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Abstract
Background: Microarray experiments measure changes in the expression of thousands of genes.
The resulting lists of genes with changes in expression are then searched for biologically related
sets using several divergent methods such as the Fisher Exact Test (as used in multiple GO
enrichment tools), Parametric Analysis of Gene Expression (PAGE), Gene Set Enrichment Analysis
(GSEA), and the connectivity map.

Results: We describe an analytical method (Geneva: Gene Vector Analysis) to relate genes to
biological properties and to other similar experiments in a uniform way. This new method works
on both gene sets and on gene lists/vectors as input queries, and can effectively query databases
consisting of sets of biologically related sets, or of results from other microarray experiments. We
also present an improvement to the null model estimate by using the empirical background
distribution drawn from previous experiments. We validated Geneva by rediscovering a number
of previous findings, and by finding significant relationships within microarrays in the GEO
repository.

Conclusion: Provided a reasonable corpus of previous experiments is available, this method is
more accurate than the class label permutation model, especially for data sets with limited number
of replicates. Geneva is, moreover, computationally faster because the background distributions
can be precomputed. We also provide a standard evaluation data set based on 5 pairs of related
experiments that should share similar functional relationships and 28 pairs of unrelated
experiments from GEO. Discovering relationships amongst GEO data sets has implications for drug
repositioning, and understanding relationships between diseases and drugs.

Background
High-throughput experiments such as microarrays com-
pare the expression levels of thousands of genes at once.
Individual gene readings, when compared to a control,
measure the degree to which the gene is up- or down-reg-

ulated. Microarray experiments contain significant noise,
and typically only a few genes are found whose expression
is significantly changed. Recently, several groups have
begun to examine microarray experiments from the per-
spective of biologically related gene sets. There are a large
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number of such methods based on thresholding the ini-
tial microarray results by fold-change or p-value and then
using a Fisher exact test to determine significance (e.g.
[1]). We use the term gene set database query to describe the
comparison of a microarray experiment against a database
of sets of genes (often with associated biology). The
results from a gene set database query consist of biologi-
cally meaningful groups, such as the set of all genes anno-
tated with a GO term or a pathway, rather than individual
genes. Non-parametric algorithms such as GSEA [2] and
PAGE [3] are also available for this type of search. General
tools to assist biologists with the analysis are being devel-
oped [4,5], and in this context, quantifying the success of
particular algorithms becomes even more important.

In addition to queries against a database of biologically
meaningful sets, we may wish to query a database consist-
ing of other experiments. We use the term gene vector data-
base query to describe a query against a database whose
entries are themselves vectors of gene readings. Such a
query may aim to find related experiments – for example,
queries of signatures against the Connectivity Map corpus
were able to identify compounds with similar effects [6].

The naive null model for a gene set database query (in
both GSEA and PAGE) is that the genes in the set are
drawn independently from the overall distribution. How-
ever, many gene sets of biological interest consist of co-
regulated genes. The expression responses of these genes
will typically be highly correlated. This tight correlation
may cause us to reject the naive null model with high con-
fidence, even in cases where the genes are not differen-
tially regulated. One way to compensate for this
interdependence of genes within a set is through permu-
tation of class labels [7]. However, a disadvantage of per-
mutation testing is that it requires a large number of
replicates. (Note that for experiments involving fewer
than 13 microarrays, fewer than 1,000 distinct permuta-
tions exist, thus permutation based p-values may be lim-
ited to > 0.001). We show that it is more effective to
calibrate p-values for each set (or vector) in the database
using a large corpus of experiments. Once this calibration
is performed, queries can be performed with higher accu-
racy than permutation tests, and with less computational
cost.

Statistical methods which apply to set queries, such as
Fisher Exact, may not apply to vector queries. If different
statistical methods are used, the p-values from gene set
database queries and gene vector database queries may
not be comparable. For this reason, we developed a
method that can query both sets and vectors, using a com-
mon statistical framework. With this method, one can
query microarray readings against a database of sets (as in
GSEA), or query gene signatures against a database of vec-

tors (as used in the Connectivity Map). In addition, one
can use our method to query microarray readings against
a database of previous microarray experiments (e.g. to
find drugs which offset the transcriptional changes associ-
ated with a disease). The source code implementing our
query tool, Geneva, is available http://bioinfo2.ucsd.edu.

We report the results of evaluation experiments using
publicly available microarray experiments from the GEO
data repository. Related microarray experiments are those
that differ only by (for example) severity of disease, dose
of compound, or sampling of subjects. Gene set enrich-
ment methods should identify very similar enriched sets
for related experiments. We formalize this idea to identify
5 pairs of related experiments from GEO as an evaluation
set, thus, extending the data sets from PAGE [3]. We also
use 28 pairs of mismatched (or unrelated) experiments as
a negative set. This provides an objective framework to
evaluate multiple methods as to their accuracy. The value
of standard evaluation data sets is well proven – for exam-
ple, see the influence of the Burset and Guigo data set in
gene-finding [8]. Using this evaluation data enables us to
compare statistical measures within Geneva.

We divide the generalized gene vector analysis problem
into three steps. The first step is the acquisition of a reading
for each gene to be used for querying, and compiling a
database of gene sets and/or gene vectors. The second step
is the calculation of an enrichment score for each gene set
(or gene vector) in the database. The third step is the con-
version of these enrichment scores into p-values, using the
distribution of enrichment scores on a corpus of data. The
computation of these values is described in the Methods.

Results
The distribution of enrichment scores for a given gene set
across the corpus reflects the co-regulation (formally: the
correlation in transcription changes) of the genes across
various treatments. Figure 1 compares these distributions
for two gene sets: A set of 118 genes related to oxidative
phosphorylation, and a large set of 1,222 genes related to
mRNA processing. For an example of how p-value calibra-
tion provides improved query results, let us consider a
data-set (GDS287) comparing muscle tissue from young
and aged males. Using a naive query that performs no p-
value calibration, we obtained a p-value of 1.2 × 10-34 for
the mRNA processing set, much lower than the value for
oxidative phosphorylation (6.4 × 10-11). Similar results
were observed using PAGE [3]. However, after calibration
against the CMAP corpus (see Methods), this ordering is
reversed, and the p-value for mRNA processing is no
longer significant after correcting for multiple hypothesis
testing. Naive queries frequently detect the mRNA
processing set as enriched – indeed; it receives an uncor-
rected p-value below 0.05 in the majority of the 463 CMAP
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experiments. This demonstrates that the naive null
hypothesis does not suffice to filter out false positives
based on gene sets comprised of highly co-regulated genes
from gene set queries.

As described in the Methods, we computed the false dis-
covery rate for queries across pairs of related and unre-
lated experiments (Figure 2). If p-value calibration is
performed, many more gene sets are observed at a 10%
false discovery rate. The results also demonstrate that
either large corpus provides a reasonable training set for p-
value calibration, as queries calibrated with either GEO or
CMAP perform significantly better than those without cal-
ibration. The GEO corpus has the advantage that it
includes a wide array of treatments and tissue types, and
that it uses t-scores (available only for the GEO corpus)
rather than fold changes (available for the CMAP corpus).
On the other hand, the CMAP corpus is somewhat larger,
and has the advantage that it was generated by one lab
with high reproducibility. The GEO corpus was arguably
more effective, as measured by the slower decrease in pre-
cision. However, when we list the top 10 gene sets for
these experiments (as measured by product of p-values),
the lists reported using calibration against the CMAP cor-
pus appeared to be most biologically reasonable (in our
subjective opinion).

Calibrating p-values using a corpus of experiments is less
expensive computationally than using a permutation of
class labels, particularly if many queries will be run
against the same database of gene sets. The initial corpus
calibration is time-consuming (requiring approximately 1
day of running time on a typical desktop PC), but need
only be done once for each gene set. Perhaps surprisingly,
our results show that calibrating p-values across a corpus
of experiments yielded higher accuracy than generating p-
values by permuting the class labels. However, we note
that permutation of class labels is clearly more effective
than no p-value calibration at all.

In a related experiment, we compared the query precision
obtained when using the Cyber-T statistic, Cyber-T p-val-
ues, or log fold change as our gene readings (Figure 3).
Queries using the Cyber-T statistic or p-value are noticea-
bly more accurate than those driven solely by log fold
change. This reflects the large amount of noise in fold-
change measurements for genes expressed at a low level.
Not surprisingly, precision declines as the significance
threshold drops (i.e. N increases).

A final evaluation experiment compared the accuracy
obtained using several different enrichment models (Fig-
ure 4). Pearson correlation is more accurate than Spear-

Cumulative distribution functions of Pearson enrichment scores for two gene sets across the CMAP corpusFigure 1
Cumulative distribution functions of Pearson enrichment scores for two gene sets across the CMAP corpus. 
There are clear differences in the variance of these two distributions of two gene sets. However, the empirical distribution of 
scores across the corpus fits a normal distribution well for most gene sets. For each gene set, we calculated a p-value based on 
the specific normal distribution associated with that gene set.
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man correlation, as might be expected when comparing
parametric and non-parametric models. However, Pear-
son and PAGE were almost identical. Noticeably, both the
FDR q-value and FWER p-values from GSEA performed
worse, possibly because we did not calibrate those p-val-
ues.

Gene set results
Table 1 lists several of the top gene sets returned for the
five pairs of experiments described in Methods. (A full
table of gene sets, together with the corresponding
Affymetrix probe IDs, is available in Additional file 1).
Some gene sets of clear biological interest arise. For exam-
ple, the set of genes annotated with the biological process
"Long-term memory" was down-regulated in the Alzhe-
imer's disease samples. Gene sets related to immune
response were differentially regulated in response to
malaria infection. As reported previously [3], gene sets
related to glycolysis and the TCA cycle are differentially
regulated in young and aged muscle.

The original study of the Alzheimer's disease samples [9]
identified several differentially expressed gene sets using a
modified Fisher's exact test. Several biological processes
were identified again by our study, including downregula-
tion of ATP biosynthesis and GPCR signaling, and upreg-
ulation of apoptosis. We believe that the reliability of our
results is improved by the use of a parametric statistic, as
well as a more reasonable null model, which accounts for
co-regulated gene sets.

Vector query results
As described in Methods, we computed the correlation of
the Cyber-T vectors for all pairs of experiments in the GEO
corpus. Given these values, we performed vector queries,
to identify all experiments significantly related to a micro-
array experiment. Such experiments may affect the cell
similarly (e.g. exposure to related compounds), or may
perturb similar pathways with opposite effects (e.g. dis-
ease response versus exposure to a treatment). This query
involved approximately 800,000 pairwise comparisons,

Precision (1-FDR) of gene set queries methods with Pearson based p-values calibrated on GEO and CMAP compared to per-mutation based p-values and no permutationFigure 2
Precision (1-FDR) of gene set queries methods with Pearson based p-values calibrated on GEO and CMAP 
compared to permutation based p-values and no permutation. Also included, for comparison are GSEA q-value 
(based on FDR) and GSEA p-value (based on FWER). We compared Precision across the various queries for threshold of gene 
sets (N) plotted on the x-axis (as described in Methods).
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and required 3 CPU days of running time on a compute-
cluster. We examined the query results up to a p-value of
0.05.

We examined the query results for pairs of related experi-
ments (see Methods). As expected, the two muscle data-
sets (GDS287 and GDS472) are related to each other (p-
value 3.55 × 10-6). Two other data-sets were significantly
similar – a study of sarcopenia (GDS749) and a study of
the effects of exercise on muscle in elderly males
(GDS1340). These results show the effectiveness of exer-
cise in offsetting age-associated muscle loss at the tran-
scriptional level. The Alzheimer's disease experiment
(GDS810) was similar to an experiment on bipolar disor-
der (GDS2190), suggesting these disorders might be sim-
ilar.

Our full GEO against GEO results are reported [see Addi-
tional file 2]. Relationships between compounds can be
discovered by this kind of undirected data-mining. For
instance, a close relationship was observed between exper-
iments exposing a prostate cancer cell line to two different
androgens: DHT (GDS2057) and methyltrienolone/
R1881 (GDS536). Hits were also seen for experiments
with the transcriptional changes induced by the estrogen

hormone estradiol (GDS1549) and by the estrogen recep-
tor agonist tamoxifen (GDS2367).

Other hits come from experiments with related treatments
– comparisons of transcription in blood versus liver
(GDS1023) and kidney versus liver (GDS1663) were
closely related, presumably due to transcription of liver-
specific genes. Some of the confident query hits come
from experiments from different labs which applied
essentially the same treatments – for instance GDS1549
and GDS2367 both measure the effects of estradiol on
breast cancer cell lines. In the future, programmatically
examining meta-data (e.g. from MIAME) may permit
highlighting the most interesting search hits by filtering
out closely related experiments.

Discussion and conclusion
The high-throughput gene collection database query
problem can be formulated in several ways, focusing on
either gene set database queries or gene vector database
queries. The use of a parametric statistical framework that
accepts either gene names or gene values as input is
important, particularly when combining heterogeneous
data-sources (e.g. microarrays and literature-curated gene
lists). Queries against both sets and vectors work well with

Comparison of query accuracy, on the evaluation set, with p-values calibrated against the GEO corpus using Pearson correla-tionFigure 3
Comparison of query accuracy, on the evaluation set, with p-values calibrated against the GEO corpus using 
Pearson correlation. Queries based upon signed p-value were more effective than just p-value. Cyber-T was also extremely 
effective especially for N > 60. Using log fold changes as gene values was least effective consistently, perhaps due to the noise 
in the log fold change for genes with low expression.
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simple metrics such as Pearson correlation, provided that
p-values are calibrated properly.

Calibration of gene set database queries against a corpus
of experiments provides much more accurate results than
using a naive null model. Calibration against a training
corpus is certainly not ideal for all situations. In cases
where a suitable corpus is not available (e.g. if one is
investigating an organism that has not yet been exten-
sively studied), class label permutation is the only practi-
cal approach. If a set of genes is not significantly expressed
in the training corpus, then the training corpus will not
adequately measure their degree of correlation. Therefore,
it is desirable to use a training corpus containing as wide
a variety of tissues and conditions as possible.

Identifying standard data sets that can be used to compare
different algorithms and different metric is beneficial. Our
proposed standard data set of 5 related pairs of experi-
ments and 28 unrelated pairs of experiments is an
advance over evaluations based on one or two anecdotal
comparisons. However, there is much room for improve-
ment by extending the numbers of both related and unre-
lated pairs and further reducing the bias caused by any
single experiment. We also recognize that the figures do
not provide statistical tests to determine if in fact a
method is superior to another. Again this was impossible

given the small size of the data set. But it also cautions us
to not over interpret the findings in figures 2 and 4.

The emergence of large microarray repositories, such as
GEO, provide researchers with the ability to search for
experiments with similar (or opposite) gene changes.
Such searches provide an ideal approach to find com-
pounds which offset the gene expression changes associ-
ated with disease states. Calibration of p-values using a
corpus of experiments significantly improves the accuracy
of such queries by providing a reasonable null model
without the need for large numbers of controls.

Methods
Gene Readings
In order to perform a query, we need a single reading
quantifying the degree of up- or down-regulation of each
gene. The gene readings for the genes included in the
microarray will be represented as a query vector of length
N, whose nth value represents the change in transcription
of the nth gene. The levels of transcription of each gene in
the public data-sets we used were initially quantified
using MAS5 [10] or related methods. To quantify the up-
or down-regulation of each gene, we employed the Cyber-
T algorithm [11]. The Cyber-T statistic itself is retained as
the reading for a gene. The Cyber-T statistic has the advan-
tage that it reflects both direction (up-versus down-regula-

Comparison of query accuracy, for the evaluation set, using various enrichment modelsFigure 4
Comparison of query accuracy, for the evaluation set, using various enrichment models. This is based on the GEO 
corpus using the Cyber-T. PAGE produces the best results. Pearson is a very close second; an additional advantage of Pearson 
correlation is that it is effective for queries against vectors and gene sets.
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tion) and confidence. A variety of methods are available
to quantify up- and down-regulation [12], which can be
incorporated similarly. In addition, we tried applying log
fold change (which reflects direction) and the Cyber-T p-
value (which reflects only confidence). In addition, p-val-
ues from SAM [13] were computed and tested, and found
to give similar results to Cyber-T p-values (data not
shown).

The Connectivity Map (CMAP) corpus consists of a total
of 463 microarray experiments involving the exposure of
human cell cultures to various perturbagens [6]. As a sec-
ond corpus, we obtained all GEO data-sets available for
the Affymetrix HG-U133A chip (GPL96) as of February
1st, 2007. The SOFT-format files for each data-set were
parsed, and expression differences were measured using
Cyber-T for each pair of sample sets which (a) contained
three or more entries per set, and (b) were disjoint. To
avoid over-representing particular treatments in our cor-
pus, we selected at most three such comparisons per data-

set. The resulting corpus contains a total of 285 gene vec-
tors. For each comparison (A vs. B), we also added the
reverse comparison (B vs. A) which increased the number
of corpus to 570 vectors. This was done for technical and
expository reasons as it made the distributions of scores
symmetrical.

A database of gene sets was constructed from several
sources: GOA [14], GenMAPP [15], HumanCyc [16], Bio-
Carta http://biocarta.com/genes/allpathways.asp, and
TRANSFAC [17]. Gene identifiers from the source data-
bases, along with Affymetrix microarrays, are mapped to a
collection of common identifiers. Because small gene sets
do not lead to statistically significant results, we ignored
any set containing fewer than five genes. A total of 4,256
gene sets of sufficient size were used.

Table 1: Top-scoring differentially expressed gene sets found for pairs of related microarray experiments (from the category in 
column 1 above) using Geneva.

Experiment Rank p-value Name Source

Muscle 1 7.89E-10 Glycolysis_and_Gluconeogenesis GenMAPP
Muscle 2 6.93E-09 Costamere: CC GOA
Muscle 3 4.37E-07 superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass HumanCyc
Muscle 4 4.86E-07 Contractile Fiber Part: CC GOA
Muscle 5 6.54E-07 Z Disc: CC GOA
Muscle 6 9.20E-07 Small Leucine-Rich Proteoglycan (SLRP) Molecules BioCarta
Muscle 7 1.69E-06 aspartate degradation II HumanCyc
Muscle 8 4.80E-06 Myofibril: CC GOA
Muscle 9 4.87E-06 gluconeogenesis HumanCyc
Muscle 10 5.38E-06 Contractile Fiber: CC GOA
Malaria 1 1.60E-08 Immune Response-Regulating Signal Transduction: BP GOA
Malaria 2 1.60E-08 Immune Response-Regulating Cell Surface Receptor Signaling Pathway: BP GOA
Malaria 3 1.60E-08 Immune Response-Activating Signal Transduction: BP GOA
Malaria 4 1.60E-08 Immune Response-Activating Cell Surface Receptor Signaling Pathway: BP GOA
Malaria 5 1.60E-08 Antigen Receptor-Mediated Signaling Pathway: BP GOA
Malaria 6 1.67E-08 T Cell Receptor Signaling Pathway: BP GOA
Malaria 7 1.76E-08 Regulation Of T Cell Receptor Signaling Pathway: BP GOA
Malaria 8 2.69E-08 Regulation Of Antigen Receptor-Mediated Signaling Pathway: BP GOA
Malaria 9 2.64E-07 Activation Of Csk By cAMP-Dependent Protein Kinase Inhibits Signaling Through The T Cell 

Receptor
BioCarta

Malaria 10 5.02E-07 Locomotion: BP GOA
AD 1 1.13E-11 Proton-Transporting Two-Sector ATPase Complex: CC GOA
AD 2 1.13E-11 Hydrogen-Translocating V-Type ATPase Complex: CC GOA
AD 3 9.31E-11 Long-Term Memory: BP GOA
AD 4 4.91E-10 aspartate degradation II HumanCyc
AD 5 1.78E-09 Proton-Transporting ATP Synthase Complex: CC GOA
AD 6 1.78E-09 Proton-Transporting ATP Synthase Complex (sensu Eukaryota): CC GOA
AD 7 1.78E-09 Hydrogen-Translocating F-Type ATPase Complex: CC GOA
AD 8 1.95E-09 Hydrogen Ion Transporter Activity: MF GOA
AD 9 6.44E-09 Monovalent Inorganic Cation Transporter Activity: MF GOA
AD 10 7.75E-09 Ubiquinol-Cytochrome-C Reductase Activity: MF GOA

Pearson correlation was used, and was calibrated against a corpus of experiments from GEO (see Methods).
The p-value reported is the product of the p-values for the two related experiments.
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Enrichment Scores
Given a query vector of gene readings (as described above)
and a gene set, we considered several statistical models for
computing an enrichment score for the gene set:

• Pearson correlation. We construct a binary membership
vector for the set. This membership vector's nth entry is 1
if the nth gene is a member of the set, and 0 otherwise. We
then compute the Pearson correlation between the mem-
bership vector and the query vector. The enrichment score
is the Pearson correlation coefficient, r.

• Spearman correlation. As with Pearson correlation, we
first construct a binary membership vector for the set. We
then compute a Spearman (rank-based) correlation, ρ,
between the membership vector and the query vector. The
enrichment score is the variable t, defined as:

• PAGE. We implemented the Parametric Analysis of Gene
Set Enrichment (PAGE) method as described by Kim &
Volsky [5]. PAGE is based on using the normal distribu-
tion for statistical inference, and is possibly more sensitive
than GSEA.

The two correlation-based methods have the advantage
that they apply equally well to queries against a database
of vectors. The accuracy of these methods was compared
on an evaluation data set.

In the past, researchers have compiled a set of genes of
interest from a microarray experiment (e.g. two-fold or
greater change in expression), then compared the set
against a database of biologically related genes using
Fisher's Exact Test. Geneva can be used in essentially the
same way if Cyber-T is replaced by a binary-valued vector
set to one for precisely those genes of interest. However,
querying based upon the readings themselves is more
informative than applying an arbitrary cutoff and then
querying upon gene sets.

Calibration of p-values
For the GEO corpus and for each gene set, we fitted a nor-
mal distribution to the empirical distribution of the
enrichment scores. (See Figure 1 for an empirical cumula-
tive distribution for two different gene sets.) The inferred
mean (μ) and standard deviation (σ) parameters of the
normal distribution were then used to compute p-values
for that gene set for all queries. This was done independ-
ently for each of the three enrichment score methods:
Pearson, Spearman, and PAGE, and also done for the
CMAP corpus in addition to the GEO corpus.

Under reasonable assumptions, the theoretical distribu-
tion of Pearson correlation scores follows a normal distri-
bution whose variance is inversely proportional to the
number of genes [18]. In practice, the distribution of Pear-
son correlation scores for gene sets in our database across
the corpus is indeed fit well by a normal distribution, but
with a standard deviation that varies between gene sets.
The variance of the enrichment score distribution corre-
lates with size (r = 0.41), but is also affected by the degree
of co-regulation.

We expect the distribution of the enrichment scores across
the corpus to follow a normal distribution. We evaluated
the quality of the fit to the normal distribution using the
Kolmogorov-Smirnov statistic. (This KS test was used to
test for normality, and should not be confused with the
use of KS test in GSEA.) The median p-values for the GEO
and CMAP corpora were 0.87 and 0.60 respectively. Thus,
we could not reject the hypothesis that the p-values are
normally distributed. Similarly, Spearman correlation p-
values follow a normal distribution (median p-values
0.61 and 0.53), as do Z-scores (p-values 0.88 and 0.68).
The standard deviations of enrichment scores for gene sets
across the two corpora are tightly correlated (r = 0.87).
This suggests that any sufficiently large and diverse corpus
provides a reasonable measurement of the degree to
which genes in a set are co-regulated.

Evaluation of query algorithm
We obtained several publicly-accessible microarray data-
sets from the GEO repository [19,20]. Five pairs of related
experiments were used in our evaluation experiment, as
follows:

• Muscle: Muscle tissue from old males (67–75 years) vs.
young (21–27 years) males (GDS287) and old females
(65–71 years) vs. young (20–29 years) females (GDS472)
[21].

• Malaria: Whole blood from children with mild malaria
vs. healthy children and severe malaria vs. healthy chil-
dren (GDS1971)

• AD: Brain tissue from subjects with moderate AD
(Alzheimer's disease) vs. normal and with severe AD vs.
normal (GDS810) [9].

• Glioma: Grade III gliomas vs. control (non-tumor) cells
and grade IV gliomas vs. control cells (GDS1962) [22].

• Obesity: Skeletal muscle tissue samples from obese vs.
non-obese and morbidly obese vs. non-obese subjects
(GDS268) [23].

t
N= −

−

ρ

ρ

2

1 2
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The pairs of experiments described above are considered
related, as they involve similar biological changes and
should affect transcription in similar ways. In order to
quantify the performance of our queries, we tabulate the
gene sets that are considered as significant for both the
related experiments. If a gene set is found to be enriched
in both experiments, we have increased confidence that
the gene set is indeed undergoing a biologically relevant
change in expression. By contrast, we expect to see few (if
any) shared gene sets between two experiments chosen
from different biological conditions. In practice, some
overlap was seen between some of those pairs, for
instance, we saw some overlap between the effects on
muscle tissues of obesity and aging. So we selected an
even cleaner negative control set by picking a collection of
seven unrelated experiment pairs (as close to "biologically
disjoint" as possible), which should share few up- or
down-regulated genes (Table 2).

We listed the top N gene sets reported as enriched for any
of the ten evaluation experiments, for N ranging from 1 to
1000. We then checked if a gene set is reported as enriched
for two experiments. We count the number of such shared
gene sets for related experiments (e.g. obesity in male and
in female), denoting the count as V. Similarly, let I denote
the number of shared gene sets for unrelated experiments;
these are (to a first approximation) all invalid. These gene
sets shared between unrelated experiments serve as an
estimate of the number of spurious gene sets shared
between related experiments. For any given N, the false
discovery rate (FDR) [24] for gene sets shared between
related experiments can be readily computed (for V > I) as
cI/V. Here the scaling factor, c is the number of related
experiment pairs divided by the number of unrelated
experiment pairs. We can also define Precision to be (1-
FDR) = (1-cI/V). This Precision is plotted against N in fig-
ures 3 &4. Method A is considered better than method B
for threshold N if it has higher Precision. For each method
after evaluation on the above data set, we selected an FDR
cutoff of 10% for our comparisons (see Table 1 for Pear-
son hits at FDR = 10%).

Queries against a gene vector database
The Pearson and Spearman correlation enrichment mod-
els can be applied equally well to queries against a data-
base of vectors. As a test of this procedure, we measured
differential expression using Cyber-T for all data sets in
the GEO corpus (described above), then performed an all-
against-all vector query. We modeled the distribution of
correlation values R for a given data-set X with a normal
distribution. This enables us to compute the p-value,
PX(R), for a given value of R. When comparing vectors X
and Y, a p-value for the association of X and Y is computed
as the geometric mean of PX(R) and PY(R). This score
reflects the significance of a particular correlation R rela-
tive to the correlation values observed for X and Y across
the entire corpus. In the absence of a training set of query
results, we examined the query results for several GEO
data-sets to determine whether they were biologically rea-
sonable.

Authors' contributions
SWT implemented the algorithm and built the test data-
set. PA formulated the problem and directed the compar-
ison of methods. Both authors prepared the final manu-
script.

Additional material

Acknowledgements
The authors gratefully acknowledge the assistance and ideas of Liwen Liu 
and William Reisdorf. ST was supported by NSF IGERT training grant 
DGE0504645.

References
1. Hosack DA, Dennis G Jr, Sherman BT, Lane H, Lempicki RA: Identi-

fying Biological Themes within Lists of Genes with EASE.
Genome Biology 2003, 4(6):P4.

2. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP:
Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles.  Proc Natl
Acad Sci USA 2005, 102(43):15545-15550.

3. Kim SY, Volsky DJ: PAGE: parametric analysis of gene set
enrichment.  BMC Bioinformatics 2005, 6:144.

4. Kim SB, Yang S, Kim SK, Kim SC, Woo HG, Volsky DJ, Kim SY, Chu
IS: GAzer: Gene Set Analyzer.  Bionformatics 23(13):1697-9. 2007
Jul 1;

Additional file 1
Enriched gene sets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-348-S1.txt]

Additional file 2
GEO vs. GEO query.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-348-S2.zip]

Table 2: Treatments considered unrelated for the purpose of 
evaluation experiments.

Pair A Pair B

Muscle Malaria
Muscle Glioma
Malaria Glioma
Malaria Obesity
AD Malaria
AD Obesity
Glioma Obesity

Each treatment has two experiments, for a total of 28 unrelated 
experiment pairs.
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-348-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-9-348-S2.zip
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941488


BMC Bioinformatics 2008, 9:348 http://www.biomedcentral.com/1471-2105/9/348
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

5. Nam D, Kim S-Y: Gene-set approach for expression pattern
analysis.  Briefings in Bioinformatics 2008, 9(3):189-197.

6. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner
J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei
G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander
ES, Golub TR: The connectivity map: using gene-expression
signatures to connect small molecules, genes, and disease.
Science 2006, 313(5795):1929-1935.

7. Efron B, Tibshirani R: On testing the significance of sets of
genes.  Annals of Applied Statistics 2007, 1(1):107-129.

8. Burset M, Guigo R: Evaluation of gene structure prediction
programs.  Genomics 1996, 34(3):353-367.

9. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR,
Landfield PW: Incipient Alzheimer's disease: microarray cor-
relation analyses reveal major transcriptional and tumor
suppressor responses.  Proc Natl Acad Sci USA 2004,
101(7):2173-8. 2004 Feb 17;

10. Welle S, Brooks AI, Thornton CA: Computational method for
reducing variance with Affymetrix microarrays.  BMC Bioinfor-
matics 2002, 3:23. Comparative Study.

11. Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P:
Improved statistical inference from DNA microarray data
using analysis of variance and a Bayesian statistical frame-
work. Analysis of global gene expression in Escherichia coli
K12.  J Biol Chem 2001, 276(23):19937-19944.

12. Vardhanabhuti S, Blakemore SJ, Clark SM, Ghosh S, Stephens RJ,
Rajagopalan D: A comparison of statistical tests for detecting
differential expression using affymetrix oligonucleotide
microarrays.  OMICS 2006, 10(4):555-566.

13. Tusher VG, Tibshirani R, Chu G: SSignificance analysis of micro-
arrays applied to the ionizing radiation response.  Proc Natl
Acad Sci USA 2001, 98:5116-5121.

14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium.  Nat Genet 2000,
25(1):25-29.

15. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR:
GenMAPP, a new tool for viewing and analyzing microarray
data on biological pathways.  Nat Genet 2002, 31(1):19-20.

16. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD:
Computational prediction of human metabolic pathways
from the complete human genome.  Genome Biol 2005, 6(1):R2.

17. Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S,
Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H,
Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional
regulation, from patterns to profiles.  Nucleic Acids Res
31(1):374-8. 2003 Jan 1;

18. Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical
Recipes in FORTRAN: The Art of Scientific Computing.  2nd
edition. Cambridge, England: Cambridge University Press;
1992:634-637. 

19. Barrett T, Edgar R: Gene expression omnibus: microarray data
storage, submission, retrieval, and analysis.  Methods Enzymol
2006, 411:352-369.

20. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C,
Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining
tens of millions of expression profiles-database and tools
update.  Nucleic Acids Res 2007:760-765.

21. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA: Gene
expression profile of aging in human muscle.  Physiol Genomics
2003, 14(2):149-159.

22. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passanti
A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine HA:
Neuronal and glioma-derived stem cell factor induces angio-
genesis within the brain.  Cancer Cell 2006, 9(4):287-300.

23. Park JJ, Berggren JR, Hulver MW, Houmard JA, Hoffman EP: GRB14,
GPD1, and GDF8 as potential network collaborators in
weight loss-induced improvements in insulin action in
human skeletal muscle.  Physiol Genomics 27(2):114-21. 2006 Oct
11;

24. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing.  Journal of

the Royal Statistical Society, Series B (Methodological) 1995,
57(1):289-300.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18202032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18202032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17008526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17008526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12204100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12204100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17233564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17233564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17233564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16939800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16939800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16849634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16849634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16849634
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Gene set results
	Vector query results

	Discussion and conclusion
	Methods
	Gene Readings
	Enrichment Scores
	Calibration of p-values
	Evaluation of query algorithm
	Queries against a gene vector database

	Authors' contributions
	Additional material
	Acknowledgements
	References

