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Abstract
Background: Helical membrane proteins (HMPs) play a crucial role in diverse cellular processes,
yet it still remains extremely difficult to determine their structures by experimental techniques.
Given this situation, it is highly desirable to develop sequence-based computational methods for
predicting structural characteristics of HMPs.

Results: We have developed TMX (TransMembrane eXposure), a novel method for predicting the
burial status (i.e. buried in the protein structure vs. exposed to the membrane) of transmembrane
(TM) residues of HMPs. TMX derives positional scores of TM residues based on their profiles and
conservation indices. Then, a support vector classifier is used for predicting their burial status. Its
prediction accuracy is 78.71% on a benchmark data set, representing considerable improvements
over 68.67% and 71.06% of previously proposed methods. Importantly, unlike the previous
methods, TMX automatically yields confidence scores for the predictions made. In addition, a
feature selection incorporated in TMX reveals interesting insights into the structural organization
of HMPs.

Conclusion: A novel computational method, TMX, has been developed for predicting the burial
status of TM residues of HMPs. Its prediction accuracy is much higher than that of previously
proposed methods. It will be useful in elucidating structural characteristics of HMPs as an
inexpensive, auxiliary tool. A web server for TMX is established at http://service.bioinformatik.uni-
saarland.de/tmx and freely available to academic users, along with the data set used.

Background
Helical membrane proteins (HMPs) play a crucial role in
diverse cellular processes, including energy generation,
signal transduction, the transport of solutes across the
membrane, and the maintenance of ionic and proton con-
centrations. Several studies have suggested that HMPs
account for 20 – 30% of the open reading frames of
sequenced genomes [1,2]. In spite of their biological
importance and genomic abundance, less than 1% of the

proteins with known structure are HMPs [3], and this sit-
uation is not expected to improve dramatically in the near
future. Hence, it is desirable to develop sequence-based
computational methods for predicting structural charac-
teristics of HMPs. In the realm of soluble proteins, two
particular structural characteristics have been the main
target of computational prediction methods: secondary
structure [4-10] and solvent accessibility [11-26] (often in
a form of binary burial status; buried inside vs. exposed to
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the environment). For HMPs, the prediction of secondary
structures does not carry as significant a momentum as for
soluble proteins because transmembrane (TM) segments,
which can be relatively reliably identified from the
sequence by several techniques [27-37], are known to usu-
ally adopt helical conformations to satisfy the hydrogen
bonding capacity of the backbone polar atoms. On the
other hand, the problem of predicting the burial status
(i.e. buried in the protein core vs. exposed to the mem-
brane) of TM residues of HMPs has remained nearly
untouched until now, in contrast to the situation for sol-
uble proteins, which have been extensively studied (see
the references listed above) following the pioneering work
of Rost and Sander [12]. This is quite "remarkable" given
that it is much more difficult to determine the structures
of HMPs than those of soluble proteins by experimental
techniques. The virtue of the ability to predict the burial
status of TM residues of HMPs was already appreciated by
several studies around the early 90s [38-40]. The burial
status prediction should be useful in several tasks. One
simple example would be to help design mutational
experiments aimed at identifying catalytically important
TM residues [41-45] by providing a list of TM residues
highly likely to be buried in the protein core because cat-
alytically important TM residues are usually found buried
in the protein core, not being exposed to the membrane.
Another simple example would be to help design muta-
tional experiments aimed at identifying TM residues
important for protein-protein interactions in the mem-
brane by providing a list of TM residues highly likely to be
exposed to the membrane.

In 2004, Beuming and Weinstein pioneered the first
sequence-based computational method for predicting the
burial status of TM residues of HMPs (denoted hereafter
as the BW method), which was based on sequence conser-
vation patterns and a newly derived knowledge-based
propensity scale of the 20 amino acids to be exposed to
the membrane [46]. For a rather small benchmark set, the
BW method achieved an impressive prediction accuracy of
80%. Recently, Adamian and Liang reported the develop-
ment of a similar method [47], but it predicts the face of a
TM helix exposed to the membrane, not the burial status
of individual TM residues. Hildebrand and his coworkers
described a computational method for predicting whether
a given residue is located at a helix-helix interface in the
membrane [48]. Yet, this is a distinct prediction problem
from the one the current study deals with: a residue
located outside of a helix-helix interface can still be bur-
ied. Quite recently, Yuan and his coworkers developed a
method for predicting the relative solvent-accessible sur-
face area (rSASA) of TM residues based on support vector
regression (SVR, denoted hereafter as the YU method)
[49]. Even though the YU method does not explicitly pre-
dict the burial status of TM residues, it is possible to do so

using the predicted rSASA values. To our best knowledge,
the BW and YU methods are the only ones currently avail-
able for predicting the burial status of TM residues of
HMPs.

We have developed TMX (TM eXposure), a novel
sequence-based computational method for predicting the
burial status of TM residues of HMPs. Its accuracy is
78.71% over a much larger data set of 3138 TM residues,
representing a considerable improvement over 68.67% of
the BW method when evaluated on the same data set. This
prediction accuracy is also higher than 71.06% of the YU
method. Importantly, unlike the BW and YU methods,
TMX automatically yields confidence scores for the predic-
tions made, a highly desirable component for any compu-
tational prediction method, which allows the user to
selectively utilize prediction results depending on confi-
dence scores in real application situations. In addition, a
feature selection incorporated in TMX reveals interesting
insights into the structural organization of HMPs.

Results and Discussion
Analysis of the BW method
TMX is novel in several aspects compared to the BW and
YU methods and can be described without any reference
to these previous methods. However, we prefer to describe
the logic behind its development in reference to the BW
method in order to contrast it with the BW method and
highlight its novelties.

For predicting the burial status of a TM residue, the BW
method computes its positional score and compares the
score with a threshold [46]. If the score is higher than the
threshold, it is predicted to be buried. Otherwise, it is pre-
dicted to be exposed to the membrane. Formally, the BW
method computes a positional score for sequence posi-
tion i, S(i), as 0.5×(C(i) - PBW(i)), where C(i) is the conser-
vation index for sequence position i, and PBW(i) the
propensity of sequence position i for being exposed to the
membrane, which is in turn derived from the BW scale as
shown in Eq. 1. The BW scale is derived from a set of
HMPs with known structure.

In Eq. 1, the index j runs over the 20 naturally occurring
amino acids, BW(j) is the propensity value of amino acid
j in the BW scale, and fi(j) the frequency of amino acid j in
sequence position i. Plugging Eq. 1 into 0.5×(C(i) -
PBW(i)), the overall approach of the BW method for deriv-
ing a positional score can be cast as follows.

P i BW j f jBW i
j

( ) ( ) ( )= ×
=
∑

1

20
(1)
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Eq. 2 indicates that S(i) is a linear combination of the con-
servation index and the 20 elements of the profile. Thus,
it can be written more generally as follows.

where Cc is the coefficient for the conservation index (set
to 0.5 in the BW method) and Cj the coefficient for the jth
element of the profile (set to -0.5×BW(j) in the BW
method). With achieving highest possible prediction
accuracies in mind, we raise the question of whether set-
ting the coefficients in Eq. 3 empirically as in the BW
method is optimal or not. Our answer is no. Optimizing
the coefficients would be a better idea. Confirming this
expectation, the coefficients optimized by linear regres-
sion led to a prediction accuracy of 71.13%, compared to
68.67% of the BW method as shown in Table 1. Specifi-
cally, ridge linear regression with the complexity parame-
ter set to 0.001 was used throughout this study in an effort
to minimize generalization errors [50]. It is noteworthy
that we use the same formula as the BW method – Eq. 3 –
but with an entirely different philosophy. In the BW
method, one first derives a propensity scale of the 20
amino acids to be exposed to the membrane from known
HMP structures and then uses it for computing the pro-
pensity of a target residue to be exposed (Eq. 1). This pro-
pensity of the target residue is combined with its degree of
conservation to yield its positional score. Our analysis
reveals that this overall idea of the BW method can be con-
cisely summarized by Eq. 3, which immediately suggests
that there is a better way of doing the job.

There is an issue to be clarified before we move on. We
implemented the BW method, and its performance was
evaluated on the same data set as for TMX. This was nec-
essary since it is often difficult to directly compare per-
formance values of different prediction methods reported
in different studies because of the variety of data sets used
and the discrepancy in state definitions. A serious diffi-
culty arose in implementing the BW method, namely set-
ting thresholds manually. As mentioned above, upon

computing the positional score of a target residue, the BW
method compares it with a threshold that has been man-
ually set. If the positional score is greater than the thresh-
old, it is predicted to be buried. Otherwise, it is predicted
to be exposed. In a leave-one-out (jack-knife) testing
scheme, thresholds need to be manually set separately for
each of 43 protein chains in the benchmark data set (see
Methods). Admittedly, it is impossible for us to exactly
reproduce this step in the way it was performed in the
original publication for the BW method [46]. In addition,
we feel that it might be subjective to set thresholds manu-
ally. Then, is there any mathematical formalism that
allows thresholds to be set in such a manner that (1) we
exactly mimic the manual setting of thresholds as was
done in the BW method and (2) yet, thresholds are set
objectively and reproducibly? Our answer is a linear sup-
port vector classifier (lSVC, i.e. an SVC with a linear ker-
nel). Since the hyperplane – f(x) = β0 + βTx = 0, where βT is
the transpose of a column vector β – obtained by an lSVC
in a one-dimensional space represents a scalar value of -β/
β0 [50], setting a threshold via an lSVC is an exact compu-
tational analogue to setting it manually, yet in an objec-
tive, reproducible way. It is to be noted that the
introduction of an lSVC to the prediction scheme trans-
forms it to a two-step scheme because an lSVC also needs
training and, as a result, the jack-knife scheme should be
applied to both steps. We want to stress that the sole pur-
pose of using an lSVC here is to mimic the manual assign-
ment of thresholds as exactly as possible yet in an
objective, reproducible fashion. Thus, we intentionally
did not seek SVCs with a non-linear kernel or other
sophisticated classifiers at this stage (but see below).

Improved use of conservation indices
Another point well worth considering in Eq. 3 is how con-
servation indices are incorporated. The average identities
of sequences retrieved from sequence databases for differ-
ent query sequences can be appreciably varying. Thus,
without normalization, one may assign overall high con-
servation indices to one protein chain while assigning
overall low conservation indices to another. Normaliza-
tion of conservation indices effectively solves this bias
problem, just as in microarray data processing. In the BW
method, conservation indices are not normalized. We
found that normalizing conservation indices by subtract-

S i C i BW j f ji
j

( ) . ( ) . ( ) ( )= × − × ×
=
∑0 5 0 5

1

20
(2)

S i C C i C f jc j i
j

( ) ( ) ( ),= × + ×
=
∑

1

20
(3)

Table 1: Prediction accuracies of different methods examined in the study

Prediction method Prediction accuracy [%]1

The BW method 68.67
TMX 78.71

The YU method 71.062

1Defined as the fraction of the TM residues in the data set whose burial status was correctly predicted.
2Best prediction accuracy among 16 ones shown in Table 6.
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ing the mean followed by division by the standard devia-
tion separately for each protein chain leads to a significant
improvement in the prediction accuracy, raising it from
71.13% to 73.84%.

A second, minor aspect to be considered is how conserva-
tion indices are actually computed in the first place. The
BW method computes conservation indices as follows.

C(i) = 0.5 × V(i) + 0.5 × IC(i) (4)

In Eq. 4, V(i) is the volume of the polytope for sequence
position i derived from a multiple sequence alignment
(MSA), estimating the probability for the presence of a set
of different amino acids from a set of pairwise distribution
probabilities, and IC(i) is the information content of
sequence position i [46]. Eq. 4 relies on many assump-
tions that are yet to be validated. The first are ad hoc meas-
ures taken to enforce the Euclidean space to the distances
between aligned sequences for computing V(i) [51]. The
second is the assumption used in computing IC(i) that the
20 naturally occurring amino acids are equally likely to
occur in the TM region. The third is that even though it
seems reasonable to assign equal weights to both terms in
Eq. 4, it is not clear whether that choice is optimal.

As in our previous studies [52,53], we derived conserva-
tion indices using Eq. 5, which is mathematically well-
defined and relatively free from potentially problematic
assumptions.

In Eq. 5, the index j runs over the 20 naturally occurring
amino acids, C(i) is the conservation index for sequence
position i, fi(j) is the frequency of amino acid j in
sequence position i, and f(j) is the overall frequency of
amino acid j in the alignment. As expected, the use of Eq.

5 instead of Eq. 4 improved the prediction accuracy from
73.84% to 74.51%. It is to be noted that conservation
indices obtained by Eqs. 4 and 5 were from the same
MSAs.

Extending the window size for the input vector
At this stage, the input vector for the prediction method
consists of 21 elements (20 profile elements and a conser-
vation index for the target residue). Another measure that
we can take to further improve the prediction accuracy is
to additionally consider the neighboring residues of the
target residue (i.e. increasing a window size for the input
vector from 1 to any larger number). In fact, nearly all
techniques developed for water-soluble proteins exploit
this possibility [11-26]. We explored all symmetric win-
dow sizes (Table 2). There are a couple of points to be
noted in Table 2. When increasing the window size from
1 to 3 or 5, the prediction accuracy is decreased, suggest-
ing that the signal-to-noise ratio deteriorated (see also
below). The first peak in the prediction accuracy is
observed at a window size of 9. It is interesting to note
that, assuming the canonical helix conformation, when
the length of a helix gets to 9, the first and last residues
(residues at positions i-4 and i+4) face in the same direc-
tion as the central residue (residue at position i, corre-
sponding to the target residue in our context). Thus, our
results suggest that the identities of the residues lying just
above and below the target residue on the same helix face
are most indicative of the burial status of the target resi-
due, as expected from the canonical helix conformation.
As it is actually 3.6 residues per turn in the canonical helix
conformation, a certain improvement is already found by
including the positions i ± 3. Consistent with this line of
reasoning, the best prediction accuracy, 75.97%, is
observed at a window size of 15. Based on a similar obser-
vation, Adamian and Liang recently developed a highly
effective method for predicting membrane-exposed faces
of TM helices [47].

C i f j f jij
( ) ( ( ) ( ))= −∑ 2 (5)

Table 2: Prediction accuracies obtained by linear regression with different window sizes

Window size Prediction accuracy

1 74.51
3 73.55
5 73.96
7 74.82
9 75.69
11 75.37
13 75.81
15 75.97
17 75.46
19 75.75
21 75.59
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Feature selection
The logic behind increasing window sizes for better pre-
dictions is that one can better account for long-range
effects with enlarged windows. However, the shortcoming
of enlarged windows is that the signal-to-noise ratio dete-
riorates as the window size is increased, as demonstrated
in Table 2. For example, compare the prediction accura-
cies for window sizes of 15 and 21. The tradeoff between
long-range effects and signal-to-noise ratios would sug-
gest a window size of 15 instead of 21. Is there any way of
circumventing this unpleasant tradeoff? Feature selection
might be an answer. A simple illustration will make this
point clearer. An input vector for a window size of 21 con-
sists of 441 elements (21 elements for each of the 21 resi-
dues). It is intuitively clear that not all 441 elements will
contribute equally to the prediction. Many of them might
simply be noise. Thus, it might be possible to use enlarged
windows for a better consideration of long-range effects
and still maintain a high signal-to-noise ratio by filtering
out noisy elements.

Of many techniques available for feature selection, we
chose the Fisher's index for the following reasons. First,
the Fisher's index is conceptually attractive, having a clear
meaning easy to understand [50]. Put simply, the Fisher's
index represents the ability of a given element to maxi-
mize the distance between the centroids of the two given
classes and simultaneously minimize the overlap between
them. Second, unlike techniques involving linear combi-

nations of feature vectors, the Fisher's index is highly
interpretable. This is a big advantage given the high
dimensions of our feature spaces. Most importantly, one
can gain interesting biological insights into the structural
organization of HMPs from the Fisher's index (see below).
Third, the Fisher's index can be computed cheaply.
Fourth, the Fisher's index is well suited to continuous fea-
tures (as opposed to discrete ones).

The 441 elements of a window of size 21 were ranked
according to their Fisher's indices, and increasing fractions
of them (in steps of 0.05) were input to the prediction
(see first and second columns of Table 3). The best predic-
tion accuracy, 77.21%, was obtained when using the top
20% elements only. This accuracy is higher than 75.97%
obtained by an "unintelligently" increased window of size
15 in the above section. Which elements rank top? As
shown in Table 4, the top-ranking elements are mostly
conservation indices, in line with previous findings that
conservation properties of TM residues correlate strongly
with their degree of exposure to the membrane [52,54-
56]. Also, Table 4 shows that the frequencies of occurrence
of L, I, V and F at the target residue are highly indicative of
its burial status. In this regard, it is interesting to note that
our previous study showed that these amino acids possess
the highest propensities to preferentially interact with the
membrane [53]. The frequency of occurrence of G at the
target residue is also strongly correlating with its burial
status, ranking at the 9th place, which is consistent with

Table 3: Prediction accuracies obtained by increasing fractions of the 441 elements of a window of size 21

Fraction used in the 
prediction

Linear regression SVR C – 101 SVR C – 1 SVR C – 0.1 SVR C – 0.01

0.052 75.65 70.36 73.45 75.21 74.89
0.1 76.61 71.06 75.88 75.97 74.57
0.15 76.90 70.78 75.11 76.20 74.09
0.2 77.21 70.65 75.14 75.78 73.58
0.25 76.45 70.01 75.59 75.78 73.04
0.3 76.04 71.13 75.11 75.24 72.56
0.35 75.72 71.54 74.79 75.27 71.54
0.4 75.91 72.69 74.76 75.11 71.80
0.45 75.91 72.72 75.11 74.95 71.86
0.5 76.13 72.82 75.33 75.11 71.67
0.55 76.39 72.63 75.43 75.43 72.08
0.6 76.04 72.69 75.43 75.14 71.61
0.65 75.33 72.94 75.24 75.30 70.40
0.7 74.86 73.01 74.98 74.92 70.24
0.75 75.33 73.20 75.43 74.86 69.31
0.8 75.75 72.75 75.75 74.44 68.48
0.85 75.62 72.59 75.75 74.22 67.97
0.9 75.24 72.34 75.14 74.00 67.65
0.95 75.21 72.79 75.46 74.22 67.53
1.0 75.59 73.26 75.97 74.16 67.85

1Regularization constant C was set to 10.
2Meaning that the top 5% of the 441 elements when ranked by the Fisher's index were input for the prediction.
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earlier findings that glycine residues play a pivotal role in
mediating helix-helix interactions in the membrane [57-
60]. Table 4 also shows that the frequencies of occurrence
of I, G and L at the 4th residue N terminal to the target one
also strongly correlate with the burial status of the target
residue, which makes sense considering the canonical
helix conformation as mentioned above.

Given dramatic improvements in prediction accuracy and
interesting insights into the system under investigation
through a feature selection as demonstrated here, it was
quite surprising to find that almost all studies on predict-
ing the solvent accessibility of water-soluble proteins [11-
24] have not considered it. Hence, it would be worthwhile
to investigate whether feature selection can similarly pay
off in predicting the solvent-accessibility of water-soluble
proteins.

Non-linear regression
All approaches for computing positional scores thus far
can be understood as an extension of Eq. 3. Namely, they
are all linear methods. Additional improvements might
be achieved by relying on non-linear methods. The power
of non-linearity is illustrated by conservation indices.
Conservation indices are non-linear combinations of pro-
file elements (Eq. 5), which was motivated by the prior
knowledge that conserved TM residues tend to be buried
while variable ones tend to be exposed to the membrane

[52,54-56]. In fact, Table 4 showed that conservation indi-
ces were the features most strongly correlated with the
burial status of TM residues. Also, it is shown below that
conservation indices play a much greater role than profile
elements in boosting prediction accuracies. In theory, a
perfect non-linear method should be able to find such
non-linear combinations of profile elements when fed
only profile elements. However, this is usually not the
case. Whenever prior knowledge on the system under
investigation permits sensible non-linear combinations of
raw features (e.g., conservation indices out of profile ele-
ments), it is always good to do so explicitly.

If there still remain untapped non-linear combinations of
profile elements or profile elements and conservation
indices that correlate with the burial status of TM residues,
the use of non-linear methods might be profitable [61].
Of the vast array of available non-linear regression tech-
niques, we made use of SVR with a radial kernel because a
nice interface with R is already available (see Methods)
and it has performed respectably in studies of water-solu-
ble proteins [23,25]. Our preliminary analysis showed
that SVR with a radial kernel tends to rival SVR with other
kernels. Once a kernel type is chosen, another important
parameter to be fine-tuned is the regularization constant
C, i.e. how much weight one should put on minimizing
the costs of violating a decision boundary relative to max-
imizing the closest distance of a data point to the bound-

Table 4: Top 20 elements of the 441 ones of a window of size 21 according to the Fisher's index

Rank Position1 Type Fisher's index

1 T conservation index 0.987
2 C4 conservation index 0.534
3 N4 conservation index 0.469
4 N3 conservation index 0.307
5 N7 conservation index 0.306
6 C3 conservation index 0.248
7 T L2 0.243
8 C7 conservation index 0.240
9 T G 0.203
10 T I 0.143
11 C8 conservation index 0.132
12 C1 conservation index 0.092
13 T V 0.059
14 N1 conservation index 0.057
15 N4 I 0.057
16 N4 G 0.056
17 T F 0.053
18 T S 0.052
19 N8 conservation index 0.045
20 N4 L 0.041

1T: the target residue, C4: the 4th residue C terminal to the target residue, N4: the 4th residue N terminal to the target residue. Thus, the 
conservation index of the target residue is most indicative of its burial status, and the conservation index of the 4th residue C terminal to the target 
residue is second most indicative of the burial status of the target residue.
2L: leucine, G: glycine, I: isoleucine, V: valine, F: phenylalanine and S: serine.
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ary [50,62]. The general expectation from the theory is
that as the regularization constant gets higher, a heavier
weight is put on minimizing the violation costs and, as a
result, a more wiggly decision boundary is obtained with
a possibly larger generalization error. The default C value
is 1, and we tried 4 different C values, 10, 1, 0.1 and 0.01.
As above, the 441 elements of a window of size 21 were
ranked according to their Fisher's indices, and increasing
fractions of them (in steps of 0.05) were input to the pre-
diction via SVR with a radial kernel. Table 3 shows the
results (columns 3 – 6). It is immediately clear that, in
almost all cases, linear regression outperforms SVR, indi-
cating that the generalization errors of SVR are larger than
those of linear regression, presumably due to its over-flex-
ibility in fitting a separating boundary to a given data set.
Thus, SVR does not seem advantageous over linear regres-
sion on this data set. Admittedly, we can not rule out the
possibility that highly fine-tuned SVR can outperform lin-
ear regression. Given limited computational resources
and considerable amounts of computation required for a
leave-one-out validation of a two-step prediction method
(~40 CPU hours on a 2.4 GHz processor), it is beyond our
capability to exhaustively scan all possible combinations
of SVR parameters. However, it is our experience that SVR
with all parameters set to default values generally per-
forms nearly optimally. Thus, we are quite certain that, at
least for the current purpose of predicting the burial status
of TM residues of HMPs, linear regression is at least as
effective as SVR. Supporting this conclusion, previous
studies on water-soluble proteins demonstrated that
sophisticated linear methods can rival non-linear ones in
performance [14,21,26].

Optimizing classifiers
Upon computing a positional score for the target residue,
a classifier is invoked to classify it as either buried in the
protein core or exposed to the membrane. Although any
machine-learning technique can be used as a classifier, we
have only considered lSVCs so far. The original reason for
choosing lSVCs was, as mentioned earlier, to implement
the BW method as exactly as possible, yet in an objective,
reproducible manner, so that the BW method can be justly
compared with ours. However, we may choose other clas-
sifiers for our prediction method. Although there are tons
of available classifiers, we primarily focused on SVCs for
practical reasons as mentioned above. Preliminary analy-

sis showed that SVCs with a linear or radial kernel tend to
outperform others. Thus, SVCs with a linear or radial ker-
nel were pursued further in combination with 5 different
regularization constants, 1, 0.5, 0.1, 0.05 and 0.01, cho-
sen on the basis of the results shown in Table 3. In addi-
tion to searching for a better classifier, it might also be
helpful in boosting prediction accuracies to refine input
vectors themselves. So far, the input vectors for a classifier
have been one-dimensional, i.e. consisting of a positional
score for a given target residue. The input vectors for a clas-
sifier can be straightforwardly refined exactly in the same
way as the input vectors for computing positional scores
were refined in Table 3.

Table 5 shows the best prediction accuracies for each com-
bination of an SVC kernel and a regularization constant.
An SVC with a linear kernel outperforms that with a radial
one, and a regularization constant of 0.5 is optimal
among those investigated. The best prediction accuracy,
78.71%, was obtained by an SVC with a linear kernel that
considers the top 16 positional scores out of the 21 posi-
tional scores (i.e. the positional scores of the target residue
and its 10 neighbors on the N terminus and its 10 neigh-
bors on the C terminus) derived from considering the top
10% of the 441 elements of a window of size 21 (Table 3).
An SVC with a radial kernel also achieved this prediction
accuracy at a regularization constant of 0.5. Due to its sus-
tained performance over the examined range of regulari-
zation constants, however, an SVC with a linear kernel is
preferred. The method that gives rise to the best perform-
ance becomes the method of choice and is named "TMX
(TM eXposure)." Detailed jack-knife test results of TMX
are available as additional information [see Additional
file 1] and also on its web server.

The performance of TMX – is it "significantly" higher than
that of the BW method? As mentioned earlier, the predic-
tion accuracy of the BW method is 68.67% when tested on
the same data set. The p value estimating the statistical sig-
nificance of the 10.04% increase in the prediction accu-
racy achieved by TMX relative to the BW method is < 10-5

according to the Wilcoxon signed rank test. Accordingly,
TMX is judged to be a truly better method for predicting
the burial status of TM residues of HMPs. A final point
worthy of noting is the architecture of TMX. TMX is a two-
step prediction method, where binary classifications are

Table 5: Best prediction accuracies for each combination of an SVC kernel and a regularization constant C

Regularization constant C

Kernel 1 0.5 0.1 0.05 0.01
Linear 78.62 78.71 78.65 78.62 78.01
Radial 78.55 78.71 78.23 78.30 77.25
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made in the second step on the basis of positional scores
computed in the first step. The two-step architecture – is it
really worthwhile? Obviously, one can directly apply
SVCs to the profiles and conservation indices of the target
residue and its neighbors for predicting its burial status,
without computing positional scores in the first place.
Several studies on water-soluble proteins noted that a
two-step prediction scheme can better account for corre-
lated patterns of properties to be predicted, leading to
higher prediction accuracies [7-10,21,23,24]. To test
whether this is also the case for us, we investigated the per-
formance of SVCs that were directly fed profiles and con-
servation indices for the prediction. Specifically, as shown
in Table 3, the 441 elements of a window of size 21 were
sorted according to the Fisher's index, and increasing frac-
tions of them were fed to SVCs. The best prediction accu-
racy for an SVC with a linear kernel was 77.53%, and that
for an SVC with a radial kernel 77.21%. Therefore, a two-
step prediction scheme appears to pay off in our case, too.

Comparison with the YU method
The YU method computes the positional score of a target
residue via SVR using position-specific scoring matrices
(PSSMs) obtained by PSI-BLAST [63]. In studies of water-
soluble proteins, it has been very popular to use PSSMs as
input vectors in order to boost the accuracy of predicting
solvent accessibility [8-10,17,19-24]. The popularity of
PSSMs has partially stemmed from the fact that one does
not have to explicitly generate an MSA for obtaining
PSSMs. As with the BW method, we implemented the YU
method for a transparent performance comparison using
the R interface [64,65] of the LIBSVM library [66]. In
implementing the YU method, we set all the parameters of
SVR as optimized by Yuan et al. and did not intentionally
seek any further optimizations.

The best prediction accuracy of the YU method on the
benchmark data set is 71.06% (fourth column of Table 6),
much lower than 78.71% achieved by TMX (p value of <
0.001 from the Wilcoxon signed rank test). It is of interest
to find out where the performance difference between
TMX and the YU method comes from, except for the nov-
elties introduced to TMX such as feature selection and a
sophisticated classification in the second step. To this end,
we replaced PSSMs by profiles or conservation indices to
find out how different input vectors affect prediction accu-
racies. Table 6 shows that profiles alone perform similarly
to (or only slightly better than) PSSMs. Compared with
the performance of profiles or PSSMs, the performance of
normalized conservation indices is really standing out.
Moreover, a comparison of the performance of profiles
plus normalized conservation indices shown in Table 2
with that of normalized conservation indices alone (C set
to 1, a default value, in Table 6) also indicates that conser-
vation indices play a crucial role in boosting prediction

accuracies. Thus, it may be concluded that the poor per-
formance of the YU method is partly due to the fact that
its input vectors – PSSMs – do not contain the informa-
tion captured by conservation indices. In this regard, it is
interesting to note that the most effective method for pre-
dicting the solvent accessibility of water-soluble proteins
uses PSSMs as its sole input [24]. Thus, it would be worth-
while to check out whether replacing PSSMs by profiles
plus normalized conservation indices would be similarly
successful for water-soluble proteins.

Analysis of the TMX predictions
In addition to prediction accuracies, there are other inter-
esting aspects worthy of analyzing. For example, are there
any amino acids for which it is easier to predict the burial
status? Is it easier to correctly predict buried residues as
being buried than exposed residues as being exposed?

Table 7 shows the results for each amino acid. The highest
prediction accuracies were achieved for R, H, D and K, all
of which are charged or strongly polar. Their average con-
servation indices are among the highest (data not shown).
Thus, it appears that these amino acids are well conserved
for functional (and/or structural) reasons and that their
high conservation indices make it easier for TMX to cor-
rectly predict their burial status. In this regard, the case of
proline is a contrasting example. Its average conservation
index is among the highest, yet the prediction accuracy for
it is among the lowest. The data set contains 43 buried and
46 exposed proline residues, and the average conservation
indices for buried and exposed proline residues are 1.22
and 1.07, respectively. Thus, proline residues exposed to
the membrane appear as strongly conserved for their
structural (and/or functional) role as those buried inside.
The lack of correlation between conservation and the bur-
ial status for proline seems to make it difficult for TMX to
correctly predict its burial status. Surprisingly, E is the
amino acid with the lowest prediction accuracy. Inspec-
tion of the individual incorrect predictions for E suggests
a couple of plausible explanations for this unexpected
result. First, conserved E residues are sometimes exposed
to the membrane (2GIF_A_346: 1.54 [residue 346 of
chain A in the PDB file 2GIF: its conservation index is
1.54], 1OTS_A_414: 2.46, 1YEW_B_201: 1.43 and
2BL2_A_139: 3.47), and TMX predicted them to be bur-
ied. Second, there are several buried E residues that are not
conserved (2A65_A_112: -0.46, 2A65_A_419: -0.94,
1SU4_A_908: -0.30 and 1QLA_C_180: 0.14), and pre-
sumably their low conservation indices hinder the accu-
rate prediction of their burial status. The prediction
accuracies for abundant amino acids (L, A, V, I, G and F)
are all higher than the overall accuracy of 78.71%.

Table 8 shows the specificity and sensitivity of TMX. The
lower sensitivity (70.61%) compared to the specificity
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Table 6: Prediction accuracies obtained by SVR with different input vectors

Window size Profile Conservation index PSSM (the YU method)

C – 11

11 70.87 73.68 70.08
13 71.16 73.65 69.47
15 71.51 74.16 71.06
17 71.19 74.16 68.23
19 70.91 74.41 61.85
21 70.84 74.19 59.46

C – 2

11 70.55 73.17 69.85
13 70.94 73.26 69.31
15 71.16 74.31 70.52
17 71.64 73.61 67.11
19 70.68 73.90 61.54
21 70.49 74.09 59.31

C – 5

11 70.36 72.37 69.79
13 71.19 72.53 69.12
15 70.91 73.36 70.43
17 71.32 72.72 66.92
19 70.46 73.07 61.60
21 70.59 72.85 59.18

C – 7

11 70.81 72.05 70.17
13 71.03 72.15 69.15
15 71.13 72.94 70.43
17 71.19 72.37 66.89
19 70.43 72.50 61.63
21 70.52 72.08 59.18

1Regularization constant C was set to 1.

Table 7: Prediction accuracies for each amino acid

Amino acid Number of occurrence Prediction accuracy [%] Fraction of exposed residues in the data set [%]

A 381 80.31 45.93
C 50 74.00 46.00
D 19 89.47 0.00
E 30 56.67 40.00
F 294 80.95 73.13
G 316 80.38 27.22
H 42 90.48 16.67
I 328 80.49 72.26
K 20 85.00 55.00
L 521 80.42 73.70
M 128 75.78 57.03
N 41 75.61 17.07
P 89 61.80 48.31
Q 26 76.92 26.92
R 15 100.00 6.67
S 153 71.24 39.22
T 169 73.37 48.52
V 365 79.45 65.48
W 74 81.08 70.27
Y 77 72.73 50.65
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(84.77%) seems to reflect the biased composition of the
benchmark data set comprising 55.86% of exposed resi-
dues and 44.14% of buried residues.

Confidence scores for the predictions made
It is highly desirable to have confidence scores available
for the predictions made. Confidence scores allow the
user to selectively utilize prediction results in real applica-
tion settings. In TMX, the classification is performed using
an SVC. It is intuitive that predictions made by an SVC
with a high decision value (i.e. a large distance to the deci-
sion boundary) would be more accurate, and we found
out that this is indeed the case. Thus, the absolute magni-
tude of a decision value generated by the SVC is taken to
be a confidence score for the prediction [50,62]. As shown
in Fig. 1, predictions with a high confidence score tend to
be more accurate than those with a low one. The predic-
tion accuracy rises to 90.21% when considering the 1440
predictions with a confidence score ≥ 1.2. 1440 out of
3138 means a coverage of 45.89%. Thus, a fairly high cov-
erage is maintained for prediction accuracies of ~90%,
which makes TMX well suited to real application settings.

Outlook
In this study, we have focused on HMPs because they are
much more abundant and play a more important role in
diverse cellular processes than beta-barrel membrane pro-
teins (BMPs). But, obviously, one can apply the same
strategy behind the development of TMX to BMPs. Since
the burial status of TM residues of BMPs tends to alternate
due to prevalent beta strand elements [67], it would be
interesting to see whether one can achieve higher predic-
tion accuracies than 78.71% for HMPs. Moreover, it
would be worth investigating which features correlate
strongly with the burial status of TM residues of BMPs via
a feature selection of the sort used here for Table 4.

Conclusion
We have presented TMX, a novel sequence-based compu-
tational method for predicting the burial status of TM res-
idues of HMPs. It significantly outperforms previously
proposed methods. In addition, feature selection incorpo-
rated in TMX revealed interesting insights into the struc-
tural organization of HMPs. Importantly, unlike the

previous methods, TMX automatically generates confi-
dence scores for the predictions made, and it was shown
that predictions with a high confidence score tend to be
more accurate than those with a low one. Thus, in a real
application setting, the user of TMX can selectively utilize
prediction results on the basis of their confidence scores.
The developmental course of TMX clearly highlighted the
importance of conservation indices and feature selection
in boosting prediction accuracies. In this regard, it was
rather surprising to find that the most effective method for
predicting the solvent accessibility of water-soluble pro-
teins considers neither conservation indices nor feature
selection. It would be interesting to investigate whether
these two "new" findings can be favorably transferred to
one of the classical bioinformatics problems of predicting
the solvent accessibility of water-soluble proteins.

Methods
Generation of the benchmark data set
As is always the case in machine-learning studies, con-
structing a well-curated data set was the starting point of
the current study. Special care was taken in selecting pro-
tein chains, delineating their TM boundaries and comput-
ing the rSASA values of TM residues.

The details of generating a non-redundant high-quality
data set have been described elsewhere [53]. Briefly, based
on the lists of HMPs with known structure compiled by
White [68] and by Michel [69] as of February 2007, pro-
tein chains with less than 25% pairwise identity and a res-
olution better than 3.0 Å were gathered, resulting in 43
protein chains of 3138 TM residues (Table 9). Predictions
were made using full-length protein sequences. Yet the
benchmark analysis reported here was limited to those
residues in the hydrophobic core of the membrane as
defined in the OPM database [70] because the binary bur-
ial status is meaningful only for them. 51 TM residues
were further excluded in the analysis because they are
mostly located in the N or C terminus and thus no align-
ment of homologous sequences could be made (see
below). The data set available for download on the TMX
web server comprises 3138 TM residues included in the
benchmark analysis, which includes not only TM helices
but also fragments of re-entrant regions that dip into the

Table 8: Specificity and sensitivity of TMX

Observed

Predicted Buried Exposed

Buried 978 (70.61%) 267 (15.23%)
Exposed 407 (29.39%) 1486 (84.77%)

Sum 1385 1753
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hydrophobic core of the membrane. The classification of
a residue as being exposed vs. buried was based on its
rSASA value. To approximate the effective radius of the
CH2 group of hydrocarbon chains of phospholipids, the
probe radius was set to 2.2 Å. When necessary, the two
faces of the TM region (the cytoplasmic and exoplasmic
faces) were capped with dummy atoms before computing
SASA values. Many HMPs contain large internal cavities,
and, without capping, large SASA values were assigned to
residues lining internal cavities, making these residues
look as if they were facing the membrane. Upon capping,
internal cavities that are inaccessible to the probe were
identified and excluded in computing SASA values. Actual
computations were carried out using the program suite
VOLBL [71,72]. SASA values were normalized by dividing
them by reference values to yield rSASA values. The refer-
ence value for an amino acid, X, is its SASA in the context

of a nonapeptide helix GGGG-X-GGGG computed with a
probe radius of 2.2 Å as above.

Exposed residues were defined as those with an rSASA
greater than 0.00, as in a previous study [73]. This thresh-
old rSASA value is justified for HMPs given the large probe
radius chosen in this study. As discussed before [25], this
threshold is also free from artifacts arising from normali-
zation and subsequent binary classification. Nevertheless,
it was argued that the threshold for a binary classification
should be set such that the data set is equally partitioned
into the two classes to avoid statistical artifacts. An rSASA
of 0.00 induces a slightly skewed partitioning of 44.14%
of buried residues and 55.86% of exposed ones. Equipar-
titioning of the data set was achieved with an rSASA of
0.04. Additional analysis showed that the conclusions

Prediction accuracy and coverage depending on confidence scoresFigure 1
Prediction accuracy and coverage depending on confidence scores. When considering all predictions (i.e. predictions with a 
confidence score ≥ 0.00), the prediction accuracy is 78.71% and the coverage is 100%. When considering only the 1440 predic-
tions with a confidence score ≥ 1.20, the prediction accuracy rises to 90.21% and the coverage falls down to 45.89%.
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drawn in this study remain fully valid for this new thresh-
old (data not shown).

Computation of profiles and conservation indices
In general, the use of a profile (the frequencies of the 20
amino acids for a sequence position) improves the per-
formance of sequence-based prediction methods. For
extracting profiles, one needs to generate MSAs. As with
any sequence-based prediction methods, the careful
choice of sequences in MSAs is very important for the per-
formance of the prediction method. MSAs generated
using different criteria would yield results of differing
quality. Thus, it would be desirable to generate "optimal"
MSAs for different query sequences. Unfortunately, it is
currently impossible to do so in an objective, consistent
manner without any prior knowledge about the three-
dimensional structures of the query sequences. Thus, a
reasonable approach that is also objective, consistent and
easily reproducible by others, was taken for generating
MSAs, even though it might produce suboptimal MSAs for
some query sequences. Its detail has been described else-
where [52,53]. Briefly, for a given query sequence, a max-
imum of 1000 homologous sequences were retrieved
from the non-redundant database using BLAST [63]. Ini-
tial MSAs were built using ClustalW [74]. Then, sequence
fragments were deleted from the MSA. Sequences that are

less than 25% identical to the query sequence were also
removed. The remaining sequences were realigned using
ClustalW to yield a final MSA, which was used to obtain
profiles. When deriving profiles from an MSA, amino acid
frequencies were weighted using a modified method of
Henikoff and Henikoff as implemented in PSI-BLAST
[63,75]. Actual computations were performed using the
program AL2CO [76]. Conservation indices (Eq. 5) were
also derived using AL2CO.

Support vector machines
The support vector classifier (SVC)/support vector regres-
sion (SVR) [50,62] implementation in R [64-66] was used
for the current work. The parameters for SVC/SVR were set
to default values unless otherwise noted. The YU method
was implemented using the SVR implementation in R as
described in [49].

Performance evaluation
A leave-one-out ('jack-knife') test was carried out to meas-
ure the performance of different prediction methods
examined in this study. For two-step prediction methods,
the jack-knife scheme was applied to both steps as it
should be. Prediction accuracies mean the fractions of the
benchmark data set for which the burial status was cor-
rectly predicted.

Table 9: 43 Protein chains used in the study

PDB ID Protein Chains

1. 1M0L Bacteriorhodopsin A
2. 1GZM Rhodopsin A
3. 1R3J KcsA potassium channel C
4. 1J4N Aquaporin A
5. 1LDF Glycerol facilitator channel A
6. 1XQF Ammonia channel A
7. 1OTS H+/Cl- exchanger A
8. 2A65 Leucine transporter A
9. 2CFQ Lactose permease A
10. 1YEW Methane monooxygenase B, C
11. 1SU4 Calcium ATPase A
12. 2BL2 Rotor of V-type Na+-ATPase A
13. 1DXR Photosynthetic reaction center L, M, H
14. 1KF6 Fumarate reductase (E. coli) C, D
15. 1QLA Fumarate reductase (W. succinogenes) C
16. 1KQF Formate dehydrogenase N B, C
17. 1Q16 Nitrate reductase A C
18. 1NEK Succinate dehydrogenase C, D
19. 1ZOY Complex II C, D
20. 1OKC Mitochondrial ADP/ATP carrier A
21. 1V55 Cytochrome C oxidase (aa3 type) B, D, G, I, J, L, M
22. 1EHK Cytochrome C oxidase (ba3 type) A, B
23. 1PP9 Cytochrome bc1 complex D, E, G, J
24. 2GIF AcrB multidrug efflux transporter A
25. 2IC8 GlpG rhomboid-family intramembrane 

protease
A

26. 2NQ2 Putative metal-chelate-type ABC transporter A
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