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Abstract
Background: Although testing for simultaneous divergence (vicariance) across different
population-pairs that span the same barrier to gene flow is of central importance to evolutionary
biology, researchers often equate the gene tree and population/species tree thereby ignoring
stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other
available phylogeographic software packages, msBayes is the only one that analyses data from
multiple species/population pairs under a hierarchical model.

Results: msBayes employs approximate Bayesian computation (ABC) under a hierarchical
coalescent model to test for simultaneous divergence (TSD) in multiple co-distributed population-
pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the
degree of variability in divergence times across co-distributed population pairs while allowing for
variation in various within population-pair demographic parameters (sub-parameters) that can
affect the coalescent. msBayes is a software package consisting of several C and R programs that
are run with a Perl "front-end".

Conclusion: The method reasonably distinguishes simultaneous isolation from temporal
incongruence in the divergence of co-distributed population pairs, even with sparse sampling of
individuals. Because the estimate step is decoupled from the simulation step, one can rapidly
evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given
the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we
envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research
questions that use population genetic data from multiple co-distributed species. The msBayes
pipeline is available for download at http://msbayes.sourceforge.net/ under an open source license
(GNU Public License). The msBayes pipeline is comprised of several C and R programs that are run
with a Perl "front-end" and runs on Linux, Mac OS-X, and most POSIX systems. Although the
current implementation is for a single locus per species-pair, future implementations will allow
analysis of multi-loci data per species pair.
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Background
Testing for simultaneous divergence (vicariance) across
different population-pairs that span the same historical
barrier to gene flow is of central importance to evolution-
ary biology, biogeography and community ecology [1-4].
Such inferences inform processes underlying speciation,
community composition, range delineation, and the eco-
logical consequences of climatic changes. Estimating a
population divergence time with an appropriate statistical
model [5] can be accomplished in a variety of ways [6-8],
yet analyzing comparative phylogeographic data with
multiple co-occurring species pairs that vary with respect
to demographic parameters and pairwise coalescent times
is less straightforward.

Instead of conducting an independent analysis on every
population-pair and testing the hypothesis of temporal
concordance based on this set of independent parameter
estimates of divergence time, the hierarchical model
employed by msBayes follows the suggestion of [9] by
concurrently estimating three hyper-parameters that char-
acterize the mean, variability and number of different
divergence events across a set of population-pairs. The
model employed in msBayes allows estimation of these
hyper-parameters across a multi-species data set while
explicitly incorporating uncertainty and variation in the
sub-parameters that independently describe each popula-
tion-pair's demographic history (divergence time, current,
ancestral and founding effective population sizes), post-
divergence migration rate and recombination rate. The
msBayes software pipeline is based on the introduction of
the approximate Bayesian computation (ABC) method
for sampling from the hyper-posterior distribution for
testing for simultaneous divergence [10]. We review the
important features here. Although the current implemen-
tation is for a single locus per species-pair, future imple-
mentations will allow analysis of multi-loci data per
species/population pair.

In contrast to previous ABC-like models [11-15], our TSD
is accomplished by implementing a hierarchical Bayesian
model in which the sub-parameters (Φ; within popula-
tion-pair parameters) are conditional on "hyper-parame-
ters" (ϕ) that describe the variability of Φ among the Y
population-pairs. For example, divergence times (Φ) can
vary across a set of population pairs conditional on the set
of hyper-parameters (ϕ) that varies according to their
hyper-prior distribution. Instead of explicitly calculating
the likelihood expression P(Data | ϕ,Φ) to get a posterior
distribution, we sample from the posterior distribution
P((ϕ,Φ) | Data) by simulating the data K times under the
coalescent model using candidate parameters drawn from
the prior distribution P(ϕ,Φ). A summary statistic vector
D for each simulated dataset is then compared to the
observed summary statistic vector in order to generate

random observations from the joint posterior distribution
f(ϕi,Φi|Di) by way of a rejection/acceptance algorithm
[16] followed by an optional weighted local regression
step [15]. Loosely speaking, hyper-parameter values are
accepted and used to construct the posterior distribution
with probabilities proportional to the similarity between
the summary statistic vector from the observed data and
the summary statistic vector calculated from simulated
data.

The hierarchical model consists of ancestral populations
that split at divergence times TY = {τ1...τY} in the past. The
hyper-parameter set, ϕ quantifies the degree of variability
in these Y divergence times across the Y ancestral popula-
tions and their Y descendent population pairs: (1) Ψ, the
number of possible divergence times (1 ≤ Ψ ≤ Y); (2) E(τ),
the mean divergence time; and (3) Ω, the ratio of variance
to the mean in these Y divergence times, Var(τ)/E(τ). The
sub-parameters for the i-th population-pair (Φi) are
allowed to vary independently across Y population pairs
and include divergence time (τi), current population sizes,
ancestral population sizes, post-divergence founding pop-
ulation sizes, durations of post-divergence population
growth, recombination rates, and post-divergence migra-
tion rates. The multiple population-pair splitting model is
depicted in Figure 1. Each divergence time parameter τ is
scaled by 2NAVE generations, where NAVE is the parametric
expectation of N (effective population size) across Y pop-
ulation pairs given the prior distribution.

The summary statistic vector D employed in msBayes cur-
rently consists of up to six summary statistics collected
from each of the Y population pairs (π,θW, Var(π - θW),
πnet, πb, and πw). This includes π, the average number of
pairwise differences among all sequences within each
population pair, θW the number of segregating sites within
each population pair normalized for sample size, [17],
Var(π - θW) in each population pair, and πnet, Nei and Li's
net nucleotide divergence between each pair of popula-
tions [18]. This last summary statistic is the difference (πb
- πw) where πb is the average pairwise differences between
each population pair and πw is the average pairwise differ-
ences within a sister pair of descendent populations. The
default setting includes the first four aforementioned
summary statistics because they were found to be a least
correlated subset of a larger group [19], however, future
versions of msBayes will allow users to choose other sum-
mary statistics.

An extensive simulation study was conducted in [10] to
evaluate the performance of our hierarchical ABC model.
Because comparative phylogeographic studies are often
conducted on multi-species data sets that include rare taxa
from which it is difficult to obtain samples from many
individuals, we extend the previous evaluation to explore
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the effectiveness of msBayes in conducting a TSD given
small sample sizes (≤ 5 individuals per population pair).

Implementation
After preparation of a sample size file and the input files
from DNA sequence data, running msBayes is a three step
process that includes: (A) calculating the observed sum-
mary statistic vector from the DNA sequence input files
and the sample size file; (B) running coalescent simula-
tions of the DNA sequence data using parameters drawn
from the hyper-prior (ϕ) and prior (Φ); and (C) sampling
from the posterior distribution and obtaining posterior

estimates of Ψ, E(τ), and Ω across the Y population pairs
(Figure 2).

Step A is accomplished by a command-line Perl program
(obsSumStats.pl) which uses two C programs to calculate
the observed summary statistic vector file. Specifically, the
user runs obsSumStats.pl after collecting separate aligned
DNA sequence files from each population-pair in FASTA
format, and constructing an additional text file that
describes the samples sizes, length of genes and transi-
tion/transversion rate ratios.

Step B iteratively simulates data sets under the hierarchi-
cal model by: 1.) randomly drawing hyper-parameters
and sub-parameters from the hyper-prior and sub-prior
distributions; 2.) using these hyper-parameters and sub-
parameters to simulate finite sites DNA sequence data
from Y population-pairs; and 3.) calculating a summary
statistic vector D from the simulated data set of Y popula-
tion-pairs. This is accomplished with several C programs
that are run with a Perl "front-end" (msbayes.pl) that
either prompts the user for the upper-bounds of various
priors and the number of iterations to simulate or alterna-
tively uses a batch configuration file with equivalent infor-
mation. The first C program draws hyper-parameters and
sub-parameters from their hyper-prior and sub-prior dis-
tributions. These parameters are then fed into several C
programs that simulate finite-sites DNA sequence data
using msarbpopQH a modified version of Hudson's clas-
sic coalescent simulator ms [20], which incorporates finite
sites mutation and arbitrary population structure and
dynamics. Another set of C programs calculates a sum-
mary statistic vector (D) for every simulated data set of Y
population pairs.

Flowchart describing operation of msBayesFigure 2
Flowchart describing operation of msBayes.
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Depiction of the multiple population-pair divergence model used for the ABC estimates of Ψ, E(τ), and ΩFigure 1
Depiction of the multiple population-pair divergence 
model used for the ABC estimates of Ψ, E(τ), and Ω. 
(A): The white lines depict a gene tree with TMRCA being 
the time to the gene sample's most recent common ances-
tor, and the black tree containing the gene tree is the popula-
tion/species tree. (B): Parameters in the multiple population-
pair divergence model. The population mutation parameter, 
θ, is 2Nµ where 2N is the summed haploid effective female 
population size of each pair of daughter populations (µ is the 
per gene per generation mutation rate). The time since isola-
tion of each population pair is denoted by τ (in units of 2NAVE 
generations, where NAVE is the parametric expectation of N 
across Y population pairs given the prior distribution). Popu-
lation mutation parameters for daughter populations a and b 
are θa and θb, whereas θ 'a and θ'b are the population muta-
tion parameters for the sizes of daughter populations a and b 
at the time of divergence until τ' (length of bottleneck). The 
daughter populations θ 'a and θ'b then grow exponentially to 
sizes θa and θb. The population mutation parameter for each 
ancestral population is depicted as θA. The migration rate 
between each pair of daughter populations is depicted as M 
(number of effective migrants per generation). (C): Example 
of four population-pairs where parameters in (B) are drawn 
from uniform priors.
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Step C is accomplished by our command-line user-inter-
face program (acceptRej.pl). This Perl program internally
uses R for the calculation. The algorithim is a simple
extension of the original R scripts which are kindly pro-
vided by M. Beaumont [15]. This step does the rejection/
acceptance sampling and local regression to produce the
approximate sample of the posterior distribution. This
third step uses the output of step B as the input and pro-
duces an output file that contains multiple graphical
depictions of the posterior distributions and a text output
file with various summaries of the posterior distributions
(estimates of Ψ, E(τ), and Ω across the Y population
pairs). The user can choose which summary statistics to
include within D (the summary statistic vector), choose
the proportion of accepted draws from the prior, and can
optionally choose to perform simple rejection sampling
without the additional local regression step.

We distribute msBayes as C source code and pre-compiled
binaries that run on Linux or Mac OS X operating systems.
The msBayes package also includes the R functions, and
Perl scripts, as well as installation/running instructions.

Results and Discussion
Performance of estimator with small sample sizes
At the present time, there are no other available coales-
cent-based tools for analyzing multiple population pairs
simultaneously to yield hyper-parameter estimates.
Although IM and IMa are most similar to msBayes [8,21]
because they estimate divergence times and population
sizes from single pairs of populations under a coalescent
model, these do not employ a hierarchical model and
therefore can only do so one pair at a time. The program
MCMCcoal can estimate divergence times of a known
phylogeny under a coalescent model, but can only use the
separate divergence time estimates to test for phylogeo-
graphic congruence [7]. The program BEST [6] infers a
species phylogeny and demographic parameters (e.g.
divergence times and population sizes) using a popula-
tion coalescent model, but likewise can only use the indi-
vidual divergence time estimates to test for
phylogeographic congruence across a multi-species data-
set. On the other hand, the hierarchical model employed
in msBayes not only can estimate hyper-parameters but
also comes with the benefit of additional information
gained from the "borrowing strength" across datasets [22-
24]. In this case, the resulting emergent multi-species
hyper-estimates use more of the information than the
sum of their parts (within species-pair estimates).

Although the hierarchical ABC model employed in
msBayes was extensively evaluated in [10], the behavior of
the ABC estimator given minimal sampling of individuals
was not examined. Because comparative phylogeographic
studies are often conducted on multi-species data sets that

include rare taxa from which it is difficult to obtain sam-
ples from many individuals, we evaluate how low sample
sizes can affect inference. To this end, we explored the per-
formance in scenarios where ≤ 5 per population pair were
sampled from each of 10 population pairs. We created
1,000 simulated data sets under each of two different his-
tories: (1) simultaneous divergence history and (2) varia-
ble divergence history among population pairs. In the
simultaneous divergence history (true Ω = Var(τ)/E(τ) =
0), all ten population pairs arose from ancestral popula-
tions at τ = 1.8 before the present. In the variable diver-
gence history (true Ω = 0.1), two population pairs arose at
τ = 1.0 and eight population pairs arose at τ = 2.0 before
the present. We simulated these two histories with small
sample sizes (2–5 individual per population-pair) and
with larger sample sizes (20 individuals per population
pair; 10 per descendent population). The simulated data
sets consisted of haploid mtDNA samples from ten popu-
lation pairs that were 550–600 base pairs in length. From
each of the four sets of 1,000 simulated data sets, we used
msBayes to obtain 1,000 ABC estimates of the hyper-
parameter, Ω, with the goal of assessing the effects of sam-
ple sizes on the root mean square error (RMSE) of the ABC
Ω estimator. Each estimate of Ω was obtained from the
mode of 1,000 accepted draws (after the local regression
step) from 500,000 random draws from the hyper-prior,
as these conditions were found to be optimal in [10]. For
the larger sample sizes we use four classes of summary sta-
tistics (π, θW, Var(π - θW) and πnet), while for the smaller
sample sizes we only use πb to avoid null or n.a.n. values
(not a number) that are yielded when only one sample is
collected from a descendent population.

The simulation analysis demonstrated that msBayes can
usually distinguish simultaneous divergence from tempo-
ral incongruence in divergence, even with sparse sampling
of individuals. The estimates of Ω were not markedly
improved by sampling 20 individuals per population pair
(10 each population) when compared to sampling 2–5
individuals per population pair (1–3 each population;
Figure. 3). However, Ω is being overestimated under both
sample sizes and this upward bias is stronger with larger
sample sizes when true Ω = 1. Therefore, simultaneous
divergence is easier to correctly reject with larger sample
sizes. Root mean square error (RMSE) for estimating Ω
was < 0.12 when the true history was simultaneous diver-
gence (Ω = 0), and RMSE was < 0.18 when the true history
involved 2 different divergence events across 10 popula-
tion pairs (Ω = 0.1). It is encouraging that one can obtain
fair estimates with so few samples per population pair and
that two samples per population pair can be analyzed by
msBayes.

An attractive benefit of an ABC method such as msBayes
is that one can perform this estimator evaluation relatively
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quickly. Simulating data from parameters drawn from the
prior is only done once per set of conditions (sample size/
history) and can be done in approximately 5 hours per
population pair on a 2 GHz linux computer. The compu-
tational time can be further reduced as the simulations
can be run parallel on multiple processors. Because the
acceptance/rejection step is decoupled from simulating
the prior, multiple estimates from a series of simulated
datasets can be accomplished without re-simulating the
prior each time. The acceptance/rejection step for a single
estimate is accomplished in one second to well under a
minute such that 1,000 estimates can be obtained from

1,000 data sets simulated from fixed known parameter
values in under an hour to within 24 hours on a single
processor.

General use and future development
The most important aspect of msBayes is that its flexible
and modular nature will allow us and others to add in
new features. This characteristic is essential for a phyloge-
ographic software tool because phylogeographic studies
are highly idiosyncratic. Using population genetic data to
test how climate and/or geological changes result in bio-
geographic shifts, speciation, extinction and consequent
changes in ecological interactions can involve a wide array
of hypotheses and models that conform to no generality
with regards to model complexity, parameterization and
sampling. We therefore anticipate making several exten-
sions to msBayes, and will encourage other bioinformati-
cians to make versions that suite particular difficult
research questions. Furthermore, phylogeographic studies
are most powerful when combined with independent evi-
dence (or hypotheses) about past habitat distributions
that are generated from other types of historic data and
ecological distribution models [25]. Particular historical
hypotheses can then be directly parameterized by paleo-
distribution models and tested with genetic data within
the msBayes framework using Bayes factors [26].

One feature we plan to include in future versions of
msBayes is an option to simulate from the prior after con-
straining the number of divergence events per Y popula-
tion pairs to one fixed number. This will then allow
getting estimates for when these different isolation events
took place as well as estimating which population pairs
originated at either of the particular divergence events.
Other upcoming features to be included are: 1.) multiple
loci per population pair by expanding the summary statis-
tic vector and adding additional hyper-parameters con-
trolling mutation rate variation across loci; 2.) having
more summary statistics available; 3.) allowing analysis of
only one population pair at a time; 4.) testing multi-spe-
cies colonization hypotheses; 5.) three or more popula-
tion models (as opposed to two population models); 6.)
allowing microsatellite data and 7.) automating the simu-
lation testing procedure used to obtain estimator bias.

It should be noted that migration could hinder the ability
of this method to correctly infer simultaneous divergence.
Moderate migration in a subset of species/population
pairs could cause the method to incorrectly support tem-
poral discordance in divergence when the true history
involved temporal congruence because migration can
erase the genetic signal of isolation [27,28]. Although the
Bayesian support for temporal concordance in divergence
times would likely weaken if this happens in a subset of
species/population pairs, we will explore using the sum-

Performance of estimatorFigure 3
Performance of estimator. Panels A through D each depict 
frequency histograms of 1,000 Ω estimates given 1,000 data-
sets simulated under either of two constrained histories. The 
simulated histories in panels A and C involve simultaneous 
divergence across ten population pairs (Ω = 0.0; all τ = 1.8), 
whereas panels B and D are from histories involving two dif-
ferent divergence events across the 10 population pairs (Ω = 
0.1; two splitting at τ = 1.0 and eight splitting at τ = 2.0). Pan-
els A and B are using small sample sizes (≤ 5 individuals per 
population pair), whereas panels C and D are using samples 
of 10 individuals per population pair. The actual sample sizes 
used for panels A and B are species pair 1: 1, 2; pair 2: 3, 2; 
pair 3: 1, 1; pair 4: 2, 2; pair 5: 2, 3; pair 6: 2, 1; pair 7: 1, 1; 
pair 8: 1, 3; pair 9: 3, 1; pair 10: 2, 1.
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mary statistic Var(π) as a means to tease apart migration
from isolation as suggested in [29,30].

Conclusion
The msBayes software pipeline will increasingly become
an important tool as the field of comparative phylogeog-
raphy progresses to become a more rigorous and statistical
enterprise [5]. The program can obtain hyper-parameter
estimates using hierarchical models in a reasonable
amount of time without having the problems associated
with convergence and mixing found in MCMC methods
(Markov chain Monte Carlo). Because the estimation step
is decoupled from the simulation step, one can quickly
evaluate different ABC acceptance/rejection conditions
and the choice of summary statistics. The method can rea-
sonably distinguish biogeographic congruence from tem-
poral incongruence, even with sparse sampling of
individuals. Given the complex and idiosyncratic nature
of testing multi-species biogeographic hypotheses, we
envision msBayes as a powerful and flexible tool that is
open for modification when faced with particularly diffi-
cult research questions. Finally, due to its flexible and
modular design, msBayes will be a well-suited tool for the
heterogeneous data sets that are emerging and being com-
bined to test complex historical hypotheses.

Availability and requirements
The installation instructions, documentation, source code
and precompiled binary for msBayes are all available for
download at http://msbayes.sourceforge.net/ under an
open source license (GNU Public License). The msBayes
pipeline is comprised of several C and R programs that are
run with a Perl "front-end" and runs on Linux, Mac OS-X,
and most POSIX systems.
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ABC: Approximate Bayesian Computation

TSD: Test of simultaneous divergence

mtDNA: Mitochondrial DNA
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