows the true positive rate versus false
positive rate for different posterior odds ratios as meas-
ured by five-fold cross validation. As the posterior odds
ratio increases, the false positive rate decreases and the rel-
ative proportion of true positives increases when com-
pared to the proportion of false positives. Accordingly,
subsets of very high quality predictions may be generated
by choosing a suitably high posterior odds ratio thresh-
old.

Comparison to other interaction datasets

The false positive rate (FPR) of our predictor was esti-
mated by the method of D'Haeseleer and Church [18,55]
and used to compare it to other prediction datasets. The
Ramani interaction dataset that was automatically
extracted from the literature [16] as well as all new inter-

actions present in the October 2006 version of the manu-
ally curated HPRD database [15] (but none of the
interactions also present in earlier versions of the HPRD
which were used to train our predictor) were taken as ref-
erence datasets. The D'Haeseleer and Church method
compares two experimental datasets to a reference set and
assumes that all intersections between the three datasets
contain true positives. It is thus possible to estimate the
number of true positives predicted by an experimental
dataset by comparing the number of interactions present
in the different intersections of the two experimental
methods and the reference dataset (for details, see
[18,55]). Here, we compare three human interaction pre-
diction datasets: the Rhodes probabilistic dataset [46], the
Lehner orthology-derived dataset [36] and the most accu-
rate of our predictors (the LR400 subset of the predictor
considering the Expression, Orthology, Combined and
Transitive modules). We estimated false positive rates for
each of the datasets by comparing them two by two to one
of the reference datasets, thus generating 4 to 6 different
estimates of false positive rates for each computational
dataset, as shown in Figure 6A (the two Lehner datasets
were not compared to each other, which is why they have
fewer FPR estimates). The rates estimated for the Rhodes
and Lehner datasets are similar to previous estimates [18].
The estimated false positive rates for the LR400, Rhodes
and core Lehner are quite similar (an average of 76% FPR
for both the LR400 and core Lehner datasets and 78% for
the Rhodes dataset) and well below the overall average
false-positive rate of 90% estimated for most available
human high-throughput experimental and prediction
interaction datasets [18]. It should be noted that the
Rhodes, Lehner and Ramani datasets annotate interac-
tions as a relationship between human genes and not
their protein products directly. However, not all proteins
encoded by a single gene will necessarily interact with all
protein products encoded by a second gene, even if one
such protein pair does. This is why we describe interac-
tions as a relationship between two proteins, allowing for
a more precise description of the interaction. To compare
our predictions to these datasets, we consider that two
genes interact if at least one of their respective protein
products interact.
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Figure 4

Contribution of the modules. To examine the contribution of the different modules, we plotted the number of interactions
predicted among all LR400 interactions (all interactions predicted using the full predictor that obtain a likelihood ratio of inter-
action greater than 400) as a function of the minimum likelihood ratio of individual modules (in panel A) or of combinations of
modules (in panel B). In the case of combinations of modules (panel B), the minimum likelihood ratio is the product of the like-
lihood ratios of the modules considered. Thus for example, the product of the expression and orthology ratios is greater than
| for almost 20000 LR400 interactions and greater than 10 for approximately 10000 LR400 interactions (dark blue diamonds in
panel B). E: Expression module, O: Orthology module, C: Combined module, T: Transitive module.

Page 11 of 21

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:239

0.2

0.18

=0.125

post

0.16 S

0.14 *

012 =l e

0.1

TPR

$
0.08 {i
0.06 f g
0.04

0, = 100
0402f/ e

0 0.0002  0.0004  0.0006  0.0008 0.001
FPR

10

post

0.0012

Figure 5

True positive rate versus false positive rate for different esti-
mated posterior odds ratios. The true positive rate (TPR)
versus false positive rate (FPR) is plotted for different values
of the posterior odds ratio estimated for the dataset by five-
fold cross-validation. As the posterior odds ratio increases,
the false positive rate decreases and the ratio of the true
positive rate divided by the false positive ratio increases.
Thus, higher quality datasets can be generated by requiring
higher posterior odds ratios. The TPR is calculated as the
number of true positives predicted divided by the total
number of positives in the test set. The FPR is calculated as
the number of false positives predicted divided by the total
number of negatives in the test set.

In Figure 6B and 6C, we compare the number of distinct
proteins and distinct interactions of the LR400 dataset to
those of the Rhodes prediction dataset and the June 2006
version of the HPRD which was used to train our predic-
tor. The Rhodes dataset was trained using an earlier ver-
sion of the HPRD. As can be seen in Figure 6, the
intersections between the three datasets considered are
low, especially when comparing the interactions. Both the
Rhodes dataset and our LR400 dataset predict interactions
involving many proteins that are not even present in their
positive training set (the HPRD). Many of the predictions
in these two datasets concern protein pairs and proteins
that are not present in other datasets, suggesting that they
cover different regions of the human interaction space. As
suggested in [18], by making more such datasets available,
it will be possible to increase our coverage of the interac-
tion space and determine the most likely human interac-
tions.

Another human interaction dataset has recently become
available: the IntNetDB [56]. It was generated by integrat-
ing seven different features (four of which involve trans-
ferring interactions or characteristics of protein pairs from
model organisms to human) in a probabilistic frame-
work. Interactions were predicted above a TP/FP ratio
(number of true positives divided by the number of false
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positives in the test set) of 1. Using such a threshold, the
authors claim to predict 180 010 human interactions. We
do not compare our predictions to this dataset because
such a threshold of TP/FP > 1 does not correspond to a
posterior odds threshold > 1. Depending on the positive-
to-negative ratio used in the datasets, TP/FP > 1 might cor-
respond to an average posterior odds ratio of 1. In con-
trast, the average posterior odds ratio of our LR400 dataset
is above 700. In comparison, by using a threshold of TP/
FP > 1 in our test set, we predict over 1 000 000 human
interactions. We do not believe that the quality of this
large number of predictions is high enough to warrant
their publication since the great majority of these protein
pairs achieve a posterior odds ratio below 1.

Independent validation

Although the overlap between the LR400 dataset and the
HPRD-derived positive training set is below 10% as
shown in Figure 6C, the proportion of interactions com-
mon to these two sets is not equally distributed for all pos-
terior odds ratios of interaction values. As shown in Figure
7, while less than 3% of the protein pairs predicted to
interact at posterior odds ratios between 1 and 2 overlap
with the HPRD dataset used for training, this value
increases to over 50% for the highest scoring subsets of
the LR400 dataset. These highest scoring predictions
receive high likelihood ratios of interaction from all four
predictive modules and represent the strongest examples
of interaction as evaluated by our predictor. Such exam-
ples include interactions that allow the formation of well-
known protein complexes such as the proteasome, the
MCM protein complex involved in the initiation of
genome replication, replication factor C, the TBP/TAF
complex (TBP-associated factors) and the EIF complex
(eukaryotic translation initiation factors). The highest
scoring predictions in the LR400 dataset thus mainly rep-
resent interactions present in the HPRD dataset as well as
interactions between proteins that have strong sequence
identity to these known interacting pairs. However, as the
posterior odds ratio decreases, the overlap between the
predictions and the HPRD-derived training set decreases.
Some subsets of quite high posterior odds have much
smaller overlaps with the training set. For example, inter-
actions predicted at posterior odds ratios between 128
and 2048 have a 20 to 30% overlap with the training set
as shown in Figure 7. Although many of these novel pre-
dictions have not been previously investigated in the liter-
ature, there exists experimental evidence supporting a
subset of these predictions which is not present in the
June 2006 version of the HPRD used to train our predic-
tor, thus providing independent validation of our
method. Five such validated predictions are reported here:

-TCPTP was predicted to interact with STAT6 at a posterior
odds ratio of 4300. It has been recently reported that
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Comparison to other interaction datasets. The false positive rates shown in panel A were estimated for the LR400 dataset as
well as the Rhodes [46] and Lehner [36] predictions using the method described in [18, 55] by comparing them two-by-two to
a reference dataset. The number and overlap of distinct proteins (shown in B) and distinct interactions (shown in C) are shown
for the LR400 dataset, the Rhodes prediction dataset and the June 2006 version of the HPRD.

TCPTP, the only protein tyrosine phosphatase known to
localize to the nucleus, dephosphorylates STAT6 in this
cellular compartment, which may in turn lead to the sup-
pression of Interleukine-4 (IL-4) induced signaling [57].

-N-WASP and ARP3 achieve a predicted posterior odds
ratio of interaction of 2700. A recent report suggested that
the IQGAP1 protein can activate N-WASP thus changing
its conformation and allowing it to bind the ARP2/3 com-
plex, which in turn directs the generation of branched
actin filaments required for the extension of a lamellipo-
dium [58].

-The VAMP3-VTI1A interaction was predicted with a pos-
terior odds ratio of 1518. Both these proteins are believed

to be part of the SNARE (soluble N-ethylmaleimide-sensi-
tive factor attachment protein receptor) family of proteins
which are involved in membrane fusion events. VIT1A is
a trans-Golgi-network-localized putative t-SNARE [59]
and VAMP3 is an early/recycling endosomal v-SNARE
[60]. These two proteins were recently shown to interact,
leading to their functional implication in the post-Golgi
retrograde transport step [61].

-CDK2 and MCM4 were predicted to interact at a posterior
odds ratio of 62. CDK2 has recently been shown to phos-
phorylate MCM4, a subunit of a putative replicative heli-
case essential for DNA replication, on two distinct
residues, leading to a change in its affinity to chromatin
and its enrichment in the nucleolus [62].
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Overlap of different subsets of the LR400 dataset with the HPRD-derived training set. The number of interactions predicted
and the proportion of overlap with the training set (which was derived from the HPRD) were calculated for subsets of the

LR400 dataset of different posterior odds ratios.

-Sam68 and Smad2 achieve a predicted posterior odds
ratio of 32. This interaction has been experimentally dem-
onstrated by large-scale yeast-two-hybrid analysis of the
Smad signaling system [63].

Our probabilistic predictor therefore not only reproduces
and completes well-known protein complexes but also
identifies novel interactions, a subset of which have been
independently validated.

Conclusion

The current human protein interaction map is estimated
to be only 10% complete [18]. Here, we investigated the
prediction of human protein-protein interactions in an
effort to increase the coverage of the human interactome
while simultaneously providing high quality predictions.
By considering several different types of orthogonal and
quite distinct features including expression, orthology,
combined protein characteristics and local network topol-
ogy, we predicted over 37000 human protein interactions
and explored a subspace of the human interactome that
has not been investigated by previous large interaction
datasets. Our investigation led us to compare the influ-
ence of different training sets on the prediction accuracy.
The use of randomly generated negative training examples

and large negative-to-positive ratios in the training set
generated the most accurate predictors in the context of
our model. A comparison to other large human interac-
tion datasets revealed the average false positive rate of our
dataset to be 76%, which is much lower than the overall
average for most large scale, currently available, human
interaction datasets (experimental and computational)
estimated to be 90% [18]. A subset of our novel predic-
tions have been independently validated by identifying
recent reports that experimentally investigated and con-
firmed that these protein pairs do interact. We provide all
our predictions ranked according to the posterior odds
ratio of interaction in Additional File 3. It is thus possible
to restrict the dataset to the highest scoring protein pairs
(and only choose for example, protein pairs that have an
estimated true positive rate of interaction above 90%). By
making this human interaction prediction dataset pub-
licly available, it is our hope that it will help to identify the
most high-confidence interactions, leading to a more
complete and accurate human interaction map.

Methods

Datasets

In order to investigate the likelihood of interaction of
human proteins, 62322 human protein sequences were
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downloaded from the International Protein Index (IPI)
database (version 3.16) [64]. Some of these proteins are
alternative transcripts of the same gene but can have dis-
tinct interaction partners. Known interactions were down-
loaded from the Human Protein Reference Database
(HPRD; June 2006 version) [15]. Duplicate interactions
and self-interactions were not considered. Additionally,
some proteins were not recovered in the conversion
between different identifiers. This resulted in 26896 dis-
tinct human protein interactions involving 7531 distinct
human proteins present in the initial IPI dataset. The
26896 interactions from the June 2006 version of the
HPRD were used as the positive dataset in the training/
testing of the predictor. Two different sets of non-interact-
ing protein pairs were investigated: the main analysis
employed a randomly-generated negative dataset but this
was also compared to a localization-derived negative
dataset. Both non-interacting protein datasets were
cleaned by removing all protein pairs that came from the
positive dataset as well as protein pairs that were anno-
tated as interacting in other databases (DIP [65]: 679
interactions, BIND [66]: 2650 interactions), or predicted
to interact in other studies (OPHID [67]: 21815 interac-
tions).

Of the 62322 human proteins from the initial IPI dataset,
22889 were characterized by at least one of the features
that we considered to predict interaction (see the Features
section). These 22889 human proteins are encoded by
16904 distinct genes and are referred to as the Informative
Protein Set. The randomly-generated negative dataset
used for the training and testing of the predictor was cre-
ated by selecting protein pairs at random from the Inform-
ative Protein Set. In contrast, the localization-derived
negative dataset was created by selecting protein pairs
from the Informative Protein Set for which the HPRD [15]
annotates one as being primarily in the plasma mem-
brane and the other as primarily in the nucleus. Training
and testing was performed with 5-fold cross-validation. In
addition, positive to negative ratios of 1:1 and 1:100 were
considered.

The predictions were compared to the literature-mined
Ramani dataset [16], the orthology-derived Lehner predic-
tion dataset [36] and the probabilistic Rhodes prediction
dataset [46]. All three datasets identify the interactions by
stating the names and/or gene locus IDs of the genes that
encode the interacting proteins. In contrast, we work
directly on the protein sequences and so related the gene
annotations to our protein identifiers by extracting Entrez
Gene IDs corresponding to the IPI protein entries from
the IPI cross-reference files (for the IPI release 3.24) [64].
Ensembl gene identifiers (Ensembl 42) were also matched
to Entrez Locus IDs (NCBI36) using BioMart [68].

http://www.biomedcentral.com/1471-2105/8/239

Some gene-gene entries were not recovered in the conver-
sion between different identifiers, or due to the deletion
or replacement of some Entrez Locus IDs. Despite this,
37714 gene-gene interactions were recovered from the
Rhodes dataset and 6132 interactions from the Ramani
dataset as well as 64306 and 10454 interactions from the
Lehner full and core datasets respectively.

Learning method

Semi-naive Bayes classifiers were used to measure the like-
lihood of interaction of two proteins given the presence of
the features considered. This learning method was chosen
because it allows the integration of highly heterogeneous
data in a model that is easy to interpret and that can read-
ily accommodate missing data. The transparency of the
method allows the straightforward determination of
which features are most predictive of interaction at the
level of the whole proteome as well as for individual pro-
tein pairs.

The prediction of protein interaction is a binary problem
which can be expressed in Bayesian formalism. We are
interested in determining the posterior odds ratio of inter-
action of two proteins, given the presence of the features
we are considering. This posterior odds ratio can be re-
written using Bayes rule:

(I|flf Ifn)

PO D (v fy ,fn)

P(fy,..., fa [ 1)*P(1)
P(fy,.., fn)

P(fyyw f [~ 1) # P(~1)
P(fymsfn)

P(fy fn [1)*P(T)

P(fy, oy [ 1) *P(~T)

_ P(1) | P(fy £ [T)

P(~1) P(fy,.., fy|~I)
= Oprior * LR(fy,... 1)

(@)

where I is a binary variable representing interaction, ~I
represents non-interaction, f; through f, are the features
we are considering, O, is the prior odds ratio and LR is
the likelihood ratio.

prior

If the features considered are independent, the likelihood
ratio LR can be calculated as the product of the individual
likelihood ratios with respect to the features considered
separately. If the features are not independent, all possible
combinations of all states of these features must be con-
sidered, which can be computationally quite intensive. In
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the independent case, the likelihood ratio can be calcu-
lated as:

LR(fy,...,f,) = e
L T )

‘H{ HerD )]

The likelihood ratios for the different features considered
can be estimated by evaluating the ratio of the proportion
of interacting and non-interacting proteins for which a
particular state of the feature is true in the training set (i.e.
by determining to which bin of the feature the protein
pair belongs, for every protein pair in the positive and
negative training sets). More precisely, the training step
consisted of calculating the respective proportions of pos-
itive and negative examples that fall into each bin of the
feature(s) considered (i.e. that have a particular state). The
likelihood ratio of interaction for a given state is simply
the ratio of the proportion of all positives that have that
state divided by the proportion of all negatives that have
that same state. When a particular state of a feature occurs
only in positive examples (known interacting proteins),
the likelihoods are set to the highest non-infinite value of
any state for that feature (to avoid infinite values). Addi-
tionally, when no data are available for a specific feature
(for a given pair of proteins), the likelihood of the feature
is set to 1.0. For a detailed calculation of the likelihoods
see Additional File 4.

Prior odds ratio estimate

The prior odds ratio (O,,) is difficult to estimate because
we do not know all the true interactions, even for a small
subset of proteins. The prior odds ratio of interaction for
yeast was estimated by combining all protein-protein
interactions (but only those related to direct physical
interactions, and no entries derived by synthetic lethal-
type experiments) from the BIND, DIP and GRID data-
bases [65,66,69]. This subset of interactions contains
36466 distinct interactions involving 5202 distinct pro-
teins, thus resulting in a prior odds ratio of 1/370. This is
most likely a conservative estimate since a certain propor-
tion of interactions remain unknown and so when more
data become available, the prior odds ratio will increase.
For human proteins, 12191 distinct interactions were
recovered, involving 5164 human proteins from the Sep-
tember 2005 version of the HPRD [15] and 26896 distinct
interactions involving 7531 human proteins from the
June 2006 version, leading respectively to prior odds esti-
mates of 1/1093 and 1/1053. However, taking the subset
of 5164 proteins from the September 2005 version that
are seen in the June 2006 version (20842 distinct interac-
tions), gave a prior odds of interaction estimate of 1/639.
Thus, between the two releases of the HPRD, there was a
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large increase in the number of interactions for this subset
of proteins and this is likely to continue for at least the
next few releases. Accordingly, it is reasonable to conclude
that there are not enough known human interactions to
calculate a realistic and stable estimate of the prior odds
ratio of interactions for human. As a consequence, a prior
odds ratio of 1/400 was used for all work in the paper,
which is similar to the estimate for yeast and is likely still
an underestimate of the true value.

Features

Seven distinct features combined into five modules were
investigated as summarized in Table 1 and described
below.

I. Expression module

Expression data were downloaded from the Gene Expres-
sion Omnibus [70]. The GDS596 dataset was used which
examines gene expression profiles from 79 physiologi-
cally normal tissues obtained from various sources [71].
Expression data were recovered for 10642 distinct tran-
scripts in 158 different arrays (2 arrays per tissue). Pearson
correlations were calculated for all 56620761 transcript
pairs and correlation values were grouped into 20 bins of
increasing co-expression.

2. Orthology module

Orthology maps between human and yeast, worm and fly
were downloaded from the InParanoid database [72].
Interaction datasets for model organisms were down-
loaded from the BIND [66], DIP [65] and GRID [69] data-
bases. Orthology interaction data were classified into 13
bins. High, medium and low confidence bins were
defined for human protein pairs that have interacting
orthologs in either yeast, fly or worm (for a total of 9
bins). The high confidence bins were populated by
human protein pairs that have interacting orthologs that
both achieve an InParanoid score of 1 (i.e. both proteins
involved in an interaction in another organism are respec-
tively the best orthology match for the two human pro-
teins under consideration). The medium confidence bins
were populated by human protein pairs that have interact-
ing orthologs but only one of the interacting orthologs
has an InParanoid score of 1. The low confidence bins
were filled by human protein pairs that have interacting
orthologs according to InParanoid but neither achieves a
score of 1 (i.e. neither is the best match for the two human
proteins under consideration). The orthology module has
four additional bins: two bin for human pairs that have
interacting paralogs in human (a medium and a low con-
fidence bin which use the same definition as above for the
model organisms), one bin for human pairs that have
interacting homologs in more than one organism (these
can be orthologs in yeast, worm or fly, or paralogs in
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human) and one bin for human pairs that have only non-
interacting orthologs.

3. Combined module

This module incorporates three distinct features in a non-
naive Bayesian framework: subcellular localization,
domain co-occurrence and post-translational modifica-
tion co-occurrence.

Subcellular localization

PSLT (Protein Subcellular Localization Tool) subcellular
localization predictions [54] were used to classify protein
pairs in one of four groups: pairs of proteins predicted to
be in the same compartment, pairs of proteins predicted
to be in neighboring compartments (cytosol-nucleus,
endoplasmic reticulum-Golgi, Golgi-cytosol, cytosol-
plasma membrane, and plasma membrane-secreted),
pairs of proteins predicted in different non-neighboring
compartments and pairs of proteins for which there were
no localization predictions. Neighboring compartments
were chosen as compartment pairs sharing a high propor-
tion of proteins, as investigated previously [54].

Co-occurrence of domains

The chi-square test was used as a measure of the likeli-
hood of co-occurrence of specific InterPro domains and
motifs [73] in protein pairs. Chi-square scores were calcu-
lated for all pairs of domains/motifs that occurred in the
training data and were then grouped into 5 bins of
increasing value. Additionally, Pfam [74] domain pairs
known to interact from three-dimensional structures [75]
were included in the highest Chi-square score bin. When
protein pairs contained more than one domain pair, the
domain pair assigned to the highest Chi-square score bin
was used to assign a likelihood of interaction.

Post-translational modification (PTM) pair co-occurrence
Likelihoods were assessed using a PTM pair enrichment
score calculated as the probability of co-occurrence of two
specific PTMs in all pairs of interacting protein pairs
divided by the probability of occurrence of both of these
PTMs separately:

P(PTM[i],PTM[j]|T)

PTM_score = P(PTM[i]II)*P(PTM[j“I)

where PTM[i] and PTM|j] are distinct PTMs and I is the set
of all interacting proteins that were used to train the pre-
dictor. The annotations of PTMs in human proteins were
downloaded from UniProt [76] and HPRD [15]. PTM
instances described as "predicted", "probable" or "possi-
ble" were excluded, leaving 3439 distinct proteins with
PTM annotations in the training set. The PTM pair enrich-
ment scores were grouped into 4 bins of increasing value.
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The localization, co-occurrence of domains, and PTMs
were considered simultaneously to measure their predic-
tive power in assessing the likelihood of protein interac-
tion. To do this, all possible combinations of the 4
localization bins, 5 chi-square domain-co-occurrence bins
and 4 PTM_score bins were investigated and are referred
to as the combined module.

4. Disorder module

It has been suggested that unstructured regions of proteins
are often involved in binding interactions, particularly in
the case of transient interactions [77]. Protein intrinsic
disorder was predicted for all proteins considered by using
the VSL2B predictor [78]. The disorder score for protein
pairs was then calculated as the sum of percent disorder
for each protein of the pair. Disorder scores were grouped
into 6 bins of increasing value.

The Expression, Orthology, Combined and Disorder
modules are referred collectively as the Group A modules.
Likelihood ratios for each of the Group A modules are
illustrated in Figure 1A (see Additional File 4 for complete
likelihood ratios for every possible state of these modules
and for detailed calculations of these likelihood ratios).

5. Transitive module

The transitive module works on the premise that a pair of
proteins is more likely to interact if it shares interacting
partners. It does this by considering the local topology of
the network predicted by the integration of the Group A
modules as depicted in Figure 2. Thus, the transitive mod-
ule takes as input the product of the likelihood ratios of
all other modules considered by the predictor (as illus-
trated in Figure 1B). For each pair of proteins in the train-
ing set, the product of the likelihood ratios from all other
modules (referred to as the preliminary score (PS) in Fig-
ure 1) was calculated for all protein pairs neighboring the
pair (i.e. all protein pairs which involve one protein from
the initial protein pair under study and for which it is pos-
sible to calculate such a score). All preliminary scores
above 10 were kept. This parameter was determined
empirically. A neighborhood topology score T was then
calculated as follows:

Zse

ecE.

T:
1+|Ei\Ec|+|Ej\Ec|

where E_is the set of edges that connect proteins i and j to
their common interactors, E; is the set of edges that
involve protein i, s, is the score (likelihood ratio) of edge
e and E,\E_ refers to the set difference of E; and E.. For a
given set of neighbors, T increases as the interactions with
these neighbors become more likely (as the sum of s,
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increases). Additionally, the topology score T of a pair of
proteins increases as the proportion of likely interactors
that these two proteins share increases. The topology
scores were grouped into 5 bins of increasing value. It
should be noted that the neighborhood topology score
calculated for a given protein pair does not consider the
preliminary score assigned to that protein pair. It only
considers the preliminary scores of its neighbors and so is
truly based on the local network topology around that
protein pair. Accordingly, the likelihood ratio the transi-
tive module outputs for a given protein pair is independ-
ent of the likelihood ratio calculated by the Group A
modules for this same protein pair.

Correlation analysis

The Pearson correlation between pairs of modules was
estimated by taking 150 samples of 10000 protein pairs
each and calculating the Pearson correlation of the likeli-
hood ratios for the two modules considered, for each sam-
ple. The reported correlation values are the average of the
150 experiments. Samples of the protein pair space were
taken instead of considering the whole space as this was
more computationally tractable.

Accuracy measurements

The accuracy of the predictors was measured by perform-
ing five-fold cross validation experiments in which the
datasets were randomly divided into five non-overlapping
sets, four of which were used to train the predictor while
the fifth was used to test the prediction accuracy. The accu-
racy reported is the average measured for all combinations
of training and testing sets using these five sets. Testing
was done by predicting the total likelihood scores for all
protein pairs in the test set using the models computed in
the training phase and then counting the number of pairs
that were well predicted. We used the area under partial
ROC curves as a measure of accuracy. Receiver operator
characteristic (ROC) curves plot the true positive rate ver-
sus the false positive rate over their full range of possible
values. In some circumstances, it is more informative to
use partial ROC curves (ROCn curves) which illustrate the
number of true positives identified by the predictor that
score higher than the n highest scoring negatives, plotted
for all values from 0 to n. There are many more negatives
than positives in our datasets and this is also thought to
be true for the full protein interaction networks we are
modeling. Since the aim is to identify the largest number
of true interacting pairs while leaving out as many non-
interacting pairs as possible, it is most informative to
measure the performance of the predictor under condi-
tions of very low false-positive rates. Accordingly, ROC50
and ROC100 curves were analyzed because given the size
of the datasets, these curves consider all the protein pairs
predicted to have a posterior odds ratio above 1.0, for all
the predictors investigated. The area under ROC curves is
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often used as a summary measure of accuracy. For ROCn
curves, it can be calculated as

1 n
AUCgocn = —*(QT})
nT 55
where i takes on values from 1 to n, T is the total number
of positives in the test set and T, is the number of positives
that score higher than the ith highest scoring negative.
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