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Abstract
Background: Predictive classification on the base of gene expression profiles appeared recently
as an attractive strategy for identifying the biological functions of genes. Gene Ontology (GO)
provides a valuable source of knowledge for model training and validation. The increasing collection
of microarray data represents a valuable source for generating functional hypotheses of
uncharacterized genes.

Results: This study focused on using support vector machines (SVM) to predict GO biological
processes from individual or multiple-tissue transcriptional profiles of aging in Drosophila
melanogaster. Ten-fold cross validation was implemented to evaluate the prediction. One-tail
Fisher's exact test was conducted on each cross validation and multiple testing was addressed using
BH FDR procedure. The results showed that, of the 148 pursued GO biological processes, fifteen
terms each had at least one model with FDR-adjusted p-value (Adj.p) <0.05 and six had the values
between 0.05 and 0.25. Furthermore, all these models had the prediction sensitivity (SN) over 30%
and specificity (SP) over 80%.

Conclusion: We proposed the concept of term-tissue specific models indicating the fact that the
major part of the optimized prediction models was trained from individual tissue data.
Furthermore, we observed that the memberships of the genes involved in all the three pursued
children biological processes on mitochondrial electron transport could be predicted from the
transcriptional profiles of aging (Adj.p < 0.01). This finding may be important in biology because the
genes of mitochondria play a critical role in the longevity of C. elegans and D. melanogaster.

Background
Assigning function to new genes and understanding the
potential unknown biological roles of annotated genes
are among the main goals in current biology [1-3]. Micro-
array technology allows thousands of transcripts to be

measured simultaneously on a single slide[4]. Genes cod-
ing the same function are likely regulated in the manner
of coordination. Predictive classification on the base of
gene expression profiles appeared recently as an attractive
strategy for identifying the biological functions of genes
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[3,5,6]. While the major part of DNA microarray datasets
were not purposely generated for this objective, they can
be useful in generating hypotheses about the functional
involvement of genes, especially for those with significant
expression patterns across the experimental conditions or
over a time span.

Gene Ontology (GO) is a well-known database and a
standard terminology for describing functions of gene and
gene products across species [7,8]. It provides a valuable
resource of knowledge for model training and validation
in generating the hypotheses about the functional
involvement of unknown genes. In the database, each
annotated gene is associated with one or multiple terms of
biological processes, molecular functions, and/or cellular
components. It is very useful to classify genes based on
GO terms for extracting useful information from high
throughput gene expression analysis. Recently, a rule-
based supervised learning method for the prediction of
GO biological processes from temporal gene expression
data was developed and validated with a data set describ-
ing the transcript levels of genes during the first 24 h of the
serum response in serum-starved human fibroblasts [6].

In this paper, we used temporal and spatial transcriptional
profiles to predict GO biological processes in Drosophila
melanogaster [9]. The gene expression datasets were gen-
erated from seven tissues representing nervous, muscular,

digestive, renal, reproductive, and storage systems, and
measured at five age points. We proposed the concept of
term-tissue specific models indicating the fact that the
major part of the optimized prediction models was
trained from individual tissue data.

Results
Predictable biological processes
For each GO biological process (term) containing at least
4 annotated genes (of our list), eight classification models
were trained using support vector machines (SVM) with
the seven datasets of the individual tissues or the com-
bined dataset. Ten-fold cross validation was implemented
to evaluate the prediction. Following, one-tail Fisher's
exact test was conducted on each cross validation and
multiple testing was addressed using BH FDR procedure
[10]. The results showed that, of the 148 pursued GO bio-
logical processes, fifteen terms each had at least one
model with FDR-adjusted p-value (Adj.p) <0.05 and six
had the values between 0.05 and 0.25. Furthermore, all
these models had prediction sensitivity (SN) over 30%
and specificity (SP) over 80%. The enrichment of func-
tional connections was quite apparent among these 21
terms. For clarity and conveniences, they were grouped by
the functional connections (Table 1) and called as "pre-
dictable terms", hereafter. The first group included elec-
tronic transport (GO: 0006188) and its 3 children terms
on mitochondrial electron transport (GO: 0006120, GO:

Table 1: Top predictable GO biological processes identified using SVM and tenfold validation with the data of individual tissues or the 
combined data

Term Name Modela TN FP FN TP Adj.Pc

GO:0006118 electron transport CM 1128 100 56 26 1.35-E06
GO:0006122 mitochondrial electron transport, ubiquinol to cytochrome CM 1263 41 0 6 1.66-E06
GO:0006120 mitochondrial electron transport, NADH to ubiquinone CM 1227 59 6 18 1.12-E11
GO:0006123 mitochondrial electron transport, cytochrome c to oxygen CM 1259 42 5 4 6.78-E03
GO:0006629 lipid metabolic process Brain 1004 245 41 20 2.01-E01
GO:0006637 acyl-CoA metabolic process Gut 1044 259 2 5 1.05-E01
GO:0006858 extracellular transport Fat 1105 169 21 15 2.43-E03
GO:0008643 carbohydrate transport Fat 1167 126 9 8 5.33-E03
GO:0006869 lipid transport Gut 1051 241 7 11 5.07-E03
GO:0005975 carbohydrate metabolic process Fat 1140 115 38 17 6.40-E04
GO:0006099 tricarboxylic acid cycle Testis 1218 75 7 10 6.34-E04
GO:0006511 ubiquitin -deoendent protein catabolic process Testis 1075 219 7 9 1.69-E02
GO:0016579 protein deubiquitination Testis 1043 258 2 7 1.36-E02
GO:0006030 chitin metabolic process CM 1187 108 6 9 1.22-E04
GO:0051189 prosthetic group metabolic process MT 1136 157 10 7 6.73-E02
GO:0007067 mitosis MT 1082 213 8 7 1.31-E01
GO:0006350 transcription Fat 1203 94 9 4 2.01-E02
GO:0007031 peroxisome organization and biogenesis Gut 1146 156 3 5 2.53-E02
GO:0006625 protein targeting to perosisome Gut 1129 174 2 5 2.42-E02
GO:0007498 Mesoderm development MT 1077 223 5 5 2.03-E01
GO:0015986 ATP synthesis coupled proton transport DTM 1224 73 9 4 1.11-E01

a The tissues (or organs) generating the data used for model training and validation where MT and DTM represent malpighian tubule, and dorsal 
thoracic muscle, respectively, and CM represents combined data. b SN and SP represent sensitivity and specificity, respectively. c FDR-adjusted p-
value.
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0006122, GO: 0006123). The second group consisted of
lipid metabolic process (GO: 0006629) and one of its
major children terms, fatty acid acyl-CoA metabolic proc-
ess (GO: 0006637). The third group contained three
transport terms, namely extracellular transport (GO:
0006858), carbohydrates transport (GO: 0008643), and
lipid transport (GO: 0006869). Furthermore, the broad
term carbohydrate metabolic process (GO: 0005975) and
one of its direct children terms, tricarboxylic acid cycle
(GO: 0006099), had low adjusted p-values. Other main
predictable terms included chitin metabolic process (GO:
0006030), mitosis (GO: 0007067), and transcription
(GO: 0006350). Among the numerous terms related to
cellular protein metabolism, only two highly specific
terms, namely, ubiquitin-deoendent protein catabolic
process (GO: 0006511) and protein deubiquitination
(GO:0016579), were among the list.

Genes with different functions can share the similar
expression pattern across the aging process, especially
when the time points of measurement are relatively sparse
such as in the case of our data. As the results, a meaningful
prediction needs a high proportion of true positives
among the predicted positives. Therefore, in selecting pre-
dictable GO terms, we set a relatively higher limit for SP,
but this was on the cost of decreasing the criterion for SN.
The most terms listed in Table 1 have SN at the levels from
30–75%. Another reason for the lower SN was that, even
for these predictable biological processes, only partial
member genes were regulated in the manner of coordina-
tion (Figure 1). One exception was GO: 0006122, of
which all the member genes had the similar expression
pattern in testis (Figure 2) and, consequently, the SN was
100%.

Term-tissue specific models
The prediction of gene function is based on the common
pattern shared by the member genes in a specific biologi-
cal process. It is well known that the regulation of gene
expression varies extensively among tissues [11]. In this
study, we found that the ageing-related co-regulation pat-
terns of genes involved in a biological process may be tis-
sue-specific. That is, the coordination models for the same
biological process may be spatially inconsistent. As indi-
cated in Table 1, the data sources generating the top pre-
diction models varied with the different GO biological
processes. This means that, for predicting the potential
involvement of an uncharacterized gene in a specific bio-
logical process, we need to use the data sourced from an
appropriate tissue, although it is possible that the com-
bined dataset will lead to better classification such as in
the cases of the terms on mitochondrial electron transport
(Table 1). For example, Acyl-CoA metabolic process had
its model from gut representing digestive system, and pro-
tein deubiquitination had its model from testis represent-

ing reproductive system. The results for these two GO
terms were listed in Table 2. The first two processes are
children terms under lipid metabolic processes. Their two
top favorite models could be trained from the data of fat
tissue and gut, or from the data of gut and fat tissue,
respectively. The difference was that the data from brain
and muscle could generate prediction models for fatty
acid metabolic but not for the parent term, lipid meta-
bolic process. The third, protein deubiquitination, is a
highly-specific GO term under cellular protein metabolic
process. For this term, models from muscle and testis had
the same SN but different SPs.

Term-tissue specific models were also characterized by the
fact that, even the membership of genes in a GO term may
be individually predicted from the datasets of two or more
tissues, the expression profiling of these genes varied with
the tissues, in general (Figure 2). For example, the func-
tion of genes in GO: 0006122 could be predicted both
from the expression in brain and testis, but the temporal
patterns over ages were largely different. That is, the genes
involved in the biological process were seemly regulated
with different coordination models in different tissues. At
present, we do not know if these different tissue-specified
coordination models could be complementary in increas-
ing the prediction accuracy. The current study showed that
the simple combination of the data from the 7 tissues had
limited advantages. Our further work will be focused on
developing more effective algorithm on data integration.

Hidden gene expression pattern of aging
The microarray experiments generating the data analyzed
in this study adopted a reference design with the reference
samples made from the flies of 3 days old. Certainly, with
the measures between 15 and 60 days, the potential tran-
scriptional patterns of aging formed during 3–15 days
could not be detected by significant tests using a linear
models [12,13] or non-parameter methods [14-17] if the
inference about the intercept (of the statistical model) was
ignored. However, these hidden patterns may represent a
valuable information source for the functional prediction
of new genes. As shown in Figure 1, the profiles of the
member genes of many predictable GO terms were distin-
guished from others with the deviation off the zero line
rather than the patterns across the time span of 15–60
days. For example, peroxisome organization and biogen-
esis (GO: 0007031) was characterized with a nearly flat
expression profile approximately at the levels of 0.5.

In order to show the importance of the hidden patterns
formed during 3–15 days in establishing prediction mod-
els, we conducted a statistical analysis of all 1308 genes
with a linear model containing age and tissue as the fixed
factors on the measures between 15 and 60 days. Listed in
Table 3 are the p-values of the fixed effects and the inter-
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action for the member genes of two predictable biological
processes. GO: 0006122 had all its six genes correctly pre-
dicted in the cross validation (as shown in Table 1) with
the classification models trained from the data of testis or
the combined dataset, but only two genes had significant
age effect at p < 0.01 and no age-tissue interaction was
found for the 6 genes. Similarly, GO: 00016579 had 5 of
the 7 member genes predicted correctly with a model
trained with the data of testis but neither age effect nor
age-tissue interaction were significant (p > 0.01) for these
genes. This demonstrated that the overall gene expression
levels during 15–60 days, in other words, the hidden pat-

terns during 3–15 days, played a critical role in the model
training and validation for these GO terms.

Discussion and Conclusion
Genome sequencing has led to the discovery of tens of
thousands of potential new genes. Determining their
functions seems far from a trivial task. One crucial con-
straint is the difficult in generating useful hypotheses
about protein function [3]. Temporal microarray gene
expression data is a valuable source for generating
hypotheses about protein function. In this study, we pre-
dicted the GO biological processes based on multiple-tis-

Transcriptional profiles of genes involved in 16 GO biological processes predictable with term-tissue specific modelsFigure 1
Transcriptional profiles of genes involved in 16 GO biological processes predictable with term-tissue specific 
models. The plot names indicate the IDs of the GO terms and the tissues from which the top prediction models were gener-
ated, and the plots were based on the averages of the duplicated measurements at each age points for the corresponding tis-
sues. MT and DTM represent malpighian tubule, and dorsal thoracic muscle, respectively.
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sues transcriptional profiles of aging in flies. Compared
with Lagreid et al (2006) [6], our work included more GO
terms, especially those highly specific biological processes
which were not represented in the literature. More impor-
tant, the prediction was based on the transcriptional pro-

files of aging rather than of the response to an artificial
treatment, thus can provide insight into the genetic base
of aging. In addition to 21 term-tissue specific models that
had middle to high accuracy and will be helpful in detect-
ing the genes involved in the corresponding biological

Tissue-specific transcriptional profiles of genes involved in 3 predictable GO biological processesFigure 2
Tissue-specific transcriptional profiles of genes involved in 3 predictable GO biological processes. The plots were 
based on the averages of the duplicated measurements at each age points for the corresponding tissues. ACG, MT and DTM 
represent accessory gland, malpighian tubule, and dorsal thoracic muscle, respectively.
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processed, another three results from this study may be
important.

Firstly, we proposed the concept of term-tissue specific
prediction models. That is, given a biological process, the
favorite prediction models may be trained on the base of
the gene expression data sourced from a special tissue
although it is possible that the combined data will lead to
better classification. A little extension of the concept is
"term-condition specific model." Based on the verifica-
tion, this extension would be instructional for developing
special DNA microarray experiments with the prediction
of gene function as the main objective. The reason is that,

in one condition or natural process of aging, only a small
part of expressed genes have significant patterns, thus the
number of predictable biological processes are very lim-
ited as shown in Lagreid et al (2006) and the current work.
But the integration of data generated in multiple condi-
tions will represent a richer information source.

The second finding was that the memberships of the genes
involved in all the three children biological processes (in
our annotated data set) on mitochondrial electron trans-
port can be predicted from the transcriptional profiles of
aging. This is interesting because the genes of mitochon-
dria play a critical role in the longevity of C. elegans and
D. melanogaster [18-21]. Another reason is that the genes
involved in these biological processed also are members
of some GO cellular components and GO molecular func-
tion related with mitochondria. For examples, the six
genes in GO: 0006122 also are in GO terms mitochon-
drial respiratory chain complex III (cellular component)
and ubiquinol-cytocgrrome-c reductase activity (molecu-
lar function).

The third finding was the hidden gene expression pattern
of aging, which sourced from the design of the microarray
experiments generating the analyzed data and represented
a valuable information source for the functional predic-
tion of new genes. It may be a pitfall in significant test and
should be given severe attention.

Although genes that constitute a GO term are biologically
related, their corresponding temporal expression profiles
can be very different including, for instance, inverse co-
regulation or co-regulation with a time lag or a combina-
tion of both. In this context, Lagreid et al's (2006) rule-
based methods should be more effective than the cur-

Table 2: Illustration of term-tissue specific prediction models a

Term Model SN (%) SP (%)

GO:0006637 ACG 0 99.9
GO:0006637 Brain 0 92
GO:0006637 Fat 57.1 79.4
GO:0006637 Gut 71.4 80.1
GO:0006637 DT 0 99.3
GO:0006637 DTM 0 100
GO:0006637 Testis 0 99.2
GO:0006637 CM 0 100

GO:0016579 ACG 0 98.9
GO:0016579 Brain 11.1 97.8
GO:0016579 Fat 0 99.9
GO:0016579 Gut 0 100
GO:0016579 DT 0 100
GO:0016579 DTM 77.8 66.4
GO:0016579 Testis 77.8 80.
GO:0016579 CM 0 100

a Model, SN and SP are sensitivity and specificity, respectively.

Table 3: Age and tissue effects on the expression of member genes involved in two predictable GO biological processes a

Term Gene Age effect Tissue effect interaction

GO:0006122 CG17856 7.02E-01 3.79E-04 6.25E-01
GO:0006122 CG3560 7.68E-02 1.51E-08 6.49E-01
GO:0006122 CG3731 3.27E-03 1.29E-19 4.07E-01
GO:0006122 CG4169 3.73E-01 2.11E-08 9.99E-01
GO:0006122 CG4769 7.62E-01 2.44E-12 2.63E-01
GO:0006122 CG7580 2.51E-03 7.41E-14 6.29E-01

GO:0016579 CG12082 6.56E-02 3.96E-08 4.89E-02
GO:0016579 CG1490 1.44E-01 1.46E-01 1.99E-01
GO:0016579 CG15817 7.27E-01 5.67E-05 4.70E-01
GO:0016579 CG4165 6.35E-01 8.09E-05 6.57E-01
GO:0016579 CG5384 1.09E-01 4.81E-07 5.55E-02
GO:0016579 CG5798 9.07E-01 4.66E-01 9.76E-01
GO:0016579 CG7023 9.52E-01 1.26E-01 9.55E-01
GO:0016579 CG8494 8.97E-01 2.44E-02 9.19E-01
GO:0016579 CG8830 4.64E-02 8.38E-04 7.04E-01

a listed in 3–5th columns are the p-values.
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rently used SVM method. But the former method does not
fit our datasets because the small number of time points.
On the other hand, our future effort will be focused on
developing a hybridized algorithm based on unsuper-
vised clustering algorithms and SVM to address the prob-
lems from inverse co-regulation or co-regulation with a
time lag and integrate the data sourced from multiple tis-
sues.

As described in the last section of result part, a GO term
may be predicted using the transcriptional profiles even
when the time effect was not significant for the member
genes. But this was not the only case fitting all GO terms.
For some predictable terms, the time effects were highly
significant. Time series data is necessary for GO predic-
tions, even for the terms in table 3. The prediction power
mainly sourced from the difference between the individ-
ual term and the others. Suppose the genes in term A do
not have significant time effects and the average expres-
sion level across the time frame is X. Again, suppose the
genes of other terms with the average expression levels
close to (or different from) X have significant time effects.
In this case, Term A will have a different pattern from oth-
ers and, therefore, can be predictable.

It is worthy to be noted that although the major part of the
pursued GO biological processes had very low sensitivity
or/and specificity in this paper, it does not means they can
not be predicted. It is possible that some of them can be
predicted by using the gene expression data of other tis-
sues beyond those used in this study. Furthermore, we can
expect to have better results if there were more time points
or more replicates in the data. On the other hand, some
downstream GO terms had few genes in our list so that we
could not get significant prediction models for them even
they may be predictable in fact. This means that more
term-tissue specific models are possible if a better data set
containing more annotated genes will be available.

Methods
Data
Seven types of tissue or organs, namely accessory gland
(ACG), testis, brain, gut, malpighian tubule (MT), dorsal
thoracic muscle (DTM), and abdominal fat body were dis-
sected out of male flies (Drosophila melanogaster) at age of
3, 15, 20, 30, 45 and 60 days old. Tissue (or organs) sam-
ples from four males of the same age were pooled together
and used for RNA sample preparation. The reference RNA
was prepared from the corresponding tissues of 3-day old
flies and the expression profiles at each of the five age-
points from 15 to 60 days were measured twice by using
independently prepared duplicated samples. Two to four
micrograms of experiment and reference RNA were used
to generate cDNA for labeling with fluorescent dye Cy3
and Cy5, respectively. Hybridized slides were scanned

with an Axon GenePix Scanner (Axon Instruments, Sun-
nyvale, CA). Raw microarray data was normalized with
LOWESS followed by between-slide scaling using Median
Absolute Deviation (MAD) method [22]. The genes with
more than 3 missing values in the duplicated 5-time
course samples for each tissue were excluded from further
analysis and the remaining missing values were imputed
using k-nearest neighbor algorithm [23]. After removing
the repeatedly spotted genes, 5557 genes were remained
for Gene Ontology annotation.

GO annotation
According to the definition, a GO term may be any one of
a biological process, a cellular component, or a molecular
function. But our work was conducted only on the biolog-
ical processes, and, hereafter, GO terms only represent
biological processes. Using the tool NETAFFX query with
Drosopila_2 as the option of GeneChip Array [24], we
(after some technical steps) annotated the genes in our list
to the most specific GO terms.

Of the filtered list containing over five thousands of ele-
ments, 1318 genes were annotated with at least one (2.8
as the average) GO terms for each one. The numbers of
genes involved in each GO term ranged from 1 to 150.
Hierarchical structure widely existed among the GO terms
containing the same gene. Among the 312 GO biological
processes to which the 1318 genes were annotated, 148
terms each contained at least 4 genes and were pursued in
this paper.

Statistical analysis
Although the same gene may be the member of two or
more biological processes, the functional classification of
an uncharacterized gene, namely the prediction of the
membership of the gene in a special biological process,
can be completed with binary classification methods.
Here, we used Support Vector Machines (SVM) [25] by
running function svm in a R package called e1071 [26,27]
to train models. The quality was assessed via ten-fold cross
validation. In the application, gene expression ratios at
the five time points were input as the features. Based the
memberships from GO annotation, the genes in the train-
ing set were divided into two classes, one labeled with the
ID of a special GO term (positive class), and the other one
labeled with a fake ID, such as "GO: 00000000". In liter-
ature, Brown et al (2001) [5] used the method to predict
five functional classes from the Munich Information
Center for Protein Sequences Yeast Genome Database
(MYGD) [28]. Our primary analysis showed that the clas-
sification was insensitive to the choice of kernels. The
results reported here came from using radical-kernel SVM
with the cost parameter C (see the equation (4)) assigned
as 1 (the default of the software). Most GO biological
processes contained very few members relative to the total
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number of genes in the data. This led to an imbalance in
the number of positive and negative training examples
that, in combination with noise in the data, is likely to
cause incorrect classifications. By assigning weights for the
positive and negative classes with a heuristic technique
(see next sect for detail), we got the "optimized" results
that balanced the sensitivity (SN) and specificity (SP) for
class prediction. SN is calculated as TP/(TP +FN) where TP
(true positives) is the number of genes classified and
annotated to the process and FN (false negatives) is the
number of genes annotated but not classified to it. SP is
calculated as TN/(TN+ FP), where TN (true negatives) is
the number of genes neither annotated nor classified to
the process and FP (false positives) is the number of genes
classified but not annotated to it. One-tail Fisher's exact
test was conducted on the all the cross validations and
multiple testing was addressed using BH FDR procedure
[10].

Support vector machines (SVM)
Suppose we are given a set of labeled training data,

(x1, yi), (x2, y2),......(xm, ym) ⊂ Rm × {±1}, (1)

SVM separates the different classes by a hyperplane

�w, Φ(x)� + b = 0 (2)

corresponding to the decision function

f(x) = sign(�w, Φ(x)� + b). (3)

SVM uses an implicit mapping Φ of the input data into a
high-dimensional feature space defined by a kernel func-
tion k(x, x') which returns the inner product �Φ(x), Φ(x')�
between the images of two data points x and x' in the fea-
ture space. In the case of soft margin classification the pri-
mal optimization problem takes the form:

where the slack variable ξi measures the degree of misclas-

sification of the datum xi, C is the cost parameter [25,26],

and ω+ and ω- are the weights for positive and negative

classes, respectively. SVM solution w has an expansion

 in terms of a subset of training sub-

stances that lie on the margin. Non-zero coefficients (sup-

port vectors) occur when a point (xi, yi) meets the

constraint. The coefficients αi are found by solving a quad-

ratic programming problem.

As mentioned in the last section, the assignment of class
weights ω+ and ω- is critical in the implementation for
highly unbalanced data. In this study, we assigned the
parameter with following formula:

where m is the number of total instances (genes) in the
training set, mA is the numbers of instances of the positive
class A (a special GO term to be separated from others),
and the tuning parameter α was optimized as 0.85 via a
primary cross validation.
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