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Abstract
Background: Cluster analysis has been widely applied for investigating structure in bio-molecular
data. A drawback of most clustering algorithms is that they cannot automatically detect the
"natural" number of clusters underlying the data, and in many cases we have no enough "a priori"
biological knowledge to evaluate both the number of clusters as well as their validity. Recently
several methods based on the concept of stability have been proposed to estimate the "optimal"
number of clusters, but despite their successful application to the analysis of complex bio-molecular
data, the assessment of the statistical significance of the discovered clustering solutions and the
detection of multiple structures simultaneously present in high-dimensional bio-molecular data are
still major problems.

Results: We propose a stability method based on randomized maps that exploits the high-
dimensionality and relatively low cardinality that characterize bio-molecular data, by selecting
subsets of randomized linear combinations of the input variables, and by using stability indices based
on the overall distribution of similarity measures between multiple pairs of clusterings performed
on the randomly projected data. A χ2-based statistical test is proposed to assess the significance of
the clustering solutions and to detect significant and if possible multi-level structures simultaneously
present in the data (e.g. hierarchical structures).

Conclusion: The experimental results show that our model order selection methods are
competitive with other state-of-the-art stability based algorithms and are able to detect multiple
levels of structure underlying both synthetic and gene expression data.

Background
Unsupervised clustering algorithms play a crucial role in
the exploration and identification of structures underlying
complex bio-molecular data, ranging from transcriptom-
ics to proteomics and functional genomics [1-4].

Unfortunately, clustering algorithms may find structure in
the data, even when no structure is present instead. More-
over, even if we choose an appropriate clustering algo-
rithm for the given data, we need to assess the reliability
of the discovered clusters, and to solve the model order
selection problem, that is the proper selection of the "nat-
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ural" number of clusters underlying the data [5,6]. From a
machine learning standpoint, this is an intrinsically "ill-
posed" problem, since in unsupervised learning we lack
an external objective criterion, that is we have not an
equivalent of a priori known class label as in supervised
learning, and hence the evaluation of the reliability of the
discovered classes becomes elusive and difficult. From a
biological standpoint, in many cases we have no sufficient
biological knowledge to "a priori" evaluate both the
number of clusters (e.g. the number of biologically dis-
tinct tumor classes), as well as the validity of the discov-
ered clusters (e.g. the reliability of new discovered tumor
classes) [7].

To deal with these problems, several methods for assess-
ing the validity of the discovered clusters and to test the
existence of biologically meaningful clusters have been
proposed (see [8] for a review).

Recently, several methods based on the concept of stabil-
ity have been proposed to estimate the " optimal" number
of clusters in complex bio-molecular data [9-11]. In this
conceptual framework multiple clusterings are obtained
by introducing perturbations into the original data, and a
clustering is considered reliable if it is approximately
maintained across multiple perturbations.

Different procedures have been introduced to randomly
perturb the data, ranging from bootstrapping techniques
[9,12,13], to noise injection into the data [14] or random
projections into lower dimensional subspaces [15,16].

In particular, Smolkin and Gosh [17] applied an unsuper-
vised version of the random subspace method [18] to esti-
mate the stability of clustering solutions. By this
approach, subsets of features are randomly selected mul-
tiple times, and clusterings obtained on the correspond-
ing projected subspaces are compared with the clustering
obtained in the original space to assess its stability. Even
if this approach gives useful information about the relia-
bility of high-dimensional clusterings, we showed that
random subspace projections may induce large distor-
tions in gene expression data, thus obscuring their real
structure [15]. Moreover, a major problem with data per-
turbations obtained through random projections from a
higher to a lower dimensional space is the choice of the
dimension of the projected subspace.

In this paper we extend the Smolkin and Gosh approach
to more general randomized maps from higher to lower-
dimensional subspaces, in order to reduce the distortion
induced by random projections. Moreover, we introduce
a principled method based on the Johnson and Linden-
strauss lemma [19] to properly choose the dimension of
the projected subspace. Our proposed stability indices are

related to those proposed by Ben-Hur et al. [13]: their sta-
bility measures are obtained from the distribution of sim-
ilarity measures across multiple pairs of clustered data
perturbed through resampling techniques. In this work
we propose stability indices that depend on the distribu-
tion of the similarity measures between pairs of cluster-
ings, but data perturbation is realized through random
projections to lower dimensional subspaces, in order to
exploit the high-dimensionality of bio-molecular data.

Another major problem related to stability-based meth-
ods is to estimate the statistical significance of the struc-
tures discovered by clustering algorithms. To face this
problem we propose a χ2-based statistical test that may be
applied to any stability method based on the distribution
of similarity measures between pairs of clusterings. We
experimentally show that by this approach we may dis-
cover multiple structures simultaneously present in the
data (e.g. hierarchical structures), associating a p-value to
the clusterings selected by a given stability-based method
for model order selection.

Methods
In this section we present our approach to stability-based
model order selection, considering randomized maps
with bounded distortion to perturb the data, stability
indices based on the distribution of the clustering similar-
ity measures, and finally we present our χ2-based test for
assessing the significance of the clustering solutions.

Data perturbations using randomized maps with bounded 
distortions
A major requirement for clustering algorithms is the
reproducibility of their solutions with other data sets
drawn from the same source; this is particularly true with
bio-molecular data, where the robustness of the solutions
is of paramount importance in bio-medical applications.
From this standpoint the reliability of a clustering solu-
tion is tied to its stability: we may consider reliable a clus-
ter if it is stable, that is if it is maintained across multiple
data sets drawn from the same source. In real cases, how-
ever, we may dispose only of limited data, and hence we
need to introduce multiple " small" perturbations into the
original data to simulate multiple "similar" samples from
the same underlying unknown distribution. By applying
appropriate indices based on similarity measures between
clusterings we can then estimate the stability and hence
the reliability of the clustering solutions.

We propose to perturb the original data using random
projections μ : �d → �d' from high d-dimensional spaces
to lower d'-dimensional subspaces. A related approach is
presented in [17], where the authors proposed to perturb
the data randomly choosing a subset of the original fea-
tures (random subspace projection [18]); the authors did
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not propose any principled method to choose the dimen-
sion of the projected subspace, but a key problem consists
in finding a d' such that for every pair of data p, q ∈ �d, the
distances between the projections μ(p) and μ(q) are
approximately preserved with high probability. A natural
measure of the approximation is the distortion distμ:

If distμ(p, q) = 1, the distances are preserved; if 1 - ε ≤
distμ(p, q) ≤ 1 + ε, we say that an ε-distortion level is intro-
duced.

In [15] we experimentally showed that random subspace
projections used in [17] may introduce large distortions
into gene expression data, thus introducing bias into sta-
bility indices based on this kind of random projections.
For these reasons we propose to apply randomized maps
with guaranteed low distortions, according to the Johnson-
Lindenstrauss (JL) lemma [19], that we restate in the follow-
ing way: Given a d-dimensional data set D = {p1, p2,...,pn}
⊂ �d and a distortion level ε, randomly choosing a d'-
dimensional subspace S ⊂ �d, with d' = c logn/ε2, where c
is a suitable constant, with high probability (say ≥ 0.95)
the random projection μ :�d → S verifies 1 - ε ≤ distμ(pi, pj)
≤ 1 + ε for all pi ≠ pj.

In practice, using randomized maps that obey the JL
lemma, we may perturb the data introducing only
bounded distortions, approximately preserving the metric
structure of the original data [15]. Note that the dimen-
sion of the projected subspace depends only on the cardi-
nality of the original data and the desired ε-distortion,
and not from the dimension d of the original space.

The embedding exhibited in [19] consists in projections
from �d in random d'-dimensional subspaces. Similar
results may be obtained by using simpler maps [20,21],
represented through random d' × d matrices

, where rij are random variables such that:

E[rij] = 0, Var[rij] = 1

Strictly speaking, these are not projections, but for sake of
simplicity, we call random projections even this kind of
embeddings. Examples of random projections are the fol-
lowing:

1. Bernoulli random projections: represented by d' × d

matrices , where rij are uniformly chosen in

{-1, 1}, such that Prob(rij = 1) = Prob(rij = -1) = 1/2 (that is

the rij are Bernoulli random variables). In this case the JL

lemma holds with c � 4.

2. Achlioptas random projections [20]: represented by d' ×

d matrices , where rij are chosen in {- , 0,

}, such that Prob(rij = 0) = 2/3, Prob(rij = ) = Prob(rij

= - ) = 1/6. In this case also we have E[rij] = 0 and

Var[rij] = 1 and the JL lemma holds.

3. Normal random projections [21,22]: this JL lemma com-
pliant randomized map is represented by a d' × d matrix

, where rij are distributed according to a

gaussian with 0 mean and unit variance.

4. Random Subspace (RS) [17,18]: represented by d' × d

matrices , where rij are uniformly chosen

with entries in {0, 1}, and with exactly one 1 per row and
at most one 1 per column. Unfortunately, RS does not sat-
isfy the JL lemma.

Using the above randomized maps (with the exception of
RS projections), the JL lemma guarantees that, with high
probability, the "compressed" examples of the data set
represented by the matrix DR = RD have approximately the
same distance (up to a ε-distortion level) of the corre-
sponding examples in the original space, represented by
the columns of the matrix D, as long as d' ≥ c logn/ε2.

We propose a general MOSRAM (Model Order Selection
by RAndomized Maps) algorithmic scheme, that imple-
ments the above ideas about random projection with
bounded distortions to generate a set of similarity indices
of clusterings obtained by pairs of randomly projected
data. The main difference with respect to the method pro-
posed in [13] is that by our approach we perturb the orig-
inal data using a randomized mapping μ : �d → �d':

MOSRAM algorithm
Input:

D : a dataset;

kmax: max number of clusters;

m : number of similarity measures;

μ : a randomized map;

: a clustering algorithm;

dist p q
p q

p qμ
μ μ

( , )
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sim : a clustering similarity measure.

Output:

M(i, k): a bidimensional list of similarity measures for
each k (1 ≤ i ≤ m, 2 ≤ k ≤ kmax)

begin

for k := 2 to kmax

for i := 1 to m

begin

proja := μ(D)

projb := μ(D)

Ca := (proja, k)

Cb := (projb, k)

M(i, k) := sim(Ca, Cb)

end

end.

The algorithm computes m similarity measures for each
desired number of clusters k. Every measure is achieved by
applying sim to the clustering Ca and Cb, outputs of the

clustering algorithm , having as input k and the pro-
jected data proja and projb. These data are generated

through randomized maps μ, with a desired distortion

level ε. It is worth noting that we make no assumptions
about the shape of the clusters, and in principle any clus-

tering algorithm , randomized map μ, and clustering
similarity measure sim may be used (e.g. the Jaccard or the
Fowlkes and Mallows coefficients [23]).

Stability indices based on the distribution of the similarity 
measures
Using the similarity measures obtained through the MOS-
RAM algorithm, we may compute stability indices to
assess the reliability of clustering solutions.

More precisely, let  be a clustering algorithm, ρ a ran-
dom perturbation procedure (e.g. a resampling or a ran-
dom projection) and sim a suitable similarity measure
between two clusterings (e.g. the Fowlkes and Mallows
similarity).

We may define the random variable Sk, 0 ≤ Sk ≤ 1:

Sk = sim( (D1, k), (D2, k))  (2)

where D1 = ρ(1)(D) and D2 = ρ(2)(D) are obtained through
random and independent perturbations of the data set D;
the intuitive idea is that if Sk is concentrated close to 1, the
corresponding clustering is stable with respect to a given
controlled perturbation and hence it is reliable.

Let fk(s) be the density function of Sk and Fk(s) its cumula-
tive distribution function. A parameter of concentration
implicitly used in [13] is the integral g(k) of the cumula-
tive distribution:

Note that if Sk is centered in 1, g(k) is close to 0, and hence
it can be used as a measure of stability. Moreover, the fol-
lowing facts show that g(k) is strictly related to both the
expectation E[Sk] and the variance Var[Sk] of the random
variable Sk:

Fact 1
E[Sk] = 1 - g(k).

Indeed, integrating by parts:

Fact 2
Var[Sk] ≤ g(k)(1 - g(k).

Since 0 ≤ Sk ≤ 1 it follows  ≤ Sk; therefore, using Fact 1:

Var[Sk] = E[ ] - E[Sk]2 ≤ E[Sk] - E[Sk]2 = g(k)(1 - g(k))

(5)

In conclusion, g(k) � 0 then E[Sk] � 1 and Var[Sk] = 0, i.e.
Sk is centered close to 1. As a consequence, E[Sk] can be
used as an index of the reliability of the k-clustering: if
E[Sk] � 1, the clustering is stable, if E[Sk] <<> 1 the clus-
tering can be considered less reliable.

We can estimate E[Sk] by means of m similarity measures
M(i, k)(1 ≤ i ≤ m) computed by the MOSRAM algorithm.
In fact E[Sk] may be estimated by the empirical mean ξk:
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A χ2-based test for the assessment of the significance of the 
solutions
In this section we propose a method for automatically
finding the " optimal" number of clusters and to detect
significant and possibly multi-level structures simultane-
ously present in the data. First of all, let us consider the
vector (ξ2, ξ3,...,ξH+1) (eq. 6) computed by using the out-
put of the MOSRAM algorithm. We may perform a sorting
of this vector:

where p is the permutation index such that ξp(1) ≥ ξp(2) ≥ ...
≥ ξ(H). Roughly speaking, this ordering represents the
"most reliable" p(1)-clustering down to the least reliable
p(H)-clustering; exploiting this we would establish which
are the significant clusterings (if any) discovered in the
data.

To this end, for each k ∈  = {2, 3,...,H + 1}, let us con-
sider the random variable Sk defined in eq. 2, whose

expectation is our proposed stability index. For all k and

for a fixed threshold to ∈ [0, 1] consider the Bernoulli ran-
dom variable Bk = I(Sk > to), where I is the indicator func-

tion: I(P) = 1 if P is True, I(P) = 0 if P is False. The sum

 of i.i.d. copies of Bk is distributed accord-

ing to a binomial distribution with parameters m and θk =

Prob(I(Sk > to)).

If we hypothesize that all the binomial populations are

independently drawn from the same distribution (i.e. θk =

θ, for all k ∈ ), for sufficiently large values of m the ran-

dom variables  are independent and

approximately normally distributed. Consider now the
random variable:

This variable is known to be distributed as a χ2 with | |
- 1 degrees of freedom, informally because the constraint

 between the random variables Xk, k ∈  introduces a

dependence between them, thus leading to a loss of one

degree of freedom. By estimating the variance mθ(1 - θ),

with the statistic m (1 - ), we conclude that the follow-
ing statistic

is approximately distributed according to  (see, e.g.

[24] chapter 12, or [25] chapter 30 for more details).

A realization xk of the random variable Xk (and the corre-
sponding realization y of Y) can be computed by using the
output of the MOSRAM algorithm:

Using y, we can test the following alternative hypotheses:

• Ho: all the θk are equal to θ(the considered set of k-clus-
terings are equally reliable)

• Ha: the θk are not all equal between them (the consid-
ered set of k-clusterings are not equally reliable)

If  we may reject the null hypothesis at α sig-

nificance level, that is we may conclude that with proba-

bility 1 - α the considered proportions are different, and
hence that at least one k-clustering significantly differs
from the others.

Using the above statistical test, we propose an iterative
procedure to detect the significant number(s) of cluster-
ings:

1. Consider the ordered vector ξ = (ξp(1), ξp(2),...,ξp(H))

2. Repeat the χ2-based test until no significant difference
is detected or the only remaining clustering is p(1)(the
top-ranked one). At each iteration, if a significant differ-
ence is detected, remove the bottom-ranked clustering
from ξ

The output of the proposed procedure is the set of the
remaining (top sorted) k-clusterings that correspond to
the set of the estimate stable number of clusters (at α sig-
nificance level). Equivalently, following the sorting of ξ,
we may compute the p-value (probability of committing
an error if we reject the null hypothesis) for all the ordered
groups of clusterings from the p(1)...p(H) to the the p(1),
p(2) group, each time removing the bottom ranked clus-
tering from the ξ vector. Note that if the set of the remain-
ing top-ranked clusterings contains more than one
clustering, we may find multiple structures simultane-
ously present in the data (at α significance level).
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Results and discussion
We present experiments with synthetic and gene expres-
sion data to show the effectiveness of our approach. At
first, using synthetic data, we show that our proposed
methods can detect not only the "correct" number of clus-
ters, but also multiple structures underlying the data.
Then we apply our MOSRAM algorithm to discover the "
natural" number of clusters in gene expression data, and
we compare the results with other algorithms for model
order selection. In our experiments we used the classical k-
means [26] and Prediction Around Medoid (PAM) [27] clus-
tering algorithms, and we applied the Bernoulli, Achlioptas
and Normal random projections, but in this section we
show only the results obtained with Bernoulli projections,
since with the other randomized maps we achieved the
same results without any significant difference. In all our
experiments we set the threshold to (see Section "A χ2-
based test for the assessment of the significance of the solutions"
to 0.9. Moreover we applied our proposed χ2-based pro-
cedure to individuate sets of significant k-clusterings into
the data. The methods and algorithms described in this
paper have been implemented in the mosclust R package,
publicly available at [28].

Detection of multiple levels of structure in synthetic data
To show the ability of our method to discover multiple
structures simultaneously present in the data, we propose
an experiment with a 1000-dimensional synthetic multi-
variate gaussian data set (sample1) with relatively low car-
dinality (60 examples), characterized by a two-level
hierarchical structure, highlighted by the projection of the
data into the two main principal components (Figure 1):
indeed a two-level structure, with respectively 2 and 6
clusters is self-evident in the data.

Two clusterings (using the Prediction Around Medoid
algorithm) are detected at 10-4 significance level by apply-
ing our MOSRAM algorithm and the proposed χ2-based
statistical procedure. In particular we performed 100 pairs
of Bernoulli projections with a distortion bounded to 1.2
(ε = 0.2), yielding to random projections from 1000 to
479-dimensional subspaces. Indeed Table 1 reports the
sorted means of the stability measures together with their
variance and the corresponding p-values computed
according to the proposed χ2-based statistical test, show-
ing that 2 and 6-clusterings are the best scored, as well as
the most significant k-clusterings discovered in the data.
This situation is depicted in Figure 2, where the histo-
grams of the similarity measures for k = 2 and k = 6 clusters
are tightly concentrated near 1, showing that these cluster-
ings are very stable, while for other values of k the similar-
ity measures are spread across multiple values. Note that
the p-values of Table 1 (as well as the p-values of Table 2
and 3) refer to the probability of committing an error if we
reject the null hypothesis. The clusterings with p ≥ α are

considered equally reliable (in this case the null hypothe-
sis cannot be rejected), while the clusterings for which p
<α are considered less reliable (at α significance level).

Experiments with DNA microarray data
To show the effectiveness of our methods with gene
expression data we applied MOSRAM and the proposed
statistical test to Leukemia [29] and Lymphoma [1] samples.
These data sets have been analyzed with other model
order selection algorithms previously proposed
[10,13,30-32]: at the end of this section we compare the
results obtained with the cited methods with our pro-
posed MOSRAM algorithm.

Leukemia
This well known data set [29] is composed by 72 leukemia
samples analyzed with oligonucleotide Affymetrix micro-
arrays. The Leukemia data set is composed by a group of 25
acute myeloid leukemia (AML) samples and another
group of 47 acute lymphoblastic leukemia (ALL) samples,
that can be subdivided into 38 B-Cell and 9 T-Cell sub-
groups, resulting in a two-level hierarchical structure. We
applied the same pre-processing steps performed by the
authors of the Leukemia study [29], obtaining 3571 genes
from the original 7129 gene expression values. We further
selected the 100 genes with the highest variance across
samples, since low variance genes are unlikely to be
informative for the purpose of clustering [10,31]. We ana-
lyzed both the 3571-dimensional data and the data
restricted to the 100 genes with highest variance, using
respectively Bernoulli projections with ε ∈ {0.1, 0.2, 0.3,
0.4} and projections to 80-dimensional subspaces. In
both cases the k-means clustering algorithm has been
applied.

Figure 3 summarizes the results using gene expression lev-
els of the genes with highest variance. Table 2 reports the
sorted means of the stability measures together with their
variance and the corresponding p-values computed
according to the proposed χ2-based statistical test. By
these results 2 and 3 clusters are correctly predicted at α =
10-5 significance level. Indeed the empirical means of the
stability measures (eq. 6) for 2 and 3 clusters are quite
similar and the corresponding lines (black and red) of the
empirical cumulative distributions (ecdfs) cross several
times, while the other ecdfs are clearly apart from them
(Figure 3). The same results are approximately obtained
also using the 3571-dimensional data with random pro-
jections to 428-dimensional subspaces (ε = 0.2), but 2
and 3 clusters are predicted at α = 10-13 significance level.
Similar results are also achieved with ε = 0.1 and ε = 0.3,
while with ε = 0.4 the results are less reliable due to the rel-
atively large distortion induced (data not shown). Also
using the PAM [27] and hierarchical clustering algorithms
Page 6 of 13
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with the Ward method [33] we obtained a two-level struc-
ture with 2 and 3 clusters at α = 10-5 significance level.

Lymphoma
Three different lymphoid malignancies are represented in
the Lymphoma gene expression data set [1]: Diffuse Large
B-Cell Lymphoma (DLBCL), Follicular Lymphoma (FL)
and Chronic Lymphocytic Leukemia (CLL). The gene
expression measurements are obtained with a cDNA

microarray specialized for genes related to lymphoid dis-
eases, the Lymphochip, which provides expression levels
for 4026 genes [34]. The 62 available samples are subdi-
vided in 42 DLBCL, 11 CLL and 9 FL. We performed pre-
processing of the data according to [1], replacing missing
values with 0 and then normalizing the data to zero mean
and unit variance across genes. As a final step, according
to [10], we further selected the 200 genes with highest var-
iance across samples, obtaining a resulting data set with

A two-level hierarchical structure with 2 and 6 clusters is revealed by principal components analysis (data projected into the two components with highest variance)Figure 1
A two-level hierarchical structure with 2 and 6 clusters is revealed by principal components analysis (data projected into the 
two components with highest variance).
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Table 1: Samplel: similarity indices. Similarity indices for the synthetic sample1 data set for different k-clusterings, sorted with respect 
to their mean values.

k mean variance p-value

2 1.0000 0.0000 1.0000
6 1.0000 0.0000 1.0000
7 0.9217 0.0016 0.0000
8 0.8711 0.0033 0.0000
9 0.8132 0.0042 0.0000
5 0.8090 0.0104 0.0000
3 0.8072 0.0157 0.0000
10 0.7715 0.0056 0.0000
4 0.7642 0.0158 0.0000
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62 samples and 200 genes. As in the previous experiment,
we processed both the high-dimensional original data
and the data with the reduced set of high-variance genes,
using respectively Bernoulli projections with ε ∈ {0.1, 0.2,
0.3, 0.4} and projections to 160-dimensional subspaces.
The k-means clustering algorithm has been applied.

The results with highest variance genes are summarized in
Figure 4 and Table 3. The statistical test identifies as signif-
icant only the 2-clustering. Indeed, looking at the ecdf of
the stability index values (left), the 2-clustering (black) is
clearly separated from the others. The 3 (red) and 4-clus-
tering (green) graphs, are quite distinct from the others, as
shown also by the corresponding empirical mean of the
stability index values (Figure 4), but they are also clearly
separated from the 2-clustering curve. Accordingly, our
proposed χ2-based test found a significant difference
between the 2-clustering and all the others. Similar results
are obtained also with hierarchical clustering and PAM
algorithms. Using all the 4026 genes and Bernoulli ran-
dom projections to 413-dimensional (ε = 0.2) subspaces
with the Ward's hierarchical clustering algorithm our
method finds as significant the 3-clustering as well as the
2-clustering. In this case also similar results are obtained
with ε = 0.1 and ε = 0.3. It is worth noting that the subdi-
vision of Lymphoma samples in 3 classes (DLBCL, CLL and
FL) have been defined on histopathological and morpho-
logical basis and it has been shown that this classification
does not correspond to the bio-molecular characteristics

and to clinical outcome classes of non Hodgkin lympho-
mas. In particular studies based on the gene expression
signatures of the DLBCL patients [1] and on their super-
vised analysis [35], showed the existence of two subclasses
of DLBCLs. Moreover Shipp et al. [36] highlighted that FL
patients frequently evolve over time and acquire the clin-
ical features of DLBCLs, and Lange et al. [10] found that a
3-clustering solution groups together FL, CLL and a sub-
group of DLBCLs, while another subgroup of DLBCLs sets
up another cluster, even if the overall stability of the clus-
tering is lower with respect to the 2-clustering solution.
The relationships between FL and subgroups of DLBCL
patients are confirmed also by recent studies on the indi-
vidual stability of the clusters in DLBCL and FL patients
[15]. These considerations show also that the stability
analysis of patients clusters in DNA microarray analysis
are only the first step to discover significant subclasses of
pathologies at bio-molecular level, while another neces-
sary step is represented by the bio-medical validation.

Comparison with other methods
We compared the results obtained by the MOSRAM algo-
rithm with other model order selection methods using the
Leukemia and Lymphoma data sets analyzed in the previous
section. In particular we focused our comparison with
other state-of-the-art stability-based methods proposed in
the literature.

Table 2: Leukemia data set. Stability indices for different k-clusterings sorted with respect to their mean values.

k mean variance p-value

2 0.8285 0.0077 1.0000
3 0.8060 0.0124 0.7328
4 0.6589 0.0060 2.3279e-06
5 0.6012 0.0073 9.5199e-11
6 0.5424 0.0057 6.3282e-15
7 0.5160 0.0062 0.0000
8 0.4865 0.0050 0.0000
9 0.4819 0.0060 0.0000
10 0.4744 0.0049 0.0000

Table 3: Lymphoma data set. Stability indices for different k-clusterings sorted with respect to their mean values.

k mean variance p-value

2 0.9566 0.0028 1.0000
3 0.7900 0.0149 0.0000
4 0.6963 0.0128 0.0000
5 0.6387 0.0075 0.0000
6 0.6135 0.0082 0.0000
7 0.6129 0.0079 0.0000
9 0.5864 0.0063 0.0000
8 0.5792 0.0079 0.0000
10 0.5744 0.0058 0.0000
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The Model Explorer algorithm adopts subsampling tech-
niques to perturb the data (data are randomly drawn with-
out replacement) and applies stability measures based on
the empirical distribution of the stability measures [13].
This approach is quite similar to ours but we applied ran-
dom projections to perturb the data and a statistical test to
identify significant numbers of clusters, instead of simply
qualitatively looking at the distributions of the stability

indices. The Figure of Merit measure is based on a resam-
pling approach too, but the stability of the solutions is
assessed directly comparing the solution obtained on the
full sample with that obtained on the subsamples [32].
We considered also stability-based methods that apply
supervised algorithms to assess the quality of the discov-
ered clusterings instead of comparing pairs of perturbed
clusterings [10,31]: the main differences between these

Histograms of the similarity measure distributions for different numbers of clustersFigure 2
Histograms of the similarity measure distributions for different numbers of clusters.
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last approaches are the choice of the supervised predictor
and other parameters (no guidance is given in [31], while
in [10] a more structured approach is proposed). Finally
we considered also a non-stability-based method, the Gap
statistic, that applies an estimates of the gap between the
total sum within-class dissimilarities and a null reference
distribution (the uniform distribution on the smallest
hyper-rectangle that contains all the data) to assess the
"optimal" number of clusters in the data.

Table 4 shows the number of clusters selected by the dif-
ferent methods, as well as their "true" number. The "true"

number is estimated according to the a priori biological
knowledge about the data [1,29] (see Section Experiments
with DNA microarray data). The best results achieved with
the two gene expression data sets are highlighted with a
bounding box. The MOSRAM algorithm achieves results
competitive with the other state-of-the-art model order
selection methods. Indeed MOSRAM correctly predicts
the "true" number of clusters with the Leukemia data set
and partially with the Lymphoma data set. Note that the 2-
clustering prediction with Lymphoma may be considered
reliable, as outlined in the corresponding experimental
section.

Leukemia data set: empirical cumulative distribution functions of the similarity measures for different number of clusters kFigure 3
Leukemia data set: empirical cumulative distribution functions of the similarity measures for different number of clusters k.
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These results show that our proposed methods based on
randomized maps are well-suited to the characteristics of
DNA microarray data: indeed the low cardinality of the
examples, the very large number of features (genes)
involved in microarray chips, the redundancy of informa-
tion stored in the spots of microarrays are all characteris-
tics in favour of our approach. On the contrary using
bootstrapping techniques to obtain smaller samples from
just small samples of patients should induce more ran-
domness in the estimate of cluster stability. A resampling
based approach appears to be better suited to evaluate the
cluster stability of genes, since significantly larger samples
are available in this case [12]. The alternative based on

noise injection into the data to obtain multiple instance
of perturbed data poses difficult statistical problems for
evaluating what kind and which magnitude of noise
should be added to the data [17].

All the perturbation-based methods need to properly
select a parameter to control the amount of perturbation
of the data: resampled-based methods need to select the
"optimal" fraction of the data to be subsampled; noise-
injection-based methods needs to choice the amount of
noise to be introduced; random subspace and random
projections-based methods needs to select the proper
dimension of the projected data. Anyway, our approach

Lymphoma data set: empirical cumulative distribution functions of the similarity measures for different number of clusters kFigure 4
Lymphoma data set: empirical cumulative distribution functions of the similarity measures for different number of clusters k.
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provides a theoretically motivated method to automati-
cally find an "optimal" value for the perturbation param-
eter, and in our experiments we observed that values of ε
≤ 0.2 led to reliable results. Moreover our proposed
approach provides also a statistical test that may be
applied also with other stability-based methods to assess
the significance of the discovered solutions.

Despite of the convincing experimental results obtained
with stability-based methods there are some drawbacks
and open problems associated with these techniques.
Indeed, as shown by [8], a given clustering may converge
to a suboptimal solution owing to the shape of the data
manifold and not to the real structure of the data, thus
introducing bias in the stability indices. Moreover in [37]
it has been shown that stability based methods based on
resampling techniques, when cost-based clustering algo-
rithms are used, may fail to detect the correct number of
clusters, if the data are not symmetric. However it is
unclear if these results may be extended to other stability-
based methods (e.g. to our proposed methods based on
random projections) or to other more general classes of
clustering algorithms.

Conclusion
We proposed a stability-based method, based on random
projections, for assessing the validity of clusterings discov-
ered in high-dimensional post-genomic data. The reliabil-
ity of the discovered k-clusterings may be estimated
exploiting the distribution of the clustering pairwise sim-
ilarities, and a χ2-based statistical test tailored to unsuper-
vised model order selection. In the theoretical framework
of randomized maps that satisfy the JL lemma, a principled
approach to select the dimension of the projected data,
and to approximately preserve the structure of the original
data is given, thus yielding to the design of reliable stabil-
ity indices for model order selection in bio-molecular data
clusterings.

The χ2-based statistical test may be applied to any stability
method that make use of the distribution of the similarity
measures between pairs of clusterings.

Our experimental results with synthetic data and real gene
expression data show that our proposed method is able to

find significant structures, comprising multiple structures
simultaneously present into bio-molecular data.

As an outgoing development, considering that the χ2-
based test assumes that the random variables representing
distributions for different number of clusters are normally
distributed, we are developing a new distribution-inde-
pendent approach based on the Bernstein inequality to
assess the significance of the discovered k-clusterings.
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