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Abstract
Background: DNA sequencing is now emerging as an important component in biomedical studies
of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used
heavily for such projects, but many design specifications have yet to be conclusively established.
Perhaps the most fundamental of these is the redundancy required to detect sequence variations,
which bears directly upon genomic coverage and the consequent resolving power for discerning
somatic mutations.

Results: We address the medical sequencing coverage problem via an extension of the standard
mathematical theory of haploid coverage. The expected diploid multi-fold coverage, as well as its
generalization for aneuploidy are derived and these expressions can be readily evaluated for any
project. The resulting theory is used as a scaling law to calibrate performance to that of standard
BAC sequencing at 8× to 10× redundancy, i.e. for expected coverages that exceed 99% of the
unique sequence. A differential strategy is formalized for tumor/normal studies wherein tumor
samples are sequenced more deeply than normal ones. In particular, both tumor alleles should be
detected at least twice, while both normal alleles are detected at least once. Our theory predicts
these requirements can be met for tumor and normal redundancies of approximately 26× and 21×,
respectively. We explain why these values do not differ by a factor of 2, as might intuitively be
expected. Future technology developments should prompt even deeper sequencing of tumors, but
the 21× value for normal samples is essentially a constant.

Conclusion: Given the assumptions of standard coverage theory, our model gives pragmatic
estimates for required redundancy. The differential strategy should be an efficient means of
identifying potential somatic mutations for further study.

Background
Applications of DNA sequencing to medically significant
problems continue to grow [1-6]. In particular, recent
technological trends suggest that the sequencing of entire
cohorts of individual patient genomes will soon be eco-
nomically feasible [7-13]. This contrasts dramatically with
the enormous resources that were expended on decipher-
ing just a single composite human reference genome only

a few years ago [14]. Sequence-based characterization
promises to play an expanding role in medicine because
of its ability to identify potential disease-causing muta-
tions [1]. It will be especially important in cancers, for
example, for distinguishing between sequence variations
in the germline versus somatic mutations that are relevant
to tumor initiation or growth [1,2].
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In principle, the process-engineering issues in both gene-
based and whole-genome medical sequencing are identi-
cal to those for de novo genomic sequencing, that is, to
"cover" a region of interest with shotgun read data. How-
ever, the definitions of what constitutes coverage are
rather different. In traditional genomic sequencing, the
target is a haploid genome and coverage of a base position
x is defined as the event whereby one or more sequence
reads span x. Such a process is binomial and, according to
elementary probability theory, the expected fractional
coverage is 1-exp(-ρ), where ρ = NL/G. Here, L and G are
the read and haploid genome lengths, respectively, N is
the number of reads sequenced, and ρ is the haploid
redundancy. Although this result describes a number of
traditional coverage configurations [15], it seems to be
known to the sequencing community primarily via its
application by Clarke and Carbon [16]. This expression is
also sometimes attributed to Lander-Waterman Theory
(LWT) [17], although LWT actually treats the issue of
sequence gaps rather than coverage.

Medical sequencing projects focus on genetic variation
and seek to identify both alleles at x for the diploid
genome. In particular, diploid sequence is necessary for
discerning heterozygous mutations. Consequently, cover-
age is thought of in a more general way. Here, we say that
x is "covered" when each allele is spanned by at least φ
reads, where φ ≥ 1. Actual values of φ will depend upon
study-specific considerations that weigh economic factors
against such things as desired confidence levels for detec-
tion and confirmation, anticipated data quality, etc. Some
results on multiple coverings appear in the mathematical
literature [18,19], but these do not address the problem
beyond the haploid level. Smith and Bernstein [20] con-
ducted early numerical simulations for φ = 1 on a 20 kb
fragment, but evidently did not extend the approach to
genome-size targets. Levy et al. [12] and Wheeler et al.
[13] also describe models for this problem, which we dis-
cuss further below.

An important issue for future medical sequencing projects
can be posed as follows. Given a specific choice of φ, esti-
mate the necessary redundancy such that either the prob-
ability of covering a given position, e.g. a SNP, has some
desired value, or that the expectation for the number of
captured positions has such a value. These propositions
are actually identical (see Methods). However, additional
study-specific issues also arise. For example, for tumor/
germline pairs, one has to specify ρ for both types of sam-
ples. As we demonstrate below, the two values should not
necessarily be the same.

Speculation regarding these issues has been around for
some time. For example, Strausberg et al. [1] observed that
ρ should exceed 10. In other words, redundancies for

medical sequencing projects should surpass those values
conventionally associated with haploid whole-genome
shotgun projects, BAC projects, etc. This is largely intui-
tive, given the diploid nature of the problem, but not par-
ticularly informative. Pioneering diploid sequencing
projects furnish some early anecdotal information. For
example, Levy et al. [12] considered ρ = 20 to be adequate
for germline sequencing of a healthy individual based
upon simulation, certain heuristic filters, and the model
alluded to above. They employed traditional Sanger
sequencing [21] and reached only about 7.5×, so the
degree to which this value generalizes to medical sequenc-
ing of cancer genomes using short-read "next-generation"
platforms [8] is unclear. Likewise, Wheeler et al. [13]
report only about 7.4× for another diploid project.

Here, we address medical sequencing coverage more for-
mally by way of a straightforward mathematical extension
to the standard covering process model. We consider this
an idealization in the sense that it presumes all entities are
independently and identically distributed (IID) and
neglects any heuristic inputs. However, we also demon-
strate the use of empirical data to calibrate response such
that inferences can be drawn for medical sequencing
projects. The resulting analysis points to what we believe
will be an efficient means of discerning potential somatic
mutations and enables estimation of the necessary param-
eters.

Results
Given a location x defined in the context of h associated
chromosomes, let Ph, φ be the probability that x is covered
at least φ times. The immediate focus of much of the
research community is on diploid sequencing of homolo-
gous chromosomes (h = 2) related to the cancers, for
which we report a mathematical theory of coverage. In
anticipation of extending sequencing to aneuploid config-
urations, some of which are also relevant to cancer, we
furnish the general result for h > 2, as well.

Diploid Sequencing Theory
Given a diploid genome (h = 2), the probability of cover-
age is

where δ2 = L/(2G) is the diploid Bernoulli probability and
CN, k are the binomial coefficients. Eq. 1 also gives the
expected fraction of a set of locations that are covered
(Methods). This equation relies on the standard IID
assumption, but is exact in the sense that it accounts for
the fact that the coverings of two corresponding alleles on

P C CN j
j N j

j

N

N j k
k N j k

k

2 2 2 2 2

0

1

1 1 1, , ,( ) ( )φ
φ

φ φ

δ δ δ δ= − − −
⎡

−

=

−

−
− −

=

−

∑ ∑
⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

,

(1)
Page 2 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:239 http://www.biomedcentral.com/1471-2105/9/239
homologous chromosomes are not strictly independent
of one another (Methods). However, parameters in an
actual project are such that alleles are almost independent.
Moreover, asymptotic approximation can be applied
(Methods), in which case

is a very good approximation of Eq. 1. Here, e is the Euler
Number (≈ 2.71828) and ρ is again the conventional hap-
loid redundancy. Note the basis in a Poisson distribution
having a rate ρ/2. Eq. 2 is straightforward to evaluate for
any project because φ is typically not very large. This
stands in contrast to Eq. 1, which sports an enormous
number of terms, as well as tendencies for numerical over-
flow and underflow of its various components. For con-
venience, we expand the first three expressions

Generalization to Aneuploidy
Under the assumption of independence, Eq. 2 for homol-
ogous chromosomes is readily generalized to an arbitrary
number of chromosomes, h, specifically

Note the Poisson basis having a rate ρ/h, for example ρ/3
for chromosomal trisomies. Like Eq. 2, this expression is
readily evaluated and straightforward to expand for given
values of φ.

Discussion
A number of medical sequencing coverage issues are cur-
rently being debated. New questions have arisen not only
because diploid medical sequencing is itself a fairly recent
undertaking, but also because of the expectation that
novel sequencing platforms will be heavily employed in
such projects. Read lengths are substantially shorter than
traditional Sanger data [21] and investigators are eager to
determine how this affects coverage. We focus our discus-
sion here primarily on the diploid problem, although

some projections for aneuploid configurations are given,
as well.

Coverage Assessment
Fig. 1 shows the traditional de novo haploid coverage
model [15,16] versus diploid medical sequencing cover-
age theory for minimum read coverings of φ ∈ {1, 2, 3, 4,
5} for both alleles. The diploid curves were generated by
Eq. 2 for a 3.3 billion base-pair genome and 31 base-pair
read lengths. Errors associated with not using Eq. 1 for
these particular parameters are significantly less than 1%
(data not shown). As one would intuitively expect, the
required redundancies for a given coverage fraction
increase with φ and are noticeably higher than established
values for haploid genome sequencing. Although these
cases are within the realm of feasibility for the newest-gen-
eration sequencing platforms [11], economic factors
would probably still preclude the higher values of φ at the
present time. Conversely, these depths are much lower
than values that have been discussed elsewhere. For exam-
ple, Warren et al. [22] report ρ up to 100 and 400 for bac-
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Traditional haploid coverage model [15, 16] versus diploid medical sequencing coverage results for minimum number of covering reads φ ∈ {1, 2, 3, 4, 5}Figure 1
Traditional haploid coverage model [15, 16] versus 
diploid medical sequencing coverage results for mini-
mum number of covering reads φ ∈ {1, 2, 3, 4, 5}. The 
figure also shows an additional curve that replots the diploid 
φ = 2 curve, except where abscissa values are scaled by one-
half. This aspect is relevant to the discussion of why the 
redundancies for φ = 1 and φ = 2 do not differ by a factor of 
two. Coverage progressions for φ ∈ {1, 2} are also shown for 
the recent Illumina resequencing of C. elegans by Hillier et al. 
[28]. These points represent average coverages over all 
chromosome pairs, while their error bars show the observed 
minima and maxima. Simulation data for φ = 1 on a 20 kb 
fragment using 250 bp reads [20] are also shown. Points and 
error bars represent the averages and extrema, respectively, 
of 250 simulations.
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terial and viral genomes, respectively, using 25 bp
fragments to simulate data from an Illumina instrument.

Two other notable trends are visible in Fig. 1. First,
increasingly large redundancies are required just to obtain
non-trivial values of P2, φ. For example, the curve for φ = 1
already exceeds 0.01 at ρ = 0.25, whereas this mark is not
met until ρ = 5 at φ = 5. Indeed, one may not see even the
"beginnings" of coverage until comparatively high redun-
dancy has been reached, depending on the selected φ.
Also, the amount by which each curve is drawn-out over
the abscissa increases with φ, signifying a decelerating cov-
erage rate. This is especially clear for what appear to be the
linear segments of each curve; their slopes progressively
decrease. Again comparing the extremes, the difference
between 0.1 and 0.9 on the ordinate is a little over 5 units
of redundancy for φ = 1 but almost 11 units for φ = 5. This
phenomenon bears on point we make below.

Both of these trends arise strictly as mathematical conse-
quences and can perhaps best be understood by referring
to Eqs. 3 through 5. The exponential (Euler Number) term
represents the tendency for the coverage rate to decay. For
each successive value of φ this term is bolstered by addi-
tional factors, which themselves grow progressively faster
with ρ, whereby the overall effect is realized.

Calibration and the Stopping Problem
One of the primary issues facing the investigator is the so-
called stopping problem. That is, at what ρ should ran-
dom processing be halted? This question is, of course,
context dependent. Yet, it can be answered, at least
approximately, by using the analysis given here. For exam-
ple, suppose the goal is to design a medical sequencing
project such that the expected coverage progress corre-
sponds roughly to standard BAC sequencing. This is a cal-
ibration-based way of framing the question and exploits
the community's collective empirical experience gained
from having sequenced hundreds of thousands of such
clones. In particular, 6 ≤ ρ ≤ 10 has been found to be a rea-
sonable balance between cost and coverage, although val-
ues nearer to 10 are more typically chosen [14]. In this
capacity, Eqs. 1 and 2 effectively function as scaling laws.

Scaling can conveniently be demonstrated graphically, for
example by picking a point on the haploid curve for a
desired redundancy, drawing a horizontal line through
this point, and reading the redundancy at the intersection
of the chosen diploid curve and the horizontal. The
asymptotic nature of the curves depicted in Fig. 1 obscures
this process, but it can readily be accomplished using a
magnified plot. Fig. 2 shows the example of extrapolating
haploid sequencing coverage at ρ = 8 to diploid sequenc-
ing (φ = 1), the result being about 17.5× for the diploid
project. Table 1 furnishes an expanded set of values for φ

∈ {1, 2, 3} calibrated against haploid sequencing for ρ ∈
{6, 8, 10}. Again, the increase of redundancy with the
minimum number of reads required to attain coverage is
quite clear. Notice that each of the three rows in the table
corresponds to covering more than 99% of the unique
sequence. In other words, the covering probabilities
change very little over fairly significant increases in depth.
Consequently, BAC depth provides much better resolu-
tion than BAC coverage for scaling the diploid problem.
This observation is also obvious from Fig. 2.

Comparison to Haploid-Based Distribution Models
Diploid coverage, as discussed above, is a primary consid-
eration for medical sequencing. Yet, it is also useful for
comparison to examine such projects in their haploid
context. The stopping problem has been extensively stud-
ied from a number of analytical perspectives for tradi-
tional de novo genomic sequencing projects, for example
using the probability of complete coverage, PC [23] and
the intersection probability, P� [24]. While the meaning

Table 1: Calibration of medical sequencing according to 
traditional haploid expectation

Traditional [16] Corresponding Medical Sequencing ρ

Redundancy P-value 1-read min. 2-read min. 3-read min.

6 0.99752 13.5 18 22
8 0.99967 17.5 22.5 26.5
10 0.99996 21.5 26.5 31.5

Haploid and diploid results for expected coverage values of at least 0.9975Figure 2
Haploid and diploid results for expected coverage 
values of at least 0.9975. This is a greatly – magnified view 
of the top quarter – percent of the ordinate range in Fig. 1. 
Vertical lines demarcate the typical BAC calibration neigh-
borhood of 6 ≤ ρ ≤ 10. The scaling process is demonstrated 
graphically for diploid sequencing (φ = 1) based on haploid 
sequencing at ρ = 8.
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of the former is probably clear, the latter characterizes
how effective additional redundancy will be for improv-
ing coverage in light of increasingly-important stochastic
effects. Of these two metrics, PC is the more conservative
and could be thought of as setting an upper bound in the
context of traditional haploid sequencing. Before pro-
ceeding, let us digress briefly to further explain P�.

Consider two hypothetical sequencing projects, A and A',
that are identical in every respect, except that A' is always
ahead by one whole unit of redundancy (Fig. 3). Now,
examine these projects at two particular instances, specif-
ically for project A at both ρ1 and ρ2 (with A' at ρ1 + 1 and
ρ2 + 1, respectively), where ρ1 <ρ2. At ρ1, there may be little
overlap in the densities between the two projects. Accord-
ingly, the probability is extremely high, perhaps close to 1,
that A' will be more highly covered than A. The system
behaves as if there is a deterministic increase in coverage
for A → A' for a unit increase of redundancy. At higher
redundancies, say ρ2, mathematical analysis indicates that
the intersection of the A and A' densities will grow [24].
Consequently, differences in actual coverage between A
and A' become progressively more a function of chance
than of differences in the redundancies themselves. The
tail value of the intersection, P�, can be taken as an indi-
cator on the diminishing returns of the process.

We can once again take a calibration approach to this
problem. That is, we calculate PC and P� for a typical BAC
sequencing project (150 kb clone length and 600 bp read
length) at ρ ∈ {6, 8, 10}. We then match these values to
their counterparts in the distributions for medical
sequencing, which then provides the corresponding
"scaled" redundancy. Table 2 shows these results. The val-

ues compliment those in Table 1 in the sense that they
suggest redundancies far above the conventional full shot-
gun standard of ρ = 10.

Comparison to Empirical, Semi-Empirical, and Simulation 
Results
Several labs are now involved in diploid sequencing
projects, which should furnish useful examples of cover-
age progressions that can be monitored empirically.
Although the few stopping redundancies reported in the
literature appear to conflict with one another, these can be
more properly interpreted according the minimum
number of times each allele is observed, φ. For example,
we mentioned above that Levy et al. [12] considered ρ =
20 for Sanger-based [21] germline sequencing of a healthy
individual. This figure approaches the 10× standard for
haploid sequencing [25] at the level of φ = 1 (Table 1).
Interestingly, the idealized version of their coverage calcu-
lation proves to be a special case of our model precisely
for φ = 1 (see Appendix). Conversely, Mardis [8] quotes a
redundancy up to 30×, which corresponds to values of φ
between 2 and 3 when calibrated to haploid 10×.

Richard Durbin and Aylwyn Scally have also analyzed the
diploid medical sequencing coverage problem using a dif-
ferent approach from what is described here (Durbin and
Scally, personal communication). Specifically, they
employed an "extra-variation" Poisson distribution
[26,27] having a free-parameter to control variance. Val-
ues for this parameter can be chosen to a posteriori tune the
theoretical fit with empirical data. In particular, such tun-
ing allows one to implicitly consider, at least approxi-
mately, factors such as bias and sequencing errors. (In our
method, calibration incorporates the empirics of BAC
sequencing, essentially serving the same purpose.) Using
their semi-empirical approach, Durbin and Scally con-
cluded that redundancies closer to 30× will be required,
which again agrees well with results shown in Tables 1
and 2.

A number of labs, including our own, are now adopting
"next generation" short-read sequencing technology [8]
and have started to generate human medical sequencing
data related to various cancers. However, there is still a

Diagrammatic synopsis of the intersection probabilityFigure 3
Diagrammatic synopsis of the intersection probabil-
ity. Paired coverage distributions, plotted at differences of 
one unit of redundancy, begin to coalesce as a project 
evolves. The intersection probability is the area of the over-
lap (shaded).
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Table 2: Calibration of medical sequencing according to haploid 
distribution models

Traditional BAC Sequencing Project Medical Sequencing ρ based on

Redundancy PC P� Complete Covg. Intersection

6 0.02843 0.74122 20.2 18.8
8 0.51842 0.95054 22 20.9
10 0.89840 0.99301 23.9 23
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dearth of published results from which actual coverage
progressions can be derived. For the purposes of compar-
ison, we refer instead to the recently completed pilot rese-
quencing project for C. elegans. Hillier et al. [28]
resequenced strain N2 Bristol using the Illumina Genome
Analyzer in order to characterize the accuracy and utility
of short-read, massively parallel data. We have projected
their C. elegans coverage results for φ ∈ {1, 2} onto Fig. 1.
Agreement is very good up to about 60% coverage, after
which the rate of empirical coverage falls below expecta-
tion. This behavior seems to typify theoretical-empirical
differences. For example, Wendl and Barbazuk [29] noted
precisely this trend for sequencing filtered genomes.

The physical explanation of this phenomenon is straight-
forward. Specifically, biases are not manifested early in a
project because there is not enough information to distin-
guish unbiased coverage configurations from biased ones.
(Think of an extreme case, for example placing a single
read of high GC content onto a genome of high AT con-
tent. Despite the obvious non-IID nature of this scenario,
the predicted coverage will still be identical to the actual
coverage.) Given a model based on the IID assumption, as
ours is, empirical and theoretical results should start to
diverge as sufficient information gathers to expose latent
biases. In this case, Hillier et al. [28] note a definite AT
bias using the Illumina platform, i.e. remarkably lower
coverage in regions of high AT content, which we presume
accounts for much of the difference shown in Fig. 1. The
proclivities of other methods and platforms are evidently
different [30]. Consequently, Eq. 2 should also be useful
as a yardstick for comparison among these approaches for
specific applications.

Finally, Fig. 1 also shows simulation data reported by
Smith and Bernstein [20] for φ = 1 on a 20 kb circularized
fragment using 250 bp reads. Agreement is once again
good up to about 60% coverage, after which the sequenc-
ing process seems to grow more efficient for the fragment.
This observation is not surprising, given two important
aspects of this study. First, the circularized configuration is
not subject to the so-called "edge effect", which can dra-
matically affect coverage rates [29,31]. Second, distribu-
tion theories show that configurations having larger L/G
ratios do indeed cover more readily than those having
smaller values [24]. We presume these two factors account
for most of the difference, especially given that L/G =
0.0125 for the simulation is more than a million times
larger than values associated with short-read medical
sequencing projects. For example, 31 bp reads on a 3.3
billion bp genome yields L/G ≈ 1 × 10-8.

A Differential Sequencing Strategy
We expect that many future studies will be based on
sequencing DNA derived from matched tumor/normal

samples (for example, the latter being obtained from
uninvolved skin or blood) from the same patient [3,4].
Here, the whole genome of each sample in a pair is
sequenced and mutations are found by comparison to the
human reference. Let us call the sets of mutations for a
tumor and a normal sample ST and SN, respectively, where
we generally expect SN ⊆ ST. Most of the germline varia-
tion in SN will be polymorphisms not related to pathogen-
esis [1], whereas ST will contain a potentially more
relevant collection of somatic mutations. In principle,
germline sequence variations can be removed from fur-
ther consideration by taking the difference ST - SN [6].
Such filtering will appreciably focus subsequent work,
since the overwhelming majority of sequence variants
should be polymorphisms found in normal tissue [5].
How does one efficiently accomplish this from a process-
engineering standpoint?

We propose a refinement of simple subtraction [6] in the
form of a straightforward differential sequencing strategy.
In principle, false-negative errors are controlled by
sequencing at least to diploid coverage at the level of φ =
1. However, tumor samples should actually be sequenced
as heavily as economically possible in order to minimize
false-positive hits for both germline and somatic muta-
tions. These types of mistakes arise, for example, by mis-
interpreting a random sequencing error as a true
mutation. Given current state-of-the-art capabilities, we
will assume this condition translates to diploid coverage
at the level of φ = 2, but emphasize that future instruments
will undoubtedly permit higher φ.

Conversely, a germline mutation in a normal sample only
has to be detected once in order to be eliminated from ST.
We are also not as concerned about false-positives here
because their appearance in SN does not affect the subtrac-
tion ST - SN. It is possible that an error could lead to a spu-
rious entry in SN that precisely matches a true somatic
mutation in ST by pure chance. The somatic mutation
would then be erroneously eliminated from further inves-
tigation. However, such events seem unlikely, given the
low anticipated number of bona fide somatic mutations.
These observations collectively imply that normal sam-
ples may only need to be sequenced to diploid coverage at
the level of φ = 1.

The 10× standard for BAC sequencing is well-established
[25] and provides a reasonably conservative basis to trans-
late the above design into actual redundancies for medical
sequencing (Table 1). We suggest then that sequencing of
tumor samples should not be pursued to less than about
26.5× redundancy, given the 2-read minimum coverage
condition. Furthermore, paired normal samples need
only to be sequenced to about 21.5× redundancy for the φ
= 1 coverage condition.
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Expository Comment on Recommended Redundancies
The observation that the required redundancy for the φ =
1 coverage level is not simply half that of the φ = 2 level
may initially seem counter-intuitive. We remarked above
that curves for increasing values of φ tend to have progres-
sively smaller slopes. Consequently, there is not, in gen-
eral, an integer-valued relationship between
corresponding points on any two particular curves. In
other words, curves are not simply shifted along ρ. Return-
ing to Fig. 1, we show an example that replots the φ = 2
curve, except where the abscissa-value of each of its points
has been divided by two. It is clear that the result does not
coincide with the φ = 1 curve, as intuition may have sug-
gested. The curves only intersect at a single point, here at
an expected coverage slightly more than 0.5, which is well
below the > 0.99 calibration points we chose above. In
other words, redundancy for φ = 1 would only have been
half that for φ = 2 had we chosen to cover 50% instead of
> 0.99 of SNPs. This trend holds generally. That is, we do
not expect an integer relationship between the required
redundancies for two unequal, but otherwise arbitrary val-
ues of φ.

Coverage Projections for Aneuploid Configurations
Aneuploidy can be manifested in a number of ways: as an
autosomal [32] or sex chromosome [33] aberration, and
in conjunction with cancer [34]. We anticipate the even-
tual application of DNA sequencing to aneuploid chro-
mosome configurations and offer some early projections
based upon Eq. 6. Fig. 4 shows expected coverage for tri-
somy and tetrasomy for φ = 2 and φ = 3. Required depths
are clearly much higher than for diploid sequencing. For
example, we find redundancies of ρ = 42 and ρ = 57 for
trisomy and tetrasomy, respectively, when scaling to 10×
BAC sequencing at the level of φ = 2. Recall that φ = 2 is

presumed to be feasible for diploid whole-genome
sequencing using current hardware. These redundancies
are clearly out of reach at the moment for a whole-
genome project, but may be feasible for chromosome-spe-
cific projects. In other words, the appreciably higher cost
of sequencing aneuploid chromosomes may justify the
effort of separating them into their own self-contained
projects.

Modeling Limitations
As with the classical theories of sequencing [16,17], the
main assumption here is that reads are independently and
identically distributed (IID). In other words, this analysis
does not formally consider biological or instrument-spe-
cific biases, software biases and sequencing errors, for
example in base-calling, assembly problems, or any other
heuristic inputs. The idiosyncrasies of each of these factors
are difficult to characterize analytically, although the cali-
bration step does allow some implicit accounting, as
noted above. Appreciable differences in levels and types of
bias have been noted, for instance in Sanger-style
sequencing versus pyrosequencing [30], so any results
should be interpreted with these qualifications in mind.

In general, the assumption of allele independence should
be valid for most medical sequencing projects since φ will
be small and L/G → 0 and N Ŭ 1 (see Methods). For exam-
ple, maximum error for φ ∈ {1, 2} is on the order of 10-5

percent for diploid sequencing using 650 bp read lengths.
The theory further assumes that sequence reads have no
preference for either chromosome of a homologous pair
and neglects any tendency for reads to align to multiple
positions. The latter has been found to occur with some
frequency if reads are short enough [35]. Read-pairing cer-
tainly curtails this phenomenon, but the pairing process
itself has negligible effect on coverage unless the target is
very small [31]. Such is not the case in whole-genome
medical sequencing, so the net effect of pairing is simply
that the amount of uniquely-alignable sequence one gets
to count toward ρ increases commensurately. In plain
terms, fewer data will be discarded.

Finally, our analysis does not account for what might be
called the "uneven coverage" problem of alleles. Mutation
detection programs may decline calling out a SNP if one
allele is covered much more heavily than the other [36].
Because this phenomenon is both software-specific and
sequence-specific, it is beyond our scope. Departure from
any of these idealizations will tend to reduce coverage,
implying that our analysis is best viewed in the context of
upper bounds of performance. In other words, required
redundancies for specific projects may still exceed what
we have advocated here, as the C. elegans data in Fig. 1
illustrate.

Expected coverage for aneuploid chromosome configura-tions for minimum number of covering reads φ ∈ {2, 3}Figure 4
Expected coverage for aneuploid chromosome con-
figurations for minimum number of covering reads φ 
∈ {2, 3}.
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A subtle mathematical point is also worth mentioning.
Eqs. 1 through 5 represent the probability of covering a
specific allele pair, or alternatively, the expected fraction
of pairs covered. These expressions do not provide the
underlying distribution of the number of covered pairs,
which is a more formidable mathematical problem. In
other words, this is a model only of coverage expectation,
exactly analogous to what classical theories [16,17] are for
traditional de novo haploid sequencing. Consequently, the
results themselves are not strong functions of L/G. In fact,
for most applications the results will be completely inde-
pendent of this ratio and will instead follow a set of "uni-
versal" curves, the first 5 of which are shown in Figs. 1 and
2. This point is underscored by Eq. 2, which is a function
strictly of ρ. (The observation holds more generally for
aneuploidy as described by Eq. 6, as well.) This phenom-
enon contrasts with distribution-based models, such as PC
and P� discussed above, which are indeed sensitive to L/
G. The basis of this effect is discussed in ref. [24].

A corollary to this observation is that adjusting the funda-
mental parameters within their biologically-relevant lim-
its will have no effect on the results we have discussed. For
example, the haploid genome size G could be adjusted to
reflect only that part of the sequence to which read data
can be uniquely aligned [35]. Yet, the underlying assump-
tions leading to Eqs. 2 and 6 will still be satisfied in this
circumstance, mainly L/G → 0 and N Ŭ 1 (Methods). The
same holds for varying L in order to represent different
kinds of sequencing platforms, e.g. pyrosequencing or
Sanger instruments. In summary, the contributions of the
three independent variables L, G, and N collapse into the
single dimensionless variable ρ, which governs the proc-
ess exclusively. Formal theory [37] predicts such system-
atic reductions of variables whenever a unified
dimensionless parameter lurks in a problem.

Conclusion
The differential sequencing strategy should be useful for
efficiently identifying lists of somatic mutations for vali-
dation and further study. Our analytical model of cover-
age, coupled with a calibration approach for selecting
parameters, allows pragmatic estimates to be made for
such projects. However, because the theory does not
strictly consider various biasing factors, actual projects
would benefit from periodically aligning (assembling)
shotgun data to empirically track overall coverage, as well
as local coverage in coding regions, UTRs, promoters, and
conserved regions. SNP arrays could also be done for each
sample, with attempts made to find and correlate data to
sequence calls for further coverage tracking. Plotting these
various data on a single figure, as we did for the C. elegans
data in Fig. 1, should be informative. Finally, the basic
model could be further extended in the future as more
data accrue from different methods, projects, software

processing pipelines, etc. For example, "extra-variation"
methods [26,27] could be used for a posteriori data fitting,
the results of which should help to better quantify non-
IID factors.

Methods
Proofs of Eqs. 1, 2, and 6 are reported here. Eqs. 3 through
5 follow trivially from Eq. 2. We also describe the analysis
of C. elegans resequencing data from Hillier et al. [28].

Preliminaries

Let Bi, j be the event where an allele at position x on chro-

mosome i is "covered", i.e. spanned by at least φ out of any

collection of j reads, where j ≥ φ. Given N total reads, our
definition of diploid medical sequencing coverage for
position x is then B1, N � B2, N and its probability is P2, φ(B1,

N � B2, N). If βi, j, k is the event whereby the allele on chro-

mosome i is spanned by exactly k of j reads, then Bi, j ≡ βi,

j, φ � βi, j, φ+1 � μ � βi, j, j. Considering two homologous

chromosomes, i ∈ {1, 2}, the probability that a single

given read spans x on a specific chromosome is δ2 = L/

(2G), where L and G are read length and haploid genome
length, respectively. Since the process is binomial (cover-
ing or not covering), we immediately have

, where Cj, k are the binomial

coefficients.

Proof of Eq. 1
The coverings of two homologous alleles are not inde-
pendent of one another. For instance, if one allele is
already covered by j reads, there are only N - j remaining
reads that have a chance to cover the other allele. Conse-
quently,

where

Eq. 1 follows from the observation that P(β2, N-j, k) = 0 for
k > N - j.

Proof of Eq. 2
If we neglect the dependence of alleles, then P2, φ(B1, N �
B2, N) = P (B1, N)·P (B2, N). Without loss of generality, this
probability is identical to P2(B1, N), from which

P Ci j k j k
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Parameters for medical sequencing projects are such that
L/G → 0 and N Ŭ 1. These relations hold for both "short
read" platforms and instruments that provide "full-
length" Sanger read data. Moreover, φ << N, which implies
k << N. Consequently, the binomial coefficients CN, k are
well-approximated by Nk/k!. These conditions also imply
(1 - δ2)N ~ exp(-Nδ2), i.e. that asymptotic approximation
can be used for the power term. Eq. 2 follows directly.

Proof of Eq. 6
The case of aneuploidy under the assumption of allele
independence is a straightforward extension of the proof
for Eq. 2. For h homologous chromosomes, Ph, φ (B1, N �
B2, N � μ � Bh, N) = P(B1, N)P (B2, N) μ P (Bh, N) = Ph(B1,

N). Given that all h chromosomes are equally likely to be
sampled, δh = L/(hG), which is the appropriate Bernoulli
probability for P(B1, N). Eq. 6 follows from the same
approximation arguments made for Eq. 2.

Eqs. 1, 2, and 6 in the Context of Expectation
We can take the coverage status of a specific allele pair as
a Bernoulli trial, whereby elementary probability theory
shows that the expected number of pairs covered is their
total number multiplied by P2, φ(B1, N � B2, N). Conse-
quently, P2, φ(B1, N � B2, N) in Eq. 1 and its approximation
in Eq. 2 also represent the expected fraction of covered
pairs. The same argument holds for Eq. 6.

Analysis of C. elegans resequencing data
Hillier et al. [28] used the Illumina Genome Analyzer to
resequence the C. elegans N2 Bristol genome. Release
ws188 of the genomic sequence [38] was downloaded
from http://www.wormbase.org and randomly chosen
subsets of the resequence data were aligned against the
reference at regular intervals for each chromosome using
the maq aligner (http://maq.sourceforge.net). Data that
could not be uniquely placed on the reference were dis-
carded. Coverage was calculated for each alignment as the
number of corresponding base positions spanned by at
least one read on homologous chromosomes (φ = 1) and
by at least two reads on homologous chromosomes (φ =
2).

Appendix: Idealized Theory of Levy et al
Levy et al. [12] sketch a rudimentary diploid theory,
though they do not furnish any corresponding mathemat-
ical description. Here, we reconstruct an idealized version
of their model, i.e. the form which assumes all entities are
IID and which omits any heuristic inputs. A careful read-
ing of "Modeling False-Negative Rate of Heterozygous

Variants" in ref. [12] reveals the following salient features.
Chromosomes are equally likely to be sampled and loci
are taken as independent of one another. (Our theory
relies on these same two assumptions.) Levy et al. also
assume the number of reads ν spanning a position of
interest x is Poisson-distributed with a rate ρ and that the
probability of observing both alleles is a binomial func-
tion of ν. Incidentally, Richard Durbin and Aylwyn Scally
discuss a similar model in their analysis (Durbin and
Scally, personal communication), as do Wheeler et al.
[13].

Let the random variables B and N be the events where
both alleles at x are observed (covered) and where ν reads
span x, respectively. We immediately have

from the Poisson assumption. Given ν reads spanning x,
the probability of observing both alleles is simply the
complement of the probability of any configuration in
which one of the alleles is not represented among the ν
reads. If we label the alleles I and II, then without loss of
generality, the binomial model for the number of obser-
vations, j, of allele I is

There are two configurations in which only one of the
alleles is observed: j = 0 (all reads hit allele II) and j = ν (all
reads hit allele I). Consequently, the probability of
observing both alleles in ν reads is P(B|N = ν) = 1 - PI(0)
- PI(ν). Using Eq. 8, a little algebra shows

which is defined for ν ≥ 1. Note that the probability
exceeds zero only for ν ≥ 2, as we would expect. That is, at
least 2 reads must span x before it is possible to observe
both alleles. The Theorem of Total Probability now fur-
nishes the desired result, P(B), from Eqs. 7 and 9, as fol-
lows.

This expression represents the ideal probability of cover-
ing a diploid location as a function of the haploid
sequence redundancy of the project.
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Eq. 10 is actually just a special case of our model in Eq. 2
for φ = 1, as the following exercise demonstrates.

= 1 - 2e-ρ/2 + e-ρ (14)

which is nothing more than P2,1 in Eq. 3. It can be shown
along very similar lines that the Poisson/Binomial model
outlined by Wheeler et al. [13] is also a special case of Eq.
2 for φ = 2, i.e. it leads to P2,2 (Eq. 4).
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