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Abstract
Background: Microarray time series studies are essential to understand the dynamics of
molecular events. In order to limit the analysis to those genes that change expression over time, a
first necessary step is to select differentially expressed transcripts. A variety of methods have been
proposed to this purpose; however, these methods are seldom applicable in practice since they
require a large number of replicates, often available only for a limited number of samples. In this
data-poor context, we evaluate the performance of three selection methods, using synthetic data,
over a range of experimental conditions. Application to real data is also discussed.

Results: Three methods are considered, to assess differentially expressed genes in data-poor
conditions. Method 1 uses a threshold on individual samples based on a model of the experimental
error. Method 2 calculates the area of the region bounded by the time series expression profiles,
and considers the gene differentially expressed if the area exceeds a threshold based on a model
of the experimental error. These two methods are compared to Method 3, recently proposed in
the literature, which exploits splines fit to compare time series profiles. Application of the three
methods to synthetic data indicates that Method 2 outperforms the other two both in Precision
and Recall when short time series are analyzed, while Method 3 outperforms the other two for
long time series.

Conclusion: These results help to address the choice of the algorithm to be used in data-poor
time series expression study, depending on the length of the time series.

Background
A crucial issue in genomic studies is the elucidation of
how genes change expression and interact as a conse-
quence of external/internal stimuli such as an illness, drug

administration, hormone stimuli, etc. Microarray technol-
ogy makes it possible to monitor simultaneously a large
number of gene transcripts through a series of different
experimental conditions. In particular, microarray time
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series studies are essential to understand the dynamics of
biological events at the molecular level.

A first necessary step in order to limit the analysis to those
genes that change expression over time is to select differ-
entially expressed transcripts. Selection methods pro-
posed in the literature usually deal with the comparison of
static (e.g. no treatment vs treatment) rather than dynamic
conditions, and are based on statistical tests [1,2]. These
methods test the significance of the differential expression
gene by gene. At least two replicates for each of the condi-
tions to be tested are necessary, but a higher number is
required to have reliable results. In time series experi-
ments, in which gene expression is monitored over time,
it is necessary to test differential expression at different
sampling times. ANOVA or ANOVA based procedures [3]
have been proposed to this purpose. However, since in
time series experiments replicates are often available only
for a limited number of samples, ANOVA tests are seldom
applicable. For this reason, differentially expressed genes
in time series experiments are often selected using an
empirical constant fold change threshold [4]. This is far
from ideal, since it is based on an arbitrary choice (e.g. FC
= 3), which does not take into account the characteristics
of the measurement error.

When the number of the replicates is not sufficient to
apply traditional statistical tests, alternative methods need
to be applied. Two methods based on a fit of the time
series were recently proposed in the literature [5,6]. These
methods fit the time series expression profiles using
respectively polynomials and splines. Comparison
between time series is based respectively on model param-
eters and goodness of fit. Both methods are really general
and do not require any replicates; however, it is not clear
the role of the number of available samples on their per-
formance.

Here we propose Methods 1 and 2 able to select differen-
tially expressed gene profiles in data-poor conditions,
based on a model of the experimental error. Their per-
formance is investigated in comparison to method [6]
(Method 3 in the following), based on splines fit, using
synthetic time series of different length. Finally, a case
study on insulin treated muscle cells is presented to better
appreciate the implementation aspects of Methods 1 and
2.

Methods
Selection strategy
Let's call xT(tk) and xC(tk) the log-expression measure-
ments in treated (T) and control (C) cultures, available for
a generic gene X at time sample tk (k = 1, ..., M, with M
number of time samples). Log expression measurement
are used, as in [7], because the signal is considered pro-

portional to the log of the measurements, the error is con-
sidered log-additive, and the large range of expression
intensities makes the log-expression practical.

The rationale adopted to label a gene X as differentially
expressed in condition T vs C is described in details for
methods 1 and 2 and is briefly reviewed for Method 3,
since we refer to [6] for further details.

Method 1
The deviation of expression of gene X in T and C is calcu-
lated for each sample tk as:

d(tk) = xT(tk) - xC(tk)  (1)

The gene is considered differentially expressed in T vs C if
|d(tk)| exceeds a threshold θd in at least one sampling time
tk (k = 1, ..., M):

|d(tk)| > θd  (2)

where θd is determined in correspondence to a signifi-
cance level α, based on the null hypothesis distribution of
d(tk). This distribution is modeled from d(tk) values cal-
culated by Equation 1, with xT(tk) and xC(tk) measured on
experimental replicates (see below), which provide a situ-
ation where genes are not differentially expressed, so that
the null hypothesis is verified. Therefore, replicates of at
least one time sample are necessary, to apply Method 1.

Method 2
The area A bounded by the two expression profiles T and
C (Figure 1) is calculated for each gene X as the sum of the
contributions of partial areas from consecutive pairs of
samples:

Each contribution Ak is calculated from the deviation of
expression in T and C (Equation 1), as:

The gene X is considered differentially expressed in T vs C
if the following inequality holds:

A > θA  (5)

where θA is a threshold to be determined, in correspond-
ence to a significance level α, based on the null hypothesis
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Experiment outlineFigure 1
Experiment outline. The case study provides a typical example of experimental design in time series gene expression stud-
ies. Samples are collected from an insulin treated and a control culture. The expression level measured in treated and control 
culture for a single probe-set (corresponding to "Early growth response 1" gene) is shown in the lower part of the Figure. The 
area A bounded by the two expression profiles T and C is coloured in gray.
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distribution of A, i.e. the distribution of A derived from
experimental replicates (see below for its calculation).

Method 3
For each gene X, the expression profiles C and T are fitted
using natural cubic splines. The null hypothesis is that
both C and T time series share the same fit, the alternative
hypothesis is that the fits are not equal. As a first step of
the method, the same spline function is fitted simultane-
ously to the two profiles C and T and the sum of squares
residuals SS0 is calculated; then two different spline func-
tions are fitted separately to time series C and T and the
sum of squares residuals SS1 is computed. To assess differ-
entially expressed genes, the goodness of model fit under
the null hypothesis is compared to that under the alterna-
tive hypothesis, by calculating a statistic F as:

Gene X is considered differentially expressed if the follow-
ing inequality holds:

F > θF  (7)

where θF is a threshold to be determined, in correspond-
ence to a significance level α, based on the null hypothesis
distribution of F.

Null hypothesis distribution model
Both Methods 1 and 2 are based on a threshold derived
from the null hypothesis distribution of d(tk) and A,
respectively, obtained using available replicates. We
denote as "available replicates" replicates available for a
subset of time samples (therefore we assume replicates
available for at least one time sample).

Let's suppose two experimental replicates are available for
a generic time tk and a generic experimental condition (T
or C). By assuming a log-additive error model as in [7], the
log-expression measurement of each gene X in replicates a
and b, can be expressed as:

where μ represents the actual gene expression (unknown)
and εa, εb are two realizations of the error variable ε, mon-
itoring both technical and biological variability. The indi-
ces for condition and time tk are omitted here because we
refer to pair of replicates available for a generic time sam-
ple tk.

Null hypothesis distribution of variable d
To quantify the deviation of expression d(tk) under the
null hypothesis, Equation 1 is applied to available repli-
cates as:

dH0 = xa - xb = εa - εb  (9)

Different distribution models (t-Student distribution, bi-
exponential distribution, and mixture models of N Gaus-
sians, N = 1, ..., 6) are used to fit the set of dH0 values
obtained by applying Equation 9 to all genes and availa-
ble replicates. The best model is selected based on the
goodness of fit and the parameters precision, and is used
as the null hypothesis distribution of d(tk) to determine θd
to be used in Equation 2.

To determine the threshold in correspondence to a signif-
icance level α, Method 1 uses a model to fit the observed
statistics rather than using quantiles. The reason for this
choice is that the lack of a sufficient number of observa-
tions from available replicates renders the determination
of appropriate thresholds difficult when low significance
levels are chosen, as often the case in microarray studies.
If a sufficient number of replicates is available to guaran-
tee a good threshold setting at the desired significance
level α, it may be preferable to use quantiles.

Null hypothesis distribution of variable A
At least two replicates for each time sample would be nec-
essary to derive A distribution under the null hypothesis
from the data. Since we address selection of differentially
expressed genes in data-poor condition, i.e. a sufficient
number of replicates is not available, a Monte Carlo pro-
cedure is used to derive the null distribution of A. First,
dH0 distribution is derived from d(tk) values obtained
from available replicates as described above. Then, B pro-
files of length M are sampled from dH0 (here we used B =
104) under the hypothesis that the error at different time
samples is independent and identically distributed. Sub-
sequently, B values of AH0 are calculated from these pro-
files. Finally, different distribution models (Gamma, Log-
normal, Weibull) are used to fit the entire set of AH0 values
and the best model is chosen based on goodness of fit and
parameter precision. This model is used as the null
hypothesis distribution of A to determine θA to be used in
Equation 5.

As for Method 1, a model is fitted to the observed statistics
rather than using quantiles to determine the threshold in
correspondence to a significance level α.

Null hypothesis distribution of variable F
The null distribution of F is obtained using bootstrap. See
[6] for details.
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Intensity dependency of error
In Affymetrix chips it is well known that dH0 has an inten-
sity dependent distribution [8]. In particular, analysis of
technical replicates of Affymetrix Human chip has shown
that the standardized variable sH0 (obtained dividing dH0

by its standard deviation):

has an intensity independent distribution [8]. Therefore,
in case of data showing intensity dependency of the vari-
able dH0, it is convenient to model sH0 distribution, as
indicated in the Additional File 1, to derive the threshold
θd to be used in Equation 2. Consistently, the values of
d(tk) observed from the data are standardized before
applying Equation 2, if Method 1 is used:

Analogously, if Method 2 is used on data showing inten-
sity dependency of the variable dH0, AH0 and θA are derived
using sH0 and the values of A observed from the data
(Equation 4) are calculated using s(tk) instead of d(tk).

Threshold setting
Once the null hypothesis distribution of d, A and F are
obtained, thresholds θd, θA and θF are determined in corre-
spondence to a significance level α. Rather than fixing it a
priori, α can be optimized based on a variety of criteria
aiming to control the family wise error rate (FWER) [9], or
the false discovery rate (FDR) [10,11] or a compromise
between false positive and false negative classification
[12]. As an example, let's focus on a criterion based on the
control of FDR, defined as the expected proportion of
false positive classification (FP) among the number Sα of
genes selected as differentially expressed, using signifi-
cance level α:

In case of numerous sets as for microarrays, FDR is well
approximated by

Calculating FDR requires the estimate of the expected
number of false positives, obtained as the product of α by
the number N0 of non differentially expressed genes:

E [FP] = N0 · α  (14)

N0 is unknown and is estimated using the bootstrap pro-
cedure described in [13].

FDR is calculated for a range of significance levels α and
the significance level that guarantees the desired FDR is
then used to select differentially expressed genes.

Since Method 1 applies M tests (corresponding to individ-
ual time points) for each gene, the significance level α for
Method 1 is corrected by applying Šidák correction [14] in
order to account for multiple testing.

Simulation
Three different experimental conditions with a number of
time samples M = 10, 30, 50 were simulated. 100 syn-
thetic data sets were generated for each experimental con-
dition, each consisting of 2000 profiles: 300 simulated as
differentially expressed and the remaining as random
noise. In both cases, the deviation of expression in T vs C
was generated at each sampling time tk as standardized
deviation:

s(tk) ~ N(μk, σ2) ∀k = 1, ..., M  (15)

where σ2 was set equal to 1 and μk = 0 (k = 1, ..., M) for not
differentially expressed genes; while, for differentially
expressed genes, plausible profiles were obtained by mod-
eling μk as dependent on μk-1 according to a first order
Markov model (see Additional File 1 for details), with the
only constraint of being greater than 1 (or lower than -1)
for at least one time samples.

Samples k = 1 were generated twice for each gene, so as to
provide replicates useful to apply Method 1 and 2. These
replicates were included also in the analysis for method 3.
Simulated data were used to test the performance of the
methods in different experimental conditions. After the
null hypothesis distributions of variables d(tk), A and F
are modeled as described above, a significance level α had
to be fixed to determine the confidence thresholds θd, θA
and θF to be used in Equations 2, 5 and 7 respectively. We
compared the performance of the three methods across
the entire range of significance level α by using Precision
(true positives divided by the number of selected genes) vs
Recall (true positives divided by the number of differen-
tially expressed genes), and curves of observed false posi-
tives divided by the number of selected genes (observed
FDR) vs number of selected genes. Moreover, we com-
pared the average results obtained with the 3 methods by
setting α in correspondence to a desired FDR of 0.05, in
terms of number of selected genes and observed false pos-
itives divided by the number of selected genes. All meas-
urements were averaged across the 100 simulations.
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Insulin case study
To better appreciate some characteristics of Methods 1
and 2 related to the experimental error modeling, the
analysis of the null hypothesis distribution of the varia-
bles d(tk) and A (Equation 1 and 4) was applied to a real
case study on rat muscle cells treated with insulin. The
study was performed in vitro, on muscle L6 rat cell line.
Cells were treated with insulin at time 0+, just after the
collection of a first baseline sample at time 0; eight sam-
ples were harvested every hour during eight hours insulin
stimulation. A control experiment was also performed in
order to be able to distinguish between insulin effect and
biological processes of different nature, which take place
in the culture simultaneously to insulin induced processes
(Figure 1). A total of twenty Affymetrix chips RG_U34A
(monitoring 8.799 transcripts) were hybridized using four
replicates of the basal sample, eight samples collected
from the control culture, and eight samples collected from
the treated culture. Standard Affymetrix MAS 5 software
[15] was used for data pre-processing.

Results
Simulation
An example of simulated data with M = 10 is shown in
Figure 2, as clusters obtained by using Self Organizing
Maps [16] and Pearson Correlation as similarity measure
on one of the simulated data-set (M = 10). The average
profile is shown for each cluster, together with standard
deviation bars; the number of genes for each cluster is also
reported. A variety of profiles are represented, such as
genes differentially expressed in one or few peaks appar-
ently uncorrelated (1st row panels), profiles that show
characteristic bumps and waves of different length (2nd

and 3rd row panels) or consistent trends along the time
series, accompanied by few (3rd row panels) or numerous
(4th row panels) time samples with average absolute value
greater than the error standard deviation σ (Equation 15).

Results obtained by applying Methods 1, 2 and 3 to 100
simulated data sets are shown as average Precision at dif-
ferent ranges of Recall intensities in Figure 3, left panels.
Average and standard deviations across the 100 simula-
tions are reported. Method 2 slightly outperforms Method
1 for Precision higher than 0.6, since it provides higher
values of both Precision and Recall in all the different
sampling conditions. For values of Precision lower than
0.6, the two curves are almost superimposable. Both
methods 1 and 2 work better than Method 3 for short time
series (M = 10, M = 30), while for long time series (M =
50) the performance of the Methods 2 and 3 is similar,
with Method 3 slightly superior to Methods 2. The areas
under the curves (AUC) are also reported in Figure 3 (left
panels). To better appreciate the ability of the three Meth-
ods to select differentially expressed genes at low FDR, Fig-
ure 3 (right panels) shows the number of observed false

positives divided by the number of selected genes
(observed FDR) for different numbers of selected genes in
the range 0–300: Method 2 provides number of false pos-
itives divided by the number of selected genes always
lower than that obtained with Method 1; Method 3 is
slightly superior to Method 2 for M = 50, but inferior to
both Methods 1 and 2 for M = 10 and M = 30. The per-
formance of the three Methods with respect to each other
is not affected by the number of differentially expressed
genes (results not shown).

Table 1 shows the average number of selected genes and
the proportion of false positives among the number of
selected genes obtained by setting the confidence thresh-
old according to an expected FDR of 0.05 estimated as
described in section Methods (Equations 13, 14). Results
confirm the ability of Method 2 to select more genes than
the other two methods at a desired FDR, for M = 10 and
M = 30. Moreover, the observed proportion of false posi-
tives among the number of selected genes is close to the
estimated 0.05 for Method 2, while for Method 1 it is
higher than the expected for M = 30 and M = 50. The per-
formance of Method 3 is poor for short time series with M
= 10, with an observed proportion of false positives
among the number of selected genes much higher than
0.05 and a low number of selected genes (equal to 8).
Method 3 outperforms Method 2 for M = 50, both in
terms of number of selected genes and proportion of false
positives on number of selected genes, thus confirming
results shown in Figure 3 (right panels).

Insulin case study
Error
In this section we present the estimate of the null hypoth-
esis distribution of variable d(tk) (Equation 1) and varia-
ble A (Equation 4). Figure 4 shows the values of dH0

(upper, left panel) (obtained by applying Equation 9 to
the four available replicates) and its standardized value
sH0 (lower, left panel) plotted vs the average intensity of
gene expression values (details on standardization step
are given in Additional File 1). Figure 4 (right panels)
shows the average variance of dH0 and sH0 vs the intensity
range of gene expression discretized in intervals of con-
stant size. Results confirm that while dH0 has an intensity-
dependent distribution, sH0 has not [8] (results were
insensitive to the bin size used to discretize the range of
average intensity values). The entire set of sH0 values was
fitted using different distribution models (see Additional
File 1 for details). The Gaussian mixture model with N =
2 was chosen as the best model. Model parameters and
their precision are shown in Table 2. Monte Carlo proce-
dure was then used to derive the null distribution of A: B
profiles of length M = 8 were sampled from sH0 distribu-
tion and B = 10000 values of AH0 were calculated from
these profiles. Three different distribution models
Page 6 of 13
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(Gamma, Log-normal, Weibull) were used to fit the entire
set of AH0 values. The best fit for AH0 was obtained with
Gamma distribution (Figure 5 and Table 3).

Gene Selection
We applied the three Methods to the data, adopting the
false discovery rate as criterion for threshold setting. Table

Simulated dataFigure 2
Simulated data. Standardized deviation s(tk) (k = 1, ..., M) between treated and control gene expression for 300 simulated 
differentially expressed profiles of a simulated data set (number of time samples M = 10) is shown as clusters obtained by using 
Self Organizing Maps and Pearson Correlation as similarity measure. For each cluster the average profile ± standard deviation 
and the number of genes are shown. The two horizontal lines correspond to the ± σ = ± 1 (Equation 15).
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Methods performance for simulated dataFigure 3
Methods performance for simulated data. Average Precision at different Recall intensities (left panels) and number of 
false positives divided by the number of selected genes for different number of selected genes (right panels) obtained on 100 
simulated data sets, using methods 1, 2 and 3 on time series of 10 (upper left panel), 30 (upper right panel), and 50 (lower left 
panel) samples. AUCs are also reported for Precision vs Recall curves.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

Recall

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

# selected genes

F
P

/(
# 

se
le

ct
ed

 g
en

es
)

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

# selected genes

F
P

/(
# 

se
le

ct
ed

 g
en

es
)

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

# selected genes

F
P

/(
# 

se
le

ct
ed

 g
en

es
)

Method 1
Method 2
Method 3

Method 1 (AUC=0.60)
Method 2 (AUC=0.58)
Method 3 (AUC=0.26)

Method 1 (AUC=0.61)
Method 2 (AUC=0.59)
Method 3 (AUC=0.50)

Method 1 (AUC=0.62)
Method 2 (AUC=0.59)
Method 3 (AUC=0.63)

Method 1
Method 2
Method 3

Method 1
Method 2
Method 3

# time samples = 10 # time samples = 10

# time samples = 30 # time samples = 30

# time samples = 50 # time samples = 50



BMC Bioinformatics 2007, 8(Suppl 1):S10 http://www.biomedcentral.com/1471-2105/8/S1/S10
4 shows the number of probe-sets selected by each of the
three methods for FDR equal to 0.001, 0.005, 0.01, 0.05
respectively. Results confirm those obtained by using sim-
ulation, i.e. the ability of Method 2 to select a higher
number of differentially expressed genes at controlled
FDR for short time series. Since focus here is methodol-
ogy, biological results are not discussed further; confirma-
tion studies and biological interpretation will be
presented in a different article.

Discussion
In this work we evaluated the performance of two selec-
tion methods here proposed to be applied in time series
studies in data-poor conditions, i.e. when the number of
available replicates does not make possible or practical
the use of standard statistical methods. We also tested the
two methods in comparison with a third method from the
literature.

Method 1 compares samples time by time using a statisti-
cally based fold change threshold derived from a null
hypothesis distribution of variable d(tk). To this purpose,
replicates of at least one time sample are necessary. Since
the threshold is derived based on the experimental varia-
bility, Method 1 accounts for the error characteristics, e.g.
its intensity dependence; therefore, for example using
Affymetrix chips, genes expressed at high intensities are
not penalized with respect to genes at low intensities,
which show a higher variability (Figure 4). Although

Method 1 improves upon the use of a constant empirical
fold change threshold, it considers time samples inde-
pendently to each other, which is not a realistic assump-
tion in time series studies. Method 2 calculates the area of
the region bounded by the time series expression profiles
to be compared and considers the gene differentially
expressed if this area exceeds a threshold based on a
model of the experimental error; therefore, besides
accounting for the error distribution, it considers the
entire expression profile and not single time samples. Also
this method needs replicates for at least one time sample
in order to derive the null hypothesis distribution. Both
Methods 1 and 2 assumes as working hypothesis that the
error at different time points is independent and identi-
cally distributed. This hypothesis, on our experience, is
usually verified on real data (data not shown). However,
for some experimental settings there may be a depend-
ency of the error on time. In this latter case, it would be
more appropriate to perform replicates at different time
samples, covering the duration of the experiment, and use
Method 1 with time dependent threshold settings. Meth-
ods 1 and 2 can be applied to compare time series from 2
different experimental conditions or a time series vs its
baseline (e.g. time 0), by defining the deviation of expres-
sion of gene × for each sample tk (Equation 1) as the devi-
ation between treated at time tk and the baseline.
Moreover, if the sampling grid is different for the two time
series, Method 2 can be easily generalized by generating
AH0 distribution from B time series with appropriate sam-
pling grid.

Table 3: AH0 distribution parameters. Parameters of the Gamma 
distribution of AH0.

Parameter Estimate Precision

shape 8.9 0.1
rate 1.91 0.03

Table 1: Results on simulated data for threshold setting based on desired FDR = 0.05. 

Method 1 Method 2 Method 3

# selected genes # FP/# sel.genes # selected genes # FP/# sel.genes # selected genes # FP/# sel.genes

M = 10 73 
(17)

0.045 
(0.027)

100 
(8)

0.040 
(0.014)

8 
(10)

0.304 
(0.334)

M = 30 91 
(21)

0.078 
(0.045)

120 
(13)

0.059 
(0.028)

83 
(10)

0.098 
(0.046)

M = 50 96 
(16)

0.068 
(0.024)

126 
(12)

0.058 
(0.021)

130 
(12)

0.053 
(0.027)

All measurements were averaged across the 100 simulations; standard deviations are reported in parenthesis .Number of selected genes and 
number of false positives divided by the number of selected genes, obtained by applying the 3 methods on simulated data (setting a in 
correspondence to a desired FDR of 0.05).

Table 2: sH0 distribution parameters. Parameters of the sum of 
two Gaussian mixture model for the distribution of sH0.

Parameter Estimate Precision

a1 0.64 0.03
m1 -0.07 0.01
m2 0.12 0.03
sd1 0.69 0.02
sd2 1.39 0.03
Page 9 of 13
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Table 4: Number of selected genes on real data for different threshold settings.

FDR # selected genes 
Method 1

# selected genes 
Method 2

# selected genes 
Method 3

0.001 216 50 6

0.005 279 87 14

0.01 320 100 15

0.05 451 156 46

Number of genes selected applying the 3 methods on real data (by setting α in correspondence to a desired FDR of 0.001, 0.005, 0.01, 0.05).

Intensity dependency of the errorFigure 4
Intensity dependency of the error. Left panels: deviation of expression in Treated vs Control profiles calculated from pair 
of replicated measurements as a function of expression before (upper panel) and after standardization (lower panel). Right pan-
els: average variance of dH0 (upper panel) and sH0 (lower panel) at different intensities. Dots represent mean variance of dH0 

(sH0) calculated in intervals of constant size (equal to 0.1).
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Fit of AH0 distributionFigure 5
Fit of AH0 distribution. AH0 distributions (in black) fitted with a Gamma (upper panel) a Log-normal (central panel) and a 
Weibull distribution (lower panel).
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Method 3 [6] uses natural cubic splines to fit time series
expression data using a null hypothesis and an alternative
hypothesis model, and performs a statistical test on the
sum of squares residuals obtained using the two models
to assess differential expression. It therefore, besides con-
sidering the entire expression profiles, implicitly consid-
ers time dependencies. Moreover, it does not need any
experimental replicate, which makes it practical for a wide
range of time series microarray experiments.

We tested the performance of the three methods using
synthetic data to assess their validity over a range of exper-
imental conditions, specifically the length of the analyzed
time series. In the simulation, we used a Markov model to
generate plausible data, accounting for the dependencies
of time samples and not biased toward one of the meth-
ods. Taking for example μk equal to an arbitrary constant
for a random subset of time samples tk (k = 1, ..., M) in
Equation 12, would not have accounted for time depend-
encies, and would have generated non realistic oscillation
in the profiles, thus penalizing Method 3 which is based
on a model fit, with respect to the other methods, in par-
ticular Method 1, which applies a threshold on each time
sample. Moreover, simulated profiles (Figure 2) represent
a variety of possible situations in time series expression,
such as profiles characterized by one or few peaks, waves
of different length or consistent trends along the time
series.

Results on simulated data showed that Method 2 outper-
forms Method 1 independently from the length of the
time series being analyzed, probably because, as Method
1 is based on single sample comparisons, it is particularly
sensitive to random fluctuations due to the noise, thus
resulting in a larger number of false positives. Method 2
constitutes an improvement with respect to Method 1
since the entire expression profile is considered simulta-
neously and this allows better distinguishing between
consistent differences in expression profiles and random
oscillations, thus resulting in a lower false negative rate.
Method 3, as Method 2, considers the entire expression
profile, but performs better than Method 2, only for long
time series (M = 50).

Looking at the ability of the methods to classify profiles
with particular characteristics, we observed that Method 1
works better than Method 2 to detect differentially
expressed genes that show just one or two peaks as differ-
entially expressed. On the opposite, Method 2 works bet-
ter than Method 1 in detecting profiles characterized by
waves of length greater than three samples, so as profiles
that show a characteristic increasing/decreasing trend.
Method 3, as Method 2, is better in detecting bumps and
consistent trends in the profiles, than in detecting isolated
peaks. However, it needs long time series (M = 50) to per-

form better than Method 2, probably because the fit are
more reliable when performed on long time series;
Method 3 was in fact proposed by the authors on real case
studies with more than 40 samples. These results are cer-
tainly of interest to address the choice of the algorithm to
be used in data-poor time series expression studies,
depending on the availability of replicates and on the
length of the time series.

Conclusion
Microarray time series studies are essential to understand
the dynamics of biological molecular events. In order to
limit the analysis to those genes that change expression
over time, it is necessary to select differentially expressed
transcripts. Due to the high cost of microarrays, experi-
ments are often performed without replication; therefore,
traditional statistical methods can't be applied. Here we
evaluate the performance of two selection methods appli-
cable in data poor conditions, based on: a statistically
based threshold on individual samples; a statistically
based threshold to be applied on the area of the region
bounded by the time series expression profiles to be com-
pared.

Application on a real data set on insulin regulation on
muscle cells, obtained using Affymetrix chips, revealed as
the error analysis performed using Methods 1 and 2 may
be useful to detect error characteristics such as intensity
dependencies and to properly address these feature by
standardization.

We evaluated Methods 1 and 2 performance using simu-
lated data with a different number of available samples
and compared these performance with those obtained
using Method 3, based on a splines fit of time series pro-
files. The results outlines that the two error based Methods
1 and 2 work better than Method 3 with short time series
experiments, while Method 3 works better than Methods
1 and 2 with long time series experiments. These results
might help to optimize the choice of the algorithm to be
used in different experimental conditions.

A preliminary version of Method 2, implemented in R, is
available at [17].
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