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Abstract
Background: The Signal-to-Noise-Ratio (SNR) is often used for identification of biomarkers for two-class
problems and no formal and useful generalization of SNR is available for multiclass problems. We propose
innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene
Dominant Index and Gene Dormant Index (GDIs). These two indices lead to the concepts of dominant and
dormant genes with biological significance. We use these indices to develop methodologies for discovery of
dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the
identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the
scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from
the literature we have shown that the GDI based method can identify dominant and dormant genes that play
significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems.

Results and discussion: To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data
sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer). For each
data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers.
We then use six machine learning tools, Nearest Neighbor Classifier (NNC), Nearest Mean Classifier (NMC),
Support Vector Machine (SVM) classifier with linear kernel, and SVM classifier with Gaussian kernel, where both
SVMs are used in conjunction with one-vs-all (OVA) and one-vs-one (OVO) strategies. We found GDIs to be
very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets
we could achieve better or comparable prediction accuracies usually with fewer marker genes than results
reported in the literature using the same computational protocols. The dominant genes are usually easy to find
while good dormant genes may not always be available as dormant genes require stronger constraints to be
satisfied; but when they are available, they can be used for authentication of diagnosis.

Conclusion: Since GDI based schemes can find a small set of dominant/dormant biomarkers that is adequate to
design diagnostic prediction systems, it opens up the possibility of using real-time qPCR assays or antibody based
methods such as ELISA for an easy and low cost diagnosis of diseases. The dominant and dormant genes found
by GDIs can be used in different ways to design more reliable diagnostic prediction systems.
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Background
Many studies have investigated the mechanism of carcino-
genesis by analyzing the gene expression profiles from
microarray data. Accurate diagnosis of different categories
of cancers or identification of subgroups with homogene-
ous molecular signature is important for proper treatment
and prognosis. The application of gene expression data for
these tasks is challenging because of its high dimensional
nature and the noisy characteristics. Since the number of
genes contained in each chip is far exceeding the number
of available samples, the standard statistical methods for
classification often do not work well. Therefore, identifi-
cation of informative genes related to a set of diseases is
an important subject in the field of biomedical informat-
ics at least for two reasons: understanding the roles played
by the genes in cancer biology and development of tools
for efficient and accurate diagnostic prediction.

Many novel classification, clustering and prediction meth-
odologies have been suggested to analyze gene expression
data [1-4]. Here we need to deal with two problems: iden-
tification of marker genes (this is a problem of dimension-
ality reduction) and use of the marker genes for designing
a diagnostic prediction system. For the second problem
many machine learning tools, such as Neural Networks,
Decision Trees, Nearest Neighbor Classifier, Naive Bayes
classifier, Support Vector Machines have been used [5-8].
For the problem of gene selection also many methods
have been proposed [2,4,7-10]. Gene selection methods
can further be grouped into two categories: linear methods
and non-linear methods.

The linear methods are very intuitive which exploit the
linear relation between expression levels and the status of
the disease. In other words, for a two-class problem, say
Acute Lymphoblastic Leukemia (ALL) and Acute Myelog-
enous Leukemia (AML), the high expression level may
correspond to ALL while a low expression level may corre-
spond to AML or vice versa. Two such indices are Signal-
to-Noise ratio (SNR) [2] and correlation [7]. The SNR for
a gene g is defined as SNR(g) = (μ1(g) - μ2(g))/(σ1(g) +
σ2(g)), where μi(g) and σi(g) are the mean and standard
deviation of expression levels of a gene g for samples in
class i (i = 1, 2), respectively. The authors in [7] adopted
several formulae (Euclidean distance, Pearson correlation,
SNR, etc.) for measuring the similarity between the
expression levels of a gene g and an ideal gene gideal in a 2-
class problem, where an ideal gene pattern was defined by
gideal = (gideal,1, �, gideal,G), gideal,j = 1, if the jth sample is from
class 1, otherwise gideal,j = 0; ∀ j = 1, �, G. The ideal values
can also be taken as 0 for class 1 and 1 for the class 2. Let
xg be the vector consisting of the expression values for a
gene g for all samples. Now the Pearson correlation or
cosine similarity between the two vectors gideal and xg can
be used to rank the genes. Although very intuitive, these

methods are neither easy to generalize to multiclass, nor
such methods can take into account non-linear interac-
tion between genes. The BW ratio [4] is a linear index that
can be used for multiclass problems, but it is less intuitive
and it is not easy to visualize its behavior.

Note that, there have been attempts to adapt two-class
methods such as correlation for multiclass problems
using the one-vs-all strategy [11]. In [11], first a set of
genes is selected based on ANOVA. Then using this short-
listed genes, a set of important genes is identified for each
class by casting the problem into a two class problem. We
call these method as ANOVA+Correlation method. For
example, in a k-class problem, to get a set of important
genes for class c, samples from class c are considered from
class 1 and all samples from the remaining classes pooled
together are treated as class 2. Then the correlation, as
explained, in the previous paragraph is computed. Such a
method will select strong marker genes, but may also
select poor ones because the pooled class will have a
much stronger and undesirable effect on the correlation
than the class under consideration. Similarly, using the
OVA strategy the SNR can also be used to select genes for
a multiclass problem [12]. We shall call this method as
OVA.SNR. In the OVA.SNR approach, for a k-class prob-
lem, to select useful genes, say, for class 1, the data set is
divided into two groups, data from class 1 and data from
the the remaining 2 to k classes. Although such methods
may find useful genes, in this case, the mean and standard
deviation of the pooled group may not (usually will not)
represent any useful information about the remaining
classes. For example, in a 3-class problem, suppose for a
gene, samples from each of the three classes are normally
distributed (this is an assumption made while using
ANOVA type tests). For simplicity, suppose we have n
samples from each of the three classes and the mean and
standard deviation computed from these samples for the

three classes are μi, σi; i = 1, �, 3, respectively. In the

OVA.SNR approach, the mean of the second group,

 does not represent the central tendency of the

pooled group and hence it does not represent any useful
information about the structure of the remaining two
classes. Moreover, when samples from class 2 and class 3
are normally distributed with two different means, the
pooled samples will not be normally distributed. Hence,
OVA schemes, which use mean of the pooled class, for
gene selection is not conceptually appealing, although
such approaches may find useful discriminatory genes.

μ μ μ= +2 3
2
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On the other hand, the non-linear methods can take into
account non-linear interaction between genes. There are
several such methods, for example, online feature selec-
tion using neural network [10], SVM-based recursive fea-
ture elimination (SVM-RFE) [9], and the maximum
margin criterion-based recursive feature elimination
(MMC-RFE) [8]. In [10], the authors have considered the
non-linear interaction between genes as well as that
between genes and the tool used for gene selection.
Although in [10] they have successfully discovered a small
set of biomarkers for accurate prediction of cancer sub-
groups, the behavior of non-linearly interacting genes is
less interpretable than the linearly interacting genes for
making simple decision rules. The SVM-RFE is a quite
popular method of feature selection in an iterative man-
ner. This method makes use of repeated training of a SVM
classifier with a progressively reduced set of features. In
every iteration, some of the less important features are
removed. For a two-class problem, the SVM classifier finds
the weight vector, w ∈ Rp, p is the number of genes, asso-
ciated with the hyperplane that maximizes the margin of
separation. The SVM-REF algorithm, trains SVM with all
available genes first and finds the optimal weight vector w
∈ Rp. Then it computes a Ranking Criterion, RC, for each
gene. A possible choice of RC is (wi)2. Then either a single
gene (or a set of genes) with the smallest values of RC is
removed and the process is then repeated with the
reduced set of genes.

Here we aim to develop a gene selection method which is
intuitive, can find useful marker genes and can be viewed
as a true generalization of SNR. The GDI is akin to the
SNR, which is widely used in two-class gene selection
problems [2], but GDI can be applied to multicategory
problems, and identifies dominant and dormant genes.
We define two indices named, Gene Dominant Index (GDI-

Dom) and Gene Dormant Index (GDIDor). The GDIDom leads
to the novel concept of Dominant Genes while the other
index leads to the concept of Dormant Genes. A dominant
gene is over-expressed in only one of the classes and
under-expressed in the remaining classes, and thus has a
very strong class specific signature. A dormant gene, on
the other hand, is under-expressed in only one of the
classes but over-expressed in the remaining classes, and
thus also has a strong class specific signature. Clearly,
dominant or dormant genes are good biomarkers, if they
exist, and they are likely to play key roles in identifying
sub-types/classes of disease. In order to reduce the effect
of the finite sample size, we randomly select a part of the
data to find a list of dominant and dormant genes. This
process of random partition of data and computation of
GDIs are repeated 100 times. The frequency with which
different genes appear in the list of dominant and dor-
mant genes is then computed. Since really good dominant
and dormant genes are expected to appear more fre-

quently, we select a set of most frequently occurring dom-
inant (dormant) genes. A set of strong dominant and/or
dormant genes, thus selected, can be used to design relia-
ble diagnostic systems. Further details about the defini-
tions and procedures can be found in the Materials and
Methods section.

We want to emphasize that many genes may have discrim-
inating power and hence can be considered marker genes
but the dominant and dormant genes are special types of
markers. Thus dominant and dormant genes are markers
genes but all marker genes are not necessarily dominant/
dormant genes and GDI is designed to identify dominant/
dormant genes, if present. However, even if there are not
many good dominant/dormant genes and we select a set
of markers based on GDIs, such a set will do a good job of
classification.

To compare the performance of our methods, we shall use
six classifiers for diagnostic prediction: NMC, NNC, SVM
with linear kernel, and SVM with Gaussian kernel. Each of
the two SVMs is realized using both the OVA and OVO
strategies and this makes the total number of classifiers to
six. Our method is tested on four multi-class cancer data
sets. We shall see later that our proposed methods can
find a small set of discriminating biomarkers with excel-
lent prediction accuracy.

Results and discussion
Four multicategory microarray gene expression data sets,
namely, SRBCT (Small Round Blue Cell Tumors) [13],
Leukemia [14], CNS (Central Nervous System Tumors)
[15], and Lung Cancer [16] are used in this study for
detailed analysis. We divide our discussion into three sub-
sections, the biological relevance of some of the domi-
nant/dormant genes, visual assessment of the dominant/
dormant marker genes, and comparison of classifier per-
formance. The results obtained using SRBCT, Leukemia,
and CNS are compared with those in [8]. The Lung Cancer
data set (not used in [8]) is further used to show the effec-
tiveness of our method. Details of the data sets can be
found in Materials and Methods. We have followed the
same experimental protocols as in [8] to make a proper
comparison. Additionally, we have implemented the mul-
ticlass version correlation based method (ANOVA+Corre-
lation) and SNR (OVA.SNR) for comparison of
performance.

Biological relevance of some dominant/dormant genes
Tables 1, 2, 3, 4, obtained by the Algorithm Gene Selection
(see Materials and Methods), list the sets of dominant and
dormant genes for the SRBCT, Leukemia, CNS, and Lung
Cancer data sets, respectively. In Table 1 for the SRBCT
data set, four of the most dominant genes, one for each
class, identified by the GDIDomare (a) FCGRT, (b) WAS, (c)
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AF1Q, (d) FGFR4. The gene FCGRT (Fc fragment of IgG,
receptor) has an EWS (Ewing sarcomas) specific signature
because it is moderate to highly upregulated for the EWS
group and is downregulated for the other three groups.
This gene is known to play significant roles in other types
of cancers too. For example, in [17] authors suggested a

set of 26 prognostic genes that can provide predictive
information on the survival of patients suffering from
lung cancer. They found that a higher expression level of
FCGRT relates to a better survival outcome.

Table 1: Details of the selected genes by the frequency-based method for the SRBCT data set

Class Image ID Gene Symbol Frequency Ave. GDI p-value q-value

Dom EWS 770394 FCGRT 100 1.88 0 0
814260 FVT1 100 1.43 0 0
377461 CAV1 99 1.46 0 0
1435862 CD99 94 1.37 0 0
866702 PTPN13 88 1.28 0 0

BL 236282 WAS 100 2.19 0 0
183337 HLA-DMA 67 1.82 0 0
745019 EHD1 51 2.03 0 0
1469292 PIM2 24 1.90 0 0
47475 CYFIP2 24 1.85 0 0

NB 812105 AF1Q 99 1.65 0 0
134748 GCSH 64 1.45 0 0
756401 RHEB 56 1.41 0 0
325182 CDH2 33 1.38 0 0
629896 MAP1B 32 1.32 0 0

RMS 784224 FGFR4 100 1.60 0 0
796258 SGCA 96 1.27 0 0
244618 FNDC5 65 1.18 0 0
839552 NCOA1 42 1.14 2.60E-06 0.0002
769716 NF2 38 1.12 2.60E-06 0.0001

Dor EWS 295985 CDK6 100 1.37 0 0
448386 PBX3 73 0.96 5.11E-05 0.0011
842820 PABPC4 43 0.78 0.0011 0.0115
214572 CDK6 39 0.77 0.0003 0.0039
366009 LYAR 24 0.93 0.0078 0.0457

BL 204545 ANTXR1 70 2.04 0 0
154472 FGFR1 68 2.15 0 0
66552 C20orf194 57 2.12 0 0
345538 CTSL 50 2.27 0 0
142788 SERPINH1 21 2.04 0 0

NB 810057 CSDA 85 1.29 0 0
753418 VASP 62 1.16 1.73E-06 8.16E-05
686164 DGKZ 42 1.13 6.07E-06 0.0002
769716 NF2 34 1.12 9.53E-06 0.0003
128126 CD55 33 1.47 0.0003 0.0038

RMS 897177 PGAM1 73 0.75 0.0004 0.0053
295986 EBP 61 0.80 0.0004 0.0053
711959 POLR3C 41 0.72 0.0016 0.0150
163174 TCEA1 31 0.76 0.0016 0.0148
306921 EEF1E1 23 0.72 0.0028 0.0224

Using the training data, for each class the top five most frequently occurring genes are selected.
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The WAS gene belongs to the set of Human Cancer Genes
[18]. It has a very strong BL (Burkitt lymphomas) class
specific signature, and it is also found important by others
in the context of the SRBCT data set [19]. The relationship
of WAS to Burkitt Lymphomas is also reported in [20].
The deficiency of WAS gene causes the Wiskott-Aldrich
syndrome, which is an X-linked hereditary disease associ-
ating primary immunodeficiency, thrombocytopenia, an
increased risk of autoimmune diseases and malignancies,
particularly non-Hodgkin's lymphoma (NHL) [21-24]. In
patients with Wiskott-Aldrich syndrome, a higher rate of
malignancy has been observed, particularly in Epstein-
Barr Virus-related brain tumor, leukemia and lymphoma
http://www.stjude.org. Amongst the different kinds of
tumors, the most frequently associated one with Wiskott-
Aldrich syndrome is the NHL tumor (it is about 76%).

The other kinds of tumors associated with WAS include,
Hodgkin's disease, glioma, and testicular carcinoma
[21,24]. Although NHL is the most common type of
malignancy found in WAS and BL represents 40% to 50%
of all NHL cases in childhood, BL has hardly been
reported in WAS. But a case of BL with WAS is reported in
[20]. In [24], authors reported Malignant B Cell Non-
Hodgkin's Lymphoma of the Larynx with Wiskott-Aldrich
syndrome. All these clearly establishes the important role
of WAS not only in BL, but in other types of malignancies
too.

The ALL1-fused gene from chromosome 1q (AF1Q) is one
of the dominant genes found by our method for the neu-
roblastoma (NB) group. Many authors have reported this
gene to play important roles in cancer [25,26]. As revealed

Table 2: Details of the selected genes by the frequency-based method for the Leukemia data set

Class Probe ID Gene Symbol Frequency Ave. GDI p-value q-value

Dom ALL 1389_at MME 96 1.98 0 0
32847_at MYLK 62 2.02 0 0
32872_at ESTs 58 1.73 0 0
35164_at WFS1 52 2.05 0 0
37280_at SMAD1 25 1.87 0 0

MLL 34306_at MBNL1 99 1.43 0 0
40763_at MEIS1 92 1.41 0 0
36777_at KLRK1 83 1.42 0 0
1065_at FLT3 56 1.20 0 0
34583_at FLT3 30 1.30 0 0

AML 39566_at CHRFAM7A 46 1.89 0 0
41752_at GHITM 39 1.51 0 0
38710_at OTUB1 31 1.54 0 0
37187_at CXCL2 22 1.53 0 0
36162_at BSG 21 1.47 0 0

Dor ALL 33412_at LGALS1 94 1.66 0 0
37403_at ANXA1 90 1.74 0 0
37809_at HOXA9 62 1.59 0 0
41448_at HOXA10 54 1.64 0 0

31575_f_at ESTs 33 1.65 0 0

MLL 1674_at YES1 69 1.03 0 0
1325_at SMAD1 43 0.97 9.54E-07 2.80E-05
539_at RYK 39 1.05 0 0

1971_g_at FHIT 33 0.90 9.54E-07 3.02E-05
37527_at ELK3 28 0.98 9.54E-07 2.81E-05

AML 41747_s_at MEF2A 50 1.89 0 0
41503_at ZHX2 49 1.88 0 0
37988_at CD79B 37 1.98 0 0
37710_at MEF2C 34 2.04 0 0
40966_at STK39 32 2.12 0 0

Using the training data, for each class the top five most frequently occurring genes are selected.
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Table 3: Details of the selected genes by the frequency-based method for the CNS data set

Class Probe ID Gene Symbol Frequency Ave. GDI p-value q-value

Dom MD M93119_at INSM1 79 1.65 8.98E-06 0.0018
HG884-HT884_s_at ESTs 32 1.42 0.0006 0.0224

S82240_at RND3 29 1.49 0.0002 0.0116
Y09836_at MAP1B 25 1.35 0.0006 0.0225
D80004_at KIAA0182 22 1.34 0.0009 0.0263

MGlio M93426_at PTPRZ1 55 1.93 9.82E-06 0.0019
X03100_cds2_at HLA-DPA1 47 1.69 0.0006 0.0223

X86693_at SPARCL1 43 1.44 5.21E-05 0.0046
D38522_at SYT11 35 1.98 2.67E-05 0.0033
U55258_at ESTs 26 1.43 0.0010 0.0270

Rhab D84454_at SLC35A2 72 2.11 1.68E-06 0.0007
D17400_at PTS 38 1.77 1.21E-05 0.0021
U47621_at SC65 25 1.72 1.71E-05 0.0028
L38969_at THBS3 23 1.95 2.11E-05 0.0030
D30755_at TNIP1 21 1.82 2.71E-05 0.0033

Ncer U92457_s_at GRM4 66 4.30 0 0
X63578_rna1_at PVALB 64 3.66 0 0

U79288_at KIAA0513 62 3.38 0 0
HG2259-HT2348_s_at ESTs 32 4.62 2.81E-07 0.0003

D26070_at ITPR1 30 3.93 0 0

PNET K02882_cds1_s_at IGHD 55 1.15 0.0002 0.0117
X14830_at CHRNB1 29 1.21 0.0012 0.0307

M80397_s_at POLD1 23 1.29 0.009 0.0260
M36429_s_at GNB2 18 1.25 0.0020 0.0402
U50648_s_at ESTs 16 1.78 0.0013 0.0310

Dor MD X17093_at HLA-F 50 1.37 0.0009 0.0293
X06985_at HMOX1 47 0.98 0.0013 0.0316
U78556_at MTMR11 42 1.05 0.0022 0.0378
D14874_at ADM 28 1.05 0.0016 0.0342
D13900_at ECHS1 27 1.05 0.0022 0.0376

MGlio HG919-HT919_at ESTs 33 1.50 0.0003 0.0211
U71598_at ZNF274 30 1.61 0.0011 0.0316
L40027_at GSK3A 22 1.30 0.0100 0.0802
L41939_at EPHB2 15 1.10 0.0018 0.0353

HG384-HT384_at ESTs 14 1.23 0.0240 0.1233

Rhab U52828_s_at CTNND2 42 2.07 3.25E-05 0.0193
Y07829_xpt4_at ESTs 33 1.79 2.19E-05 0.0173

M37457_at ESTs 28 1.75 4.32E-05 0.0171
X99688_at ESTs 21 1.89 3.56E-05 0.0181
M14676_at FYN 20 1.77 0.0001 0.0183

Ncer X04828_at GNAI2 73 2.72 0 0
HG2743-HT2846_s_at ESTs 71 2.86 0 0
HG2167-HT2237_at ESTs 23 2.62 7.01E-06 0.0083

HG3546-HT3744_s_at ESTs 22 2.98 0.0001 0.0189
X86018_at LRRC41 21 3.65 3.61E-05 0.0172

PNET X13916_at LRP1 39 1.44 0.0007 0.0268
X60483_at HIST1H4J 29 1.41 0.0015 0.0332
U41816_at PFDN4 27 1.25 0.0026 0.0411
U25265_at MAP2K5 26 1.54 0.0013 0.0313
M12625_at LCAT 23 1.13 0.0012 0.0314

Using the training data, for each class the top five most frequently occurring genes are selected.
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Table 4: Details of the selected genes by the frequency-based method for the Lung Cancer data set

Class Probe ID Gene Symbol Frequency Ave. GDI p-value q-value

Dom Adeno 38261_at ABCC3 100 0.84 2.68E-05 0.0005
35276_at CLDN4 77 0.66 0.0004 0.0038
39339_at TMEM63A 63 0.64 0.0005 0.0044
1930_at ABCC3 43 0.68 0.0006 0.0051

1802_s_at ERBB2 23 0.68 0.0053 0.0280

Normal 36119_at CAV1 99 2.13 0 0
1815_g_at ESTs 36 2.14 0 0
40994_at GRK5 35 2.00 0 0
36569_at CLEC3B 34 1.83 0 0
1814_at ESTs 33 1.75 0 0

SCLC 893_at UBE2S 52 2.64 0 0
39990_at ISL1 47 2.38 0 0
32272_at TUBA1B 47 2.05 0 0
894_g_at UBE2S 43 2.18 0 0
39605_at FOXG1 38 2.78 0 0

SQ 613_at KRT5 100 1.48 0 0
31791_at TP63 96 1.26 0 0
1898_at TRIM29 74 1.18 3.19E-07 1.61E-05

39016_r_at KRT6A 56 1.18 3.19E-07 1.51E-05
41266_at ITGA6 38 1.21 9.57E-07 4.21E-05

COID 40825_at MAPRE3 67 2.47 0 0
32254_at VAMP2 52 2.31 0 0
40165_at TSPYL2 49 2.36 0 0
41107_at SNPH 39 2.80 0 0
198_g_at NME3 26 2.31 0 0

Dor Adeno 36209_at BRD2 97 0.68 0.0008 0.0176
39799_at FABP5 74 0.66 0.0022 0.0305

40580_r_at PTMS 67 0.58 0.0037 0.0399
1315_at OAZ1 57 0.61 0.0038 0.0408
39561_at CBX6 39 0.59 0.0050 0.0474

Normal 36133_at DSP 55 1.73 0 0
31850_at GCLC 41 1.58 0 0
1248_at POLR2H 23 1.48 0 0
35194_at GPX2 23 1.46 0 0
39353_at HSPE1 20 2.29 6.38E-07 0.0003

SCLC 33908_at CAPN1 54 1.30 6.38E-07 0.0003
1109_s_at PDGFA 36 1.71 1.50E-05 0.0022
36952_at HADHA 27 1.28 1.26E-05 0.0019
338_at ATF6 25 1.32 5.70E-05 0.0046

36890_at PPL 20 1.32 4.55E-05 0.0042

SQ 38113_at SYNE1 34 1.51 4.90E-05 0.0043
33118_at SEMA3B 31 1.36 3.99E-06 0.0009
40665_at FMO3 26 1.48 0.0003 0.0115
37908_at GNG11 19 1.52 2.11E-05 0.0024
33267_at ATP8A1 19 1.22 8.14E-06 0.0015

COID 33322_i_at SFN 79 2.67 0 0
39728_at ESTs 39 1.75 0 0
36879_at ECGF1 35 2.24 0 0
925_at ESTs 25 1.64 0 0

33143_s_at SLC16A3 24 2.07 4.79E-07 0.0003

Using the training data, for each class the top five most frequently occurring genes are selected.
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by Fig. 1(c), AF1Q is moderate to highly express for the
neuroblastoma cases, while it exhibits low expression val-
ues for the other three groups of the SRBCT.

As discussed in [10,27], FGFR4 carries out the signal trans-
duction to the intracellular environment in cellular prolif-

eration, differentiation and migration. Overexpression of
FGFR4 is found in various cancers, such as of pituitary,
prostate, thyroid [28-30], but in normal tissues, FGFR4
expression is hardly noticeable. In our study with the
SRBCT, we noticed a very strong RMS (rhabdomyosarco-
mas) specific signature, very high expression levels of

Scatterplots of the most dominant gene in each subgroup of the SRBCT data set: (a) FCGRT (Image: 770394) for EWS, (b) WAS (Image: 236282) for BL, (c) AF1Q (Image: 812105) for NB, (d) FGFR4 (Image: 784224) for RMSFigure 1
Scatterplots of the most dominant gene in each subgroup of the SRBCT data set: (a) FCGRT (Image: 770394) 
for EWS, (b) WAS (Image: 236282) for BL, (c) AF1Q (Image: 812105) for NB, (d) FGFR4 (Image: 784224) for 
RMS.
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FGFR4 for the RMS group, but for the other groups it is
practically unexpressed. However, in lung adenoarci-
noma, FGFR4 is found to be downregulated [31].

The second and third most dominant genes for the EWS
class are Follicular lymphoma variant translocation 1
(FVT1) and CAV1 (caveolin 1, caveolae protein, 22 kD).
According to [32] FVT1 is found to be weakly expressed in
normal hematopoietic tissues, but is shown to exhibit a
very high rate of transcription in some T-cell malignancies
and in phytohemagglutinin-stimulated lymphocytes.
Becuase of the proximity of FVT1 to BCL2, authors in [32]
also have indicated that both genes may involve in the
tumoral process. For the present data set, it exhibits a very
strong EWS specific signature. Its expression is practically
absent for RMS, NB and NHL groups, but it is highly
expressed for the EWS group. The gene CAV1 is also a bio-
logically informative gene. In our study we found CAV1 to
be upregulated for the EWS group. According to [33],
CAV1 is down-regulated in oncogene-transformed and
tumor-derived cells and it is an essential structural constit-
uent of caveolae that plays important roles in mitogenic
signaling and oncogenesis. Many studies have reported
CAV1 as a candidate tumor suppressor gene [34-36]. It has
been established that CAV1 has tumor suppressor activity
in human cancers, including breast cancer [33,37], ovar-
ian cancer [38], and lung cancer [39]. But in [40], they
showed that CAV1 is over-expressed in human gastric can-
cer cell line GTL-16. Also, for diffuse large B-cell lym-
phoma [41] and prostate cancer [42], CAV1 is identified
to serve as a diagnostic and prognostic marker. For the
Lung Cancer data set in this study we have found CAV1 as
a good dominant gene for the normal tissue group and
this is in conformity with the fact that CAV1 also plays the
role of a tumor suppressor. This is also consistent with
down-regulation of CAV1 in human lung carcinoma [39].
Thus, CAV1 plays an important role in cancer biology.

According to Table 2, we shall now discuss the importance
of some dominant and dormant genes for the Leukemia
data set. The MME (membrane metallo-endopeptidase),
also known as CD10, is the most important dominant
gene for the ALL group as found by GDIDom. MME is found
to play different roles in different types of cancers. In [43],
authors suggested that the functions of MME vary with tis-
sue types and disease states. For example, in hepatocellu-
lar and thyroid carcinoma MME exhibits higher
expression levels [44,45], while in poorly differentiated
tumors in the colon and stomach MME shows low expres-
sion levels [46]. According to [47], MME is downregulated
in the ALL samples with MLL (Mixed-Lineage Leukemia)
rearrangements compared to ALL without MLL rearrange-
ments. In our study we have found MME to be highly
expressed in ALL while for the MLL and AML groups it is
moderately expressed.

The top two dominant genes for the MLL group found by
GDI are MBNL1 and MEIS1. In our study, we have found
that expression levels of both MBNL1 and MEIS1 are
higher for the MLL group than the other two groups. In
[48], authors have found upregulation of these two genes
in the ALL and AML groups with MLL chimeric fusion
genes. It is interesting to know that by just using three
genes MME and MBNL1 and MEIS1, one can do a good
job of discrimination between the three types of leukemia
(results not shown); of course, three dominant genes, one
from each class can do an excellent job of classification
too.

The most dormant gene for the ALL class as detected by
GDIDor is LGALS1. In [49] it is claimed that a higher
expression of LGALS1 is a negative prognostic predictor of
recurrence in laryngeal squamous cell carcinomas. The
next important dormant gene for the same class is ANXA1.
This gene has been extensively studied and is found to
play interesting roles in human cancers. Following
[50,51] we summarize various cases where ANXA1 is up-
regulated and down-regulated. Higher expression level of
ANXA1 is observed in hepatocellular carcinoma [52],
mammary adenocarcinoma [53], glioblastoma [54], and
pancreatic cancer [55]. On the other hand, many investi-
gations have reported down-regulation of ANXA1 in dif-
ferent types of cancers such as in the head and neck
[56,57], esophageal [56], prostate [56], breast [50], and
larynx [51]. In our study with the leukemia data set,
ANXA1 is identified as a good dormant gene for the ALL
group. Note that, an absence of ANAX1 expression is
observed in B-cell non-Hodgkin's lymphomas too [58].

In our investigation with the CNS data set, as shown in
Table 3, the transcriptional repressor, insulinoma-associ-
ated 1 (INSM1) is found to be one of the dominant genes
for the MD (medulloblastomas) group. Different investi-
gations have found this gene to play roles in tumors of
neuroendocrine origin. In [59], they reported INSM1 as
one of the important genes in discriminating pancreatic
adenocarcinomas and islet cell tumors from normal pan-
creatic tissues. The gene INSM1 is also found to be over-
expressed in small-cell lung cancer (SCLC), SCLC cell
lines as well as in medullary thyroid carcinoma, insuli-
noma, and pituitary tumors [16,60,61].

As shown in Table 4, the most important dominant gene
for the Adenocarcinoma group of the lung cancer data is
ABCC3. The protein encoded by this gene belongs to the
superfamily of ATP-binding cassette (ABC) transporters
and is known to be involved in multi-drug resistance. The
roles played by ABCC3 in different cancers are also
reported in the literature [62-64]. For example, O'Brien et
al. [62] have claimed that amplification and concomitant
overexpression of the gene ABCC3 is responsible to confer
Page 9 of 33
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resistance to paclitaxel and monomethyl-auristatin-E.
Authors also demonstrated that this amplification is
present in primary breast tumors. Benderra et al. [64] have
suggested that ABCC3 may be involved in chemoresist-
ance in AML. The GDI based method has identified Kera-

tin 5 (KRT5) as the most dominant gene for the squamous
cell lung carcinoma (SQ) group. An inspection of Fig. 7
reveals that for most of the SQ samples KRT5 is highly
expressed while its expression level for the other four
groups in the Lung Cancer data set is practically absent.

Scatterplots of the most dormant gene in each subgroup of the SRBCT data set: (a) CDK6 (Image: 295985) for EWS, (b) ANTXR1 (Image: 204545) for BL, (c) CSDA (Image: 810057) for NB, (d) PGAM1 (Image: 897177) for RMSFigure 2
Scatterplots of the most dormant gene in each subgroup of the SRBCT data set: (a) CDK6 (Image: 295985) for 
EWS, (b) ANTXR1 (Image: 204545) for BL, (c) CSDA (Image: 810057) for NB, (d) PGAM1 (Image: 897177) for 
RMS.
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This strong SQ specific signature of KRT5 is also reported
in [65,66].

Visual assessment of the dominant/dormant marker genes
In the next section we shall demonstrate the utility of the
identified genes through performance comparison with
different classifiers. But classifier performance is an indi-

rect indicator. It does not reveal how dominant (dor-
mant) a gene is with respect to a class. So we try to make
visual assessments of the quality of the dominant (dor-
mant) genes. For this we adopt two approaches. First, we
use scatterplots to view the distribution of the expression
values of a dominant (dormant) gene in all samples (not
including samples of the independent data set). This helps

Scatterplots of the most dominant gene in each subgroup of the Leukemia data set: (a) MME (1389_at) for ALL, (b) MBNL1 (34306_at) for MLL, (c) CHRFAM7A (39566_at) for AMLFigure 3
Scatterplots of the most dominant gene in each subgroup of the Leukemia data set: (a) MME (1389_at) for 
ALL, (b) MBNL1 (34306_at) for MLL, (c) CHRFAM7A (39566_at) for AML.
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us to assess the discriminating power of (each) individual
gene. Second, we try to visualize the overall discriminat-
ing power of a set of dominant (dormant) genes selected
based on GDIs. This is done by looking at a two-dimen-
sional plot generated using Sammon's Non-linear Projec-
tion [67] that preserves the inter-point distances in the

high dimensional space. Note that, Sammon's method
does not use class information. The plots are labeled using
the class information just for better visualization. For the
Leukemia and SRBCT data sets, in the Sammon's plot we
include both the training and independent data sets (for
the training data different classes are represented by differ-

Scatterplots of the most dormant gene in each subgroup of the Leukemia data set: (a) LGALS1 (33412_at) for ALL, (b) YES1 (1674_at) for MLL, (c) MEF2A (41747_s_at) for AMLFigure 4
Scatterplots of the most dormant gene in each subgroup of the Leukemia data set: (a) LGALS1 (33412_at) for 
ALL, (b) YES1 (1674_at) for MLL, (c) MEF2A (41747_s_at) for AML.
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ent shapes with different colors; for the independent test
data, the same shapes are used but filled in with colors).

In Figs. 1, 2, 3, 4, 5, 6, 7, 8, the y-axis expresses the
observed gene expression values (normalized in [0,1]),
the x-axis indicates the samples in a data set. The samples
in different groups (classes) are represented by different
symbols and colors. The four panels in Fig. 1 display the
four most dominant (one for each class) genes for the
SRBCT data set. As expected, the dominant gene for a class
appears with high expression values in the samples from
that class, but with low expression values in the samples
of the other classes/subgroups. As an example, for the
SRBCT data set the most dominant gene, FCGRT (Image:
770394), for the Ewing Sarcoma is highly expressed for
the EWS group while, it is practically unexpressed for the
other three SRBCT classes (Fig. 1(a)). Similarly, Fig. 1(b)

shows that for the Burkitt Lymphomas (BL) the most
dominant gene, WAS (Image: 236282), is over-expressed
for the BL samples but under-expressed for the other
classes.

Figure 2 depicts that for the SRBCT the dormant genes for
all four classes are not very good and that explains the
poor performance of the classifiers discussed later. In Fig.
2 we find that the most dormant gene, CDK6 (Image:
295985), for the EWS is completely unexpressed for the
EWS samples while it is moderately expressed for the
remaining three classes. Of the remaining three classes,
the average expression level for the BL group is the closest
to that of EWS group. Although, from pattern recognition
point of view, this gene can distinguish EWS from the
other three classes, since the difference between the aver-
age expression levels for EWS and BL groups is not high,

Scatterplots of the most dominant gene in each subgroup of the CNS data set: (a) INSM1 (M93119_at) for MD, (b) PTPRZ1 (M93426_at) for MGlio, (c) SLC35A2 (D84454_at) for Rhab, (d) GRM4 (U92457_s_at) for Ncer, (e) IGHD (K02882 cds1_s_at) for PNETFigure 5
Scatterplots of the most dominant gene in each subgroup of the CNS data set: (a) INSM1 (M93119_at) for MD, 
(b) PTPRZ1 (M93426_at) for MGlio, (c) SLC35A2 (D84454_at) for Rhab, (d) GRM4 (U92457_s_at) for Ncer, (e) 
IGHD (K02882 cds1_s_at) for PNET.
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this gene may not be considered a very good dormant
gene. In some cases, the identified dormant genes may not
even be good from pattern recognition point of view also.
As an example, consider Fig. 2(d) depicting the expression
values of the most dormant gene for the RMS group.
Clearly, the distribution of expression levels reveals that
this gene cannot distinguish the RMS group from the EWS
and NB groups. This is an indicator that for the RMS group
we do not have any good dormant gene. This can be
checked from the average values of GDIDor in Table 1. For
the EWS and BL groups the average GDIDor values for the
most dormant genes are 1.37 and 2.04 respectively, while
for the RMS group it is only 0.75.

The scatterplots of three most dominant genes for the
Leukemia data set, one for each class, are displayed in Fig.
3. Fig. 3(a) depicts that the gene MME has a very strong

ALL specific signature and Fig. 3(c) representing
CHRFAM7A has a strong signature for the AML group;
while the gene MBNL1 (Fig. 3(b)) although has an MLL
specific signature, it is not as strong as that of the other
two genes. Fig. 4 depicts the scatterplots of the most dor-
mant genes for Leukemia data set. Here we find that for
majority of the samples in the ALL group, the most dor-
mant gene, LGALS1, takes low expression values com-
pared to the samples from the other two groups. In this
case the separation between the average expression values
between the ALL and AML groups is quite high making it
a good dormant gene. This is also revealed by the GDI val-
ues of 1.66. Similarly, for the AML class, the most dor-
mant gene, MEF2A, is downregulated for the AML group,
while it is upregulated for the remaining groups (the aver-
age GDI value is 1.89). Thus, this gene can also be consid-
ered a good dormant gene.

Scatterplots of the most dormant gene in each subgroup of the CNS data set: (a) HLA-F (X17093_at) for MD, (b) ESTs (HG919-HT919_at) for MGlio, (c) CTNND2 (U52828_s_at) for Rhab, (d) GNAI2 (X04828_at) for Ncer, (e) LRP1 (X13916_at) for PNETFigure 6
Scatterplots of the most dormant gene in each subgroup of the CNS data set: (a) HLA-F (X17093_at) for MD, 
(b) ESTs (HG919-HT919_at) for MGlio, (c) CTNND2 (U52828_s_at) for Rhab, (d) GNAI2 (X04828_at) for 
Ncer, (e) LRP1 (X13916_at) for PNET.
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Figures 5 and 6 display the scatterplots of the dominant
and dormant genes, respectively, for the CNS data set
while Figs. 7 and 8 depict the same for the Lung Cancer
data set. The Lung Cancer data set have five subgroups.
Except for the adenocarcinoma group, each of the remain-
ing subgroups has a dominant gene with very strong
group specific signature. The adenocarcinoma group has
the largest number of samples. Although, on average the
dominant gene for this group has a higher expression
level, there are several samples with low expression values
too.

Now we shall analyze sets of genes selected by our method
using Sammon's Projection (Figs. 9, 10, 11, 12). We use
the function "sammon" in MASS library in R http://
www.r-project.org in conjunction with random initial
configuration. For each class we select all top five selected

dominant genes. For example, in case of SRBCT we have
used 20 dominant genes, five from each of the four
classes. For the scatterplots we have used the normalized
expression values for an easy visual assessment, but here
since we want to preserve inter-point distances, we use the
data obtained after preprocessing. For the SRBCT data set,
the Sammon's plot is shown in Fig. 9(a). In Fig. 9(a), for
the training data different classes are represented by differ-
ent shapes with different colors. For the independent test
data, we use the same shapes but filled in with colors. For
example, if the training data from a class is represented by
red empty square, then the test data from the same class
will be represented by filled in red square. Figure 9(a)
reveals that samples from different classes form nice clus-
ters both for the training and independent data sets,
although the gene selection is done exclusively based on
the training set. Figure 9(b) depicts the Sammon's plot

Scatterplots of the most dominant gene in each subgroup of the Lung Cancer data set: (a) ABCC3 (38261_at) for Adeno, (b) CAV1 (36119_at) for Normal, (c) UBE2S (893_at) for SCLC, (d) KRT5 (613_at) for SQ, (e) MAPRE3 (40825_at) for COIDFigure 7
Scatterplots of the most dominant gene in each subgroup of the Lung Cancer data set: (a) ABCC3 (38261_at) 
for Adeno, (b) CAV1 (36119_at) for Normal, (c) UBE2S (893_at) for SCLC, (d) KRT5 (613_at) for SQ, (e) 
MAPRE3 (40825_at) for COID.
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using the dormant genes. Comparing the Sammon's plot
with the dominant genes, we find that although the dor-
mant genes approximately reveal the class structures,
these are not as clear as in the case of the dominant genes.
In fact, there are some mixing up of the groups. This
explains the poor test performance obtained with the dor-
mant genes (details in the next section).

For the Leukemia data set, Figs. 10(a) and 10(b) display
the Sammon's plots using dominant and dormant genes
considering the training and independent data sets
together. Unlike, SRBCT here for both dominant and dor-
mant genes the three classes are almost well separated.
This is in conformity with comparable and good perform-
ance of all six classifiers using the dominant and dormant
genes (discussed in the next section). These results imply
that the dominant or dormant genes selected from each

subgroup of the microarray data set contribute good dis-
crimination power between classes.

For the CNS and the Lung Cancer data sets there is no
independent test data set. Figs. 11 and 12 show the Sam-
mon's plots for these two data sets. In the case of CNS,
with dominant genes, the Sammon's plot exhibits very
nice class structure for all classes (only one point of PNET,
primitive neuro-ectodermal tumors, class is mixed up).
But for the dormant genes, all but PNET class form nice
clusters in the Sammon's plot. For the Lung Cancer data
although with the dominant genes the class structures
emerge in the Sammon's plot, with the dormant genes the
COID (pulmonary carcinoids) group stands out sepa-
rately but other classes are overlapped. This should not be
used to infer that the performance of classifiers using the
dormant genes would be poor – this is not indeed the

Scatterplots of the most dormant gene in each subgroup of the Lung Cancer data set: (a) BRD2 (36209_at) for Adeno, (b) DSP (36133_at) for Normal, (c) CAPN1 (33908_at) for SCLC, (d) SYNE1 (38113_at) for SQ, (e) SFN (33322_i_at) for COIDFigure 8
Scatterplots of the most dormant gene in each subgroup of the Lung Cancer data set: (a) BRD2 (36209_at) for 
Adeno, (b) DSP (36133_at) for Normal, (c) CAPN1 (33908_at) for SCLC, (d) SYNE1 (38113_at) for SQ, (e) 
SFN (33322_i_at) for COID.
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case. In the next section, we will demonstrate that even
with the dormant genes all six classifiers perform quite
well. This might mean that if we would use a higher
dimensional Sammon's plot we might obtain a better sep-
arability between classes.

Comparison of classifier performance
We conduct our experiments to examine the results using
six distinct classifiers (three of them are used in [8]) with
different number of dominant or dormant genes selected
by our method for the SRBCT, Leukemia, CNS, and Lung
Cancer data sets. In our frequency based method we select
the top five dominant (dormant) genes for each class in
100 simulations, and then determine the frequency with
which these genes appear as the dominant (dormant) can-
didates for that class. A more detailed discussion is set
forth in Materials and Methods. Figs. 13, 14, 15, 16 sum-
marize the performance of the proposed method for the
four data sets SRBCT, Leukemia, CNS, and Lung Cancer
respectively. In these figures we summarize the results as
follows: For a k-class problem, for each class we use m
number of genes, with m = 1, 2, �, 5. When m = 1, we call
it 1-fold case, m = 2 is called the 2-fold case and so on.

On the right side of Figs. 13, 14, 15, for an easy reference,
we also include the relevant summary of the prediction
results in [8] using different gene selection methods. Here
we display the prediction result in bold if it is better than
the best classification error reported in [8] and uses less
(or equal) number of genes than that in [8]. For the
SRBCT data set, with only three dominant genes from
each class, the performance of all six classifiers are better
than the best performance reported by Niijima et al. [8]
using 20 genes by their eight classifiers (as shown in
Fig.13). This may be taken as an indicator of strong dom-
inancy of the selected genes. On the other hand, the per-
formance of the dormant genes are not very good
signifying absence of good dormant genes which is also
confirmed by Fig. 9(b). Although, the performance of the
dormant genes are not very good, the performance of our
four SVM classifiers with 20 (m = 5) dormant genes is bet-
ter than that by the four classifiers (SVM + SVM-RFE (H),
SVM + SVM-RFE (S), NMC + SVM-RFE (H), NMC + SVM-
RFE (S) [8] using 10 and 20 genes, respectively.

For the Leukemia data set, Fig. 14 reveals, with 15 genes
all of our six classifiers yield very comparable (or margin-
ally better) than the best result reported in [8] using 20

Sammon's plots for the SRBCT data set using the training and independent data togetherFigure 9
Sammon's plots for the SRBCT data set using the training and independent data together. For the training data 
different classes are represented by different shapes with different colors. For the independent test data, the same shapes are 
used but filled in with colors; e.g., the training data from the EWS class is represented by black empty square and the test data 
from the same class, EWS, is represented by filled in black square. (a) With 5 dominant genes from every class. (b) With 5 dor-
mant genes from every class.
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selected genes. Note that, in [8] using 20 genes the best
classification error achieved on the test data is 5.8%; while
in our case even with just 12 dominant genes all six clas-
sifiers can produce very comparable test accuracies with
that of the best results in [8] using 20 genes. The perform-
ance of our four SVM classifiers using just 3 genes (one
from each class) is better than that of both SVM classifiers
in [8] using 20 genes. This clearly indicates the quality of
the dominant marker genes identified by GDIDom. Unlike
the SRBCT, for this data set, the dormant genes also have
good discriminating power. In fact, with 15 dormant
genes the classification error rates for our two non-SVM
classifiers are comparable to the best classier performance
in [8] using 20 genes; while the performance of our four
SVM classifiers is significantly better than that of the
remaining four classifiers in [8]. In these figures "Combi-
nation" refers to using both sets of dominant and dor-
mant genes together to design the classifier. In Fig. 14,
with 18 genes (3-fold, 9 dominant and 9 dormant genes),
the lowest error rate of 4.9% is achieved. Here we observe
that combining dominant and dormant genes does not
always improve the performance of the classifiers. How-
ever, later we shall see that use of dominant and dormant

genes together improves the performance on the inde-
pendent test data.

In [8] authors proposed two new gene selection methods
based on MMC and used two SVM based gene selection
methods from the literature. Considering three classifiers
NMC, MMC, and SVM, they have reported results using
eight combinations of classifier and gene selection
method as shown in the right side of Fig. 15. For each of
these eight combinations they have considered 10 genes
and 20 genes for performance evaluation. Considering the
combinations using the SVM based gene selection and the
NMC and SVM classifiers, for the CNS data we find that
the test error varies between 45.4% and 54.0% using 10
genes, while the same lies between 34.9% and 42.6%
using 20 genes. On the other hand, using the MMC based
feature selection methods, the error rates for the NMC and
MMC classifiers using 10 genes vary between 24.4% and
27.6%, while error rates using 20 genes lie in 22.5%–
22.9%. We observe in Fig. 15 that using just 5 dominant
genes, one from each class identified by our method, the
error rates of the six classifiers varied between 33% and
36%, while using 20 dominant genes the test error rates
over the six classifiers varied between 22.9% and 27.8%.

Sammon's plots for the Leukemia data set using the training and independent data togetherFigure 10
Sammon's plots for the Leukemia data set using the training and independent data together. For the training data 
different classes are represented by different shapes with different colors. For the independent test data, the same shapes are 
used but filled in with colors; e.g., the training data from the ALL class is represented by black empty square and the test data 
from the same class, ALL, is represented by filled in black square. (a) With 5 dominant genes from every class. (b) With 5 dor-
mant genes from every class.
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Since there is an independent data set for each of the
SRBCT and Leukemia, we have used the selected domi-
nant/dormant genes in Table 1 and Table 2 to examine the
prediction performance on those independent data sets.
For these two data sets, all samples in the training data are
used to train different classifiers using the selected genes
with m = 1 to 5 folds. Then the trained classifiers are used
to evaluate their performance on the independent test
data set. Here we have normalized the expression value of
each gene to [0,1] across samples considering both train-
ing and independent data sets. Note that, for the SVM clas-
sifier we need to choose some hyper-parameters. As done
for other experiments, the training data set is randomly
divided into training and validation sets of equal size.
Then the validation set is used to choose the hyper-param-
eters. The classifier thus designed is tested on the inde-
pendent data set. Like other experiments, here too the
training-validation partition is repeated 100 times and the
average number of misclassification and its standard devi-
ation on the independent test data are reported in Figs. 13
and 14. From Fig. 13 we find that even just with 4 domi-
nant genes the performance of all classifiers on the inde-
pendent test set is quite good. The effect of the use of
combined gene is very prominent for the SRBCT data set.
For all folds 1 to 5, the performance of all classifiers on the
independent test set is excellent. For the Leukemia data set
also with just 3 dominant genes, the six classifiers make

2–3 mistakes and with just six genes all six classifiers result
in around zero misclassification on the independent test
data (Fig. 14). The classification performance of the dor-
mant genes on the independent data is very good too. In
this case, the performance of all six classifiers with 3 dor-
mant genes is better than the performance of the classifi-
ers with 3 dominant genes. For this data set, the
performance of all six classifiers using dominant and dor-
mant genes together on the test data is excellent too.

In Fig. 16, we examine the prediction performance for the
Lung Cancer data set (not used in [8]) using the same six
classifiers with different number of dominant or dormant
genes selected by the proposed method. For this data set
we compare our results with those in [5]. In [5] three non-
SVM classifiers and five SVM classifiers are used. Figure 16
reveals that for three non-SVM classifiers (KNN, NN and
PNN) using all 12600 genes, the prediction errors
reported in [5] vary between 10.36% ~14.34%, while
using just 5 dominant genes, with one gene per class, the
performance of our six classifiers are quite good and are
comparable or better than that of the three non-SVM clas-
sifiers. With just 20 dominant genes (four genes per class),
the test error rates of our six classifiers vary between 5.8%
and 7.8% while the best accuracy reported in [5] is 3.35%
but the method in [5] use all 12600 genes. Here although
our best result is about 2~3% lower than that of the best

Sammon's plots for the CNS data setFigure 11
Sammon's plots for the CNS data set. Different classes are represented by different shapes with different colors. (a) 
With 5 dominant genes from every class. (b) With 5 dormant genes from every class.
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result in [5] (see, far right side of Fig. 16), the evaluation
criteria and computational protocols are not the same. For
example, we have used only 5–25 (less that 0.20% of the
12600) genes, while in [5]all 12600 genes are used; we
have generated statistics about test accuracies using 100
sets (generated by resampling), while in [5] a 10 fold
cross-validation is used; for the SVM classifier we have
used the most simple linear kernel and the nonlinear
Gaussian kernel for comparison, while in [5] authors have
used nonlinear polynomial kernel and several other
sophisticated classifiers such as back-propagation neural
networks, and probabilistic neural networks.

In order to look at the statistical significance of the average
GDI values of the dominant and dormant genes identified
based on 100 data splitting experiments, here we further
perform the permutation test 500 times (Details about the
procedure can be found in the Materials and Methods sec-
tion). These results are summarized in Tables 1, 2, 3, 4.
From these tables we find that each of the selected domi-
nant/dormant genes in every data set has a highly reliable
p- and q-values. Especially, for those selected dominant/
dormant genes, which appeared with very high frequen-
cies, the p- and q-values are practically zero (0). Hence,
from a statistical viewpoint, our method can recognize
genes with trustworthy class-specific characteristics. Such

genes can be used to design more reliable diagnostic sys-
tems.

In addition, we have checked the literature for other sim-
ilar methods for identifying marker genes associated with
one class in a multiclass environment. In this context, Pav-
lidis and Noble [11] use ANOVA and Correlation
together. We call this scheme as ANOVA+Correlation
scheme. In [12] SNR is used for preliminary screening of
genes which is followed by the use of a SVM based tech-
nique. Both these schemes for multiclass analysis use a
one-versus-all (OVA) approach. We have implemented
the ANOVA+Correlation scheme and also used SNR with
OVA strategy to select class specific genes. The later
method is referred to as "OVA.SNR". As revealed by Tables
5 and 6, all three gene selection methods (GDI.Dominant,
OVA.SNR and ANOVA+Correlation) produce comparable
results.

In this context it is worth emphasizing that many genes
may have discriminating power and hence can be consid-
ered marker genes but the dominant and dormant genes
are special types of markers and all marker genes are not
necessarily dominant/dormant genes. GDI is designed to
identify dominant/dormant genes, if present. Moreover,
any method of gene selection should be theoretically/con-

Sammon's plots for the Lung Cancer data setFigure 12
Sammon's plots for the Lung Cancer data set. Different classes are represented by different shapes with different 
colors. (a) With 5 dominant genes from every class. (b) With 5 dormant genes from every class.
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ceptually appealing. Use of the OVA strategy may select
useful genes for classification but it is not conceptually/
theoretically appealing and may lead to potential prob-
lems. We have already explained it once and we again
reemphasize it here. In the OVA.SNR approach, for a k-
class problem, to select marker genes, for a class, say class
c, we divide the data set into two groups, data from class c
and the pooled data from the remaining k - 1 classes.
Clearly, the mean and standard deviation of the pooled
group do not represent any useful information about the
remaining classes. For example, the mean of k - 1 pooled
classes may fall in a region which may not even have any
data points in its neighborhood. Moreover, use of statis-
tics like t-statistic makes certain assumptions about the
distribution of data in each class. Even if the assumptions
are satisfied for each class, it may not (usually will not) be
satisfied for the pooled class. The pooling of samples will

also affect the ANOVA+Correlation method. The adverse
influence of pooling samples from different classes will
become more serious if there are several classes. In such a
case, the pooled group will be of much higher size than
any individual group and hence its influence will also be
stronger.

Consequently, this may make the correlation based
method fail to recognize overlapped structure between
expression levels from different classes. Thus, use of such
OVA scheme for gene selection is not conceptually appeal-
ing. But this must not be taken to infer that OVA.SNR or
ANOVA+Correlation will not be able to select useful
genes, nor our intention is to claim that GDI will not
select poor genes.

Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and their combination for the SRBCT data set along with its comparison with the results reported in [8]Figure 13
Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and 
their combination for the SRBCT data set along with its comparison with the results reported in[8]. The per-
formance of the proposed methods on the independent test data is also included. Here m-fold corresponds to the case when 
m top most dominant (dormant) genes are used for each class. For example, the column labeled 3-fold represents the results 
using 12 genes (3 dominant (dormant) genes from each of the 4 classes) for the SRBCT data set.

SRBCT Classifier
m-fold genes (number of genes) Classifier + Selection criterion

10 genes 20 genes
1-fold (4) 2-fold (8) 3-fold (12) 4-fold (16) 5-fold (20) (Niijima and Kuhara [8])

Dominant

SVM.OVO-L 10.1 ± 0.6 3.8 ± 0.4 1.5 ± 0.3 1.1 ± 0.2 1.0 ± 0.2

NMC + MMC-RFE(U)

NMC + MMC-RFE(O)

NMC + SVM-RFE(H)

NMC + SVM-RFE(S)

MMC + MMC-RFE(U)

MMC + MMC-RFE(O)

SVM + SVM-RFE(H)

SVM + SVM-RFE(S)

5.0 ± 0.5

8.9 ± 0.7

29.2 ± 1.2

27.2 ± 1.2

4.4 ± 0.5

4.7 ± 0.5

24.0 ± 1.3

24.8 ± 1.4

3.0 ± 0.4

6.0 ± 0.5

22.9 ± 1.1

21.9 ± 1.2

2.5 ± 0.3

4.1 ± 0.4

14.2 ± 1.0

12.7 ± 1.1

SVM.OVO-R 10.4 ± 0.6 3.5 ± 0.4 2.5 ± 0.3 2.6 ± 0.3 2.7 ± 0.4

SVM.OVA-L 9.0 ± 0.6 2.8 ± 0.3 1.0 ± 0.2 0.6 ± 0.2 0.6 ± 0.2

SVM.OVA-R 9.5 ± 0.7 2.5 ± 0.3 1.2 ± 0.3 1.5 ± 0.3 2.4 ± 0.4

NMC 8.2 ± 0.5 3.3 ± 0.4 1.0 ± 0.2 0.8 ± 0.2 0.5 ± 0.2

NNC 10.6 ± 0.6 2.9 ± 0.3 1.1 ± 0.2 0.9 ± 0.2 1.0 ± 0.2

Dormant

SVM.OVO-L 22.0 ± 1.0 17.8 ± 0.9 16.3 ± 0.7 12.9 ± 0.7 12.1 ± 0.7

SVM.OVO-R 22.8 ± 1.0 18.1 ± 0.8 15.9 ± 0.7 12.7 ± 0.7 11.9 ± 0.7

SVM.OVA-L 21.5 ± 0.9 19.1 ± 0.8 16.9 ± 0.7 15.0 ± 0.8 11.7 ± 0.8

SVM.OVA-R 22.3 ± 0.9 20.3 ± 0.8 16.3 ± 0.8 13.7 ± 0.8 11.6 ± 0.8

NMC 26.6 ± 1.0 21.9 ± 0.8 19.8 ± 0.7 17.5 ± 0.8 15.6 ± 0.8

NNC 27.0 ± 1.0 22.2 ± 0.8 19.7 ± 0.8 17.1 ± 0.7 16.0 ± 0.8

Combination

SVM.OVO-L 8.1 ± 0.5 2.5 ± 0.3 1.6 ± 0.3 0.8 ± 0.2 0.6 ± 0.2

SVM.OVO-R 8.3 ± 0.6 3.1 ± 0.4 1.5 ± 0.3 0.8 ± 0.2 0.7 ± 0.2

SVM.OVA-L 7.6 ± 0.6 2.2 ± 0.3 1.2 ± 0.3 0.7 ± 0.2 0.4 ± 0.1

SVM.OVA-R 7.1 ± 0.5 2.6 ± 0.3 1.6 ± 0.3 1.0 ± 0.2 0.4 ± 0.1

NMC 6.5 ± 0.5 2.4 ± 0.3 1.3 ± 0.2 1.1 ± 0.2 0.7 ± 0.2

NNC 7.7 ± 0.5 3.1 ± 0.4 2.2 ± 0.3 1.4 ± 0.3 1.0 ± 0.2

Test on the independent data Number of mis-classified samples

The average error and standard error rate (%) in the test set
of the microarray data sets are used as performance indicators.

”Combination” refers to using both sets of dominant and dor-
mant genes together for the classifier. Hence, the number of
selected genes in the ”Combination” case for each fold is {8,
16, 24, 32, 40}.

Number of independent test samples is 20.

Number of training samples used to design the system to test
on the independent set is 63.

Dominant

SVM.OVO-L 2.5 ± 0.9 3.0 ± 0.0 5.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

SVM.OVO-R 2.3 ± 0.5 2.0 ± 0.2 5.8 ± 0.5 0.0 ± 0.0 1.0 ± 0.0

SVM.OVA-L 2.1 ± 0.4 1.0 ± 0.0 3.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

SVM.OVA-R 2.3 ± 0.7 1.4 ± 0.5 3.7 ± 0.5 1.7 ± 1.3 2.5 ± 1.9

NMC 3 2 4 4 1

NNC 3 2 4 3 1

Dormant

SVM.OVO-L 4.8 ± 1.0 7.0 ± 0.0 7.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0

SVM.OVO-R 5.3 ± 0.5 6.2 ± 0.9 7.0 ± 0.2 5.0 ± 0.0 4.9 ± 0.4

SVM.OVA-L 3.8 ± 0.7 6.8 ± 1.7 6.0 ± 0.0 1.8 ± 0.4 6.0 ± 0.2

SVM.OVA-R 2.8 ± 0.9 7.0 ± 1.4 5.7 ± 0.7 3.6 ± 0.8 5.3 ± 0.6

NMC 2 3 4 2 1

NNC 6 5 5 5 5

Combination

SVM.OVO-L 0.0 ± 0.0 0.0 ± 0.0 2.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

SVM.OVO-R 0.0 ± 0.0 0.0 ± 0.0 2.0 ± 0.0 0.0 ± 0.1 1.0 ± 0.0

SVM.OVA-L 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

SVM.OVA-R 0.1 ± 0.3 0.2 ± 0.4 0.4 ± 1.4 0.2 ± 0.7 1.0 ± 0.0

NMC 0 0 1 0 1

NNC 1 0 0 0 1
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We now illustrate with a synthetic data set that SNR
(OVA) can lead to false positive dominant/dormant
genes. Figure 17 shows the expression values of a five-class
data where each class has the same number of samples
and roughly the same standard deviation. It is clear that
this gene is not a dominant gene. The GDI value for the
black class is 0.61 while SNR (OVA) for the same class is
1.54. Note that, since we are using one-versus-all philoso-
phy, a SNR value of 1.54 is expected to be much more sig-
nificant than a GDI value of 0.61. The most significant
difference between SNR (OVA) and GDI methods is that
the value of SNR (OVA) is influenced by samples from all
other group while GDI uses a comparison of only two
selected groups with the highest mean values.

Depending on the data sets the behavior of these three
methods (GDI.Dominant, OVA.SNR and ANOVA+Corre-
lation) may be similar in terms of classifier performance,

but dominant/dormant genes identified may be different.
An important distinctive feature of GDI over OVA is that
it can effectively reduce the false positive cases. Even
though, the set of top significant dominant/dormant
genes from each class identified by these three methods
may be similar, the importance (priority) of those genes
as dominant/dormant genes may be different.

Conclusion
We have proposed generalizations of the SNR index for
multiclass problems through the introduction of two indi-
ces, GDIDom and GDIDor. These have led us to define dom-
inant genes and dormant genes with respect to a set of
related diseases/cancers. Both dominant and dormant
genes have class specific signatures and hence can be used
to design useful diagnostic prediction systems. We have
explained that good dominant genes are very useful for
diagnosis and usually are expected to be present. How-

Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and their combination for the Leukemia data set along with its comparison with the results reported in [8]Figure 14
Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and 
their combination for the Leukemia data set along with its comparison with the results reported in[8]. The per-
formance of the proposed methods on the independent test data is also included. Here m-fold corresponds to the case when 
m top most dominant (dormant) genes are used for each class. For example, the column labeled 3-fold represents the results 
using 9 genes (3 dominant (dormant) genes from each of the 3 classes) for the Leukemia data set.

Leukemia Classifier
m-fold genes (number of genes) Classifier + Selection criterion

10 genes 20 genes
1-fold (3) 2-fold (6) 3-fold (9) 4-fold (12) 5-fold (15) (Niijima and Kuhara [8])

Dominant

SVM.OVO-L 13.4 ± 0.8 9.0 ± 0.5 7.3 ± 0.5 6.3 ± 0.5 5.8 ± 0.5

NMC + MMC-RFE(U)

NMC + MMC-RFE(O)

NMC + SVM-RFE(H)

NMC + SVM-RFE(S)

MMC + MMC-RFE(U)

MMC + MMC-RFE(O)

SVM + SVM-RFE(H)

SVM + SVM-RFE(S)

7.0 ± 0.6

6.4 ± 0.5

26.9 ± 1.4

28.0 ± 1.3

6.8 ± 0.5

6.4 ± 0.5

31.3 ± 1.5

26.2 ± 1.2

5.8 ± 0.5

5.9 ± 0.5

19.3 ± 1.2

21.4 ± 1.1

6.0 ± 0.5

5.8 ± 0.5

24.0 ± 1.4

20.2 ± 1.1

SVM.OVO-R 15.0 ± 0.9 9.0 ± 0.6 6.9 ± 0.4 6.1 ± 0.4 5.8 ± 0.5

SVM.OVA-L 13.8 ± 0.8 9.8 ± 0.6 8.2 ± 0.4 7.1 ± 0.5 6.4 ± 0.5

SVM.OVA-R 15.0 ± 0.9 9.2 ± 0.6 6.5 ± 0.5 6.0 ± 0.4 5.3 ± 0.4

NMC 13.8 ± 0.8 9.1 ± 0.6 7.1 ± 0.5 6.4 ± 0.5 5.9 ± 0.4

NNC 13.7 ± 0.8 9.6 ± 0.6 7.6 ± 0.5 7.0 ± 0.5 6.0 ± 0.5

Dormant

SVM.OVO-L 20.0 ± 0.8 14.7 ± 0.8 11.1 ± 0.7 9.3 ± 0.5 8.5 ± 0.5

SVM.OVO-R 18.6 ± 0.8 12.7 ± 0.7 10.2 ± 0.6 8.0 ± 0.5 8.4 ± 0.6

SVM.OVA-L 19.5 ± 0.8 14.8 ± 0.6 11.8 ± 0.6 10.2 ± 0.6 9.0 ± 0.6

SVM.OVO-R 18.1 ± 0.8 13.6 ± 0.7 10.5 ± 0.6 8.5 ± 0.6 7.9 ± 0.6

NMC 18.0 ± 0.8 11.6 ± 0.7 8.8 ± 0.5 7.5 ± 0.5 6.5 ± 0.4

NNC 17.5 ± 0.8 11.7 ± 0.7 9.1 ± 0.5 7.8 ± 0.5 6.3 ± 0.5

Combination

SVM.OVO-L 11.9 ± 0.7 7.3 ± 0.5 6.3 ± 0.5 6.1 ± 0.4 5.8 ± 0.4

SVM.OVO-R 11.3 ± 0.7 6.7 ± 0.4 6.8 ± 0.4 7.1 ± 0.5 7.3 ± 0.6

SVM.OVA-L 11.6 ± 0.7 7.2 ± 0.5 6.4 ± 0.4 6.0 ± 0.4 5.6 ± 0.4

SVM.OVA-R 10.9 ± 0.7 6.8 ± 0.5 6.2 ± 0.4 6.5 ± 0.5 6.5 ± 0.4

NMC 9.6 ± 0.6 6.1 ± 0.4 4.9 ± 0.4 4.7 ± 0.4 4.6 ± 0.3

NNC 10.5 ± 0.7 6.8 ± 0.5 5.6 ± 0.4 5.2 ± 0.4 5.3 ± 0.4

Test on the independent data Number of mis-classified samples

The average error and standard error rate (%) in the test set
of the microarray data sets are used as performance indicators.

”Combination” refers to using both sets of dominant and dor-
mant genes together for the classifier. Hence, the number of
selected genes in the ”Combination” case for each fold is {6,
12, 18, 24, 30}.

Number of independent test samples is 15.

Number of training samples used to design the system to test
on the independent set is 57.

Dominant

SVM.OVO-L 3.5 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVO-R 1.9 ± 0.8 0.1 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVA-L 2.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVA-R 2.1 ± 0.8 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

NMC 3 0 0 0 0

NNC 2 0 0 0 0

Dormant

SVM.OVO-L 1.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

SVM.OVO-R 1.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 1.0 ± 0.0 1.0 ± 0.0

SVM.OVA-L 1.0 ± 0.0 0.1 ± 0.3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.1

SVM.OVA-R 1.1 ± 0.4 0.5 ± 0.7 0.2 ± 0.4 1.0 ± 0.1 1.0 ± 0.0

NMC 1 0 0 0 0

NNC 1 0 1 2 1

Combination

SVM.OVO-L 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVO-R 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVA-L 0.6 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SVM.OVA-R 0.9 ± 0.3 0.1 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1

NMC 1 0 0 0 0

NNC 0 0 0 0 0
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Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and their combination for the CNS data set along with its comparison with the results reported in [8]Figure 15
Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and 
their combination for the CNS data set along with its comparison with the results reported in[8]. Here m-fold 
corresponds to the case when m top most dominant (dormant) genes are used for each class. For example, the column labeled 
3-fold represents the results using 15 genes (3 dominant (dormant) genes from each of the 5 classes) for the CNS data set.

CNS Classifier
m-fold genes (number of genes) Classifier + Selection criterion

10 genes 20 genes
1-fold (5) 2-fold (10) 3-fold (15) 4-fold (20) 5-fold (25) (Niijima and Kuhara [8])

Dominant

SVM.OVO-L 35.5 ± 1.0 32.0 ± 1.1 27.4 ± 1.0 26.6 ± 1.1 24.3 ± 1.0
NMC + MMC-RFE(U)

NMC + MMC-RFE(O)

NMC + SVM-RFE(H)

NMC + SVM-RFE(S)

MMC + MMC-RFE(U)

MMC + MMC-RFE(O)

SVM + SVM-RFE(H)

SVM + SVM-RFE(S)

27.2 ± 1.1

24.4 ± 1.0

45.6 ± 1.3

45.4 ± 1.3

27.6 ± 1.1

24.4 ± 1.0

54.0 ± 1.5

47.3 ± 1.2

22.8 ± 0.9

22.7 ± 0.8

35.4 ± 1.0

34.9 ± 1.0

22.5 ± 0.9

22.9 ± 0.8

42.6 ± 1.4

37.7 ± 1.1

SVM.OVO-R 36.5 ± 1.1 30.8 ± 1.1 27.4 ± 1.1 25.8 ± 1.1 24.0 ± 1.0

SVM.OVA-L 35.9 ± 1.4 32.8 ± 1.2 28.8 ± 1.0 27.8 ± 1.0 26.3 ± 1.0

SVM.OVA-R 33.2 ± 1.2 29.9 ± 1.2 27.7 ± 1.0 26.3 ± 1.0 25.3 ± 1.0

NMC 33.5 ± 1.1 27.0 ± 1.0 23.7 ± 1.0 22.9 ± 1.0 21.4 ± 0.9

NNC 33.0 ± 1.1 28.1 ± 1.1 25.6 ± 1.0 26.1 ± 0.9 25.1 ± 0.9

Dormant

SVM.OVO-L 47.9 ± 1.4 39.4 ± 1.2 34.8 ± 1.1 32.5 ± 1.1 29.7 ± 1.0

SVM.OVO-R 47.1 ± 1.3 38.8 ± 1.2 34.4 ± 1.1 32.2 ± 1.1 29.1 ± 1.0

SVM.OVA-L 48.3 ± 1.1 42.1 ± 1.2 37.1 ± 1.1 32.0 ± 1.1 29.0 ± 1.1

SVM.OVA-R 46.8 ± 1.1 39.7 ± 1.2 34.2 ± 1.2 31.9 ± 1.1 27.9 ± 1.1

NMC 46.5 ± 1.3 36.3 ± 1.0 31.6 ± 1.1 31.0 ± 1.1 27.5 ± 1.0

NNC 46.7 ± 1.2 40.8 ± 1.2 35.4 ± 1.0 33.5 ± 1.0 30.5 ± 1.0

Combination

SVM.OVO-L 33.9 ± 1.1 28.7 ± 1.0 24.3 ± 0.9 22.9 ± 0.9 22.0 ± 0.9
The average error and standard error rate (%) in the test set
of the microarray data sets are used as performance indicators.

”Combination” refers to using both sets of dominant and dor-
mant genes together for the classifier. Hence, the number of
selected genes in the ”Combination” case for each fold is {10,
20, 30, 40, 50}.

SVM.OVO-R 32.7 ± 1.1 28.1 ± 1.0 23.7 ± 0.9 22.9 ± 0.9 21.9 ± 0.9

SVM.OVA-L 33.7 ± 1.1 29.2 ± 1.1 23.5 ± 1.0 22.4 ± 0.9 21.4 ± 0.9

SVM.OVA-R 32.0 ± 1.1 28.4 ± 1.1 23.0 ± 1.0 21.8 ± 0.9 20.6 ± 0.8

NMC 30.0 ± 1.1 23.4 ± 0.9 20.8 ± 0.9 21.2 ± 0.9 20.3 ± 0.8

NNC 30.5 ± 1.0 28.1 ± 1.0 24.9 ± 0.9 25.6 ± 0.9 24.3 ± 0.8

Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and their combination for the Lung Cancer data set along with its comparison with the results reported in [5]Figure 16
Evaluation of performance of six classifiers using different number of dominant genes, dormant genes and 
their combination for the Lung Cancer data set along with its comparison with the results reported in[5]. In [5] 
all genes were used. Here m-fold corresponds to the case when m top most dominant (dormant) genes are used for each class. 
For example, the column labeled 3-fold represents the results using 15 genes (3 dominant (dormant) genes from each of the 5 
classes) for the Lung Cancer data set.

Lung Cancer Classifier
m-fold genes (number of genes) Statnikov et al. [5] (without gene selection)

1-fold (5) 2-fold (10) 3-fold (15) 4-fold (20) 5-fold (25) Classifier Error rate(%)

Dominant

SVM.OVO-L 9.5 ± 0.3 8.1 ± 0.3 7.8 ± 0.3 7.8 ± 0.3 7.4 ± 0.3

MC-SVM

Non-SVM

OVR

OVO

DAGSVM

WW

CS

KNN

NN

PNN

3.95

4.41

4.41

4.45

3.45

10.36

12.20

14.34

SVM.OVO-R 10.0 ± 0.4 8.3 ± 0.3 8.1 ± 0.3 7.1 ± 0.3 6.9 ± 0.3

SVM.OVA-L 9.4 ± 0.3 7.7 ± 0.3 7.8 ± 0.3 7.5 ± 0.3 7.8 ± 0.3

SVM.OVA-R 10.1 ± 0.3 8.3 ± 0.3 8.2 ± 0.3 7.5 ± 0.3 7.4 ± 0.3

NMC 9.8 ± 0.4 7.2 ± 0.3 6.3 ± 0.2 5.8 ± 0.2 5.8 ± 0.3

NNC 11.9 ± 0.4 9.0 ± 0.3 8.3 ± 0.3 7.7 ± 0.2 7.3 ± 0.3

Dormant

SVM.OVO-L 16.7 ± 0.4 13.0 ± 0.4 10.8 ± 0.3 10.3 ± 0.3 9.6 ± 0.4

SVM.OVO-R 17.4 ± 0.5 12.9 ± 0.4 10.1 ± 0.3 9.3 ± 0.3 7.9 ± 0.3

SVM.OVA-L 16.9 ± 0.4 13.1 ± 0.4 10.7 ± 0.3 10.4 ± 0.4 11.5 ± 0.4

SVM.OVA-R 17.0 ± 0.4 12.9 ± 0.4 10.0 ± 0.3 9.0 ± 0.3 8.5 ± 0.3
The average error and standard error rate (%) in the test set
of the microarray data sets are used as performance indicators.

”Combination” refers to using both sets of dominant and dor-
mant genes together for the classifier. Hence, the number of
selected genes in the ”Combination” case for each fold is {10,
20, 30, 40, 50}.

Statnikov et al. [5] had reported Accuracy (%) for the Lung
Cancer data set by using all genes as input features fed for
several classifiers. Here we used the 1-Accuracy (%) as the
error rate listed above for comparison.

NMC 28.4 ± 0.7 18.9 ± 0.6 13.7 ± 0.5 11.5 ± 0.4 9.9 ± 0.3

NNC 22.2 ± 0.5 16.2 ± 0.5 13.4 ± 0.4 11.9 ± 0.3 11.3 ± 0.3

Combination

SVM.OVO-L 8.1 ± 0.3 7.5 ± 0.3 6.7 ± 0.2 6.4 ± 0.2 6.0 ± 0.2

SVM.OVO-R 8.2 ± 0.3 7.0 ± 0.2 6.4 ± 0.2 6.1 ± 0.2 5.9 ± 0.3

SVM.OVA-L 8.1 ± 0.3 8.2 ± 0.3 8.0 ± 0.2 7.6 ± 0.3 7.4 ± 0.3

SVM.OVA-R 8.5 ± 0.3 7.3 ± 0.3 6.4 ± 0.2 6.2 ± 0.2 6.4 ± 0.3

NMC 7.7 ± 0.3 6.2 ± 0.2 5.3 ± 0.2 5.1 ± 0.2 4.9 ± 0.2

NNC 9.9 ± 0.3 7.9 ± 0.3 7.6 ± 0.2 7.1 ± 0.2 7.0 ± 0.3
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ever, strong dormant genes may not always be available,
but if they exist, they are also quite useful for diagnosis.
Based on the GDI values we have proposed a mechanism
for selecting a set of useful biomarkers that may play sig-
nificant roles in the biology of the set of diseases (here
cancers) under consideration and can be used to design
useful diagnostic prediction systems. It is possible to
design other methods of discovering biomarkers using the

GDIs. Our experimental results suggest that the proposed
method can identify good biomarkers.

In order to establish the utility of the dominant and dor-
mant genes we have considered four multi-category can-
cer data sets. First, we have analyzed the roles of some of
the dominant and dormant genes in cancer biology. Then
we have used visual assessment techniques to assess the

Table 5: Comparison of performance for the SRBCT and Leukemia data sets using six classifiers with the same number of genes 
chosen by three gene selection methods

Data Sets Gene Selection Methods Classifiers m-fold of genes

1-fold 2-fold 3-fold 4-fold 5-fold

SRBCT GDI.Dominant OVO.SVM-L 10.1 ± 0.6 3.8 ± 0.4 1.5 ± 0.3 1.1 ± 0.2 1.0 ± 0.2
OVO.SVM-R 10.4 ± 0.6 3.5 ± 0.4 2.5 ± 0.3 2.6 ± 0.3 2.7 ± 0.4
OVA.SVM-L 9.0 ± 0.6 2.8 ± 0.3 1.0 ± 0.2 0.6 ± 0.2 0.6 ± 0.2
OVA.SVM-R 9.5 ± 0.7 2.5 ± 0.3 1.2 ± 0.3 1.5 ± 0.3 2.4 ± 0.4

NMC 8.2 ± 0.5 3.3 ± 0.4 1.0 ± 0.2 0.8 ± 0.2 0.5 ± 0.2
NNC 10.6 ± 0.6 2.9 ± 0.3 1.1 ± 0.2 0.9 ± 0.2 1.0 ± 0.2

OVA.SNR [12] OVO.SVM-L 11.1 ± 0.7 3.8 ± 0.4 1.3 ± 0.3 0.9 ± 0.3 0.8 ± 0.3
OVO.SVM-R 11.8 ± 0.8 4.0 ± 0.5 3.2 ± 0.4 3.8 ± 0.5 3.5 ± 0.5
OVA.SVM-L 9.5 ± 0.7 3.2 ± 0.4 1.1 ± 0.3 0.7 ± 0.2 0.6 ± 0.2
OVA.SVM-R 10.7 ± 0.7 3.6 ± 0.5 1.9 ± 0.4 2.6 ± 0.4 3.0 ± 0.4

NMC 9.2 ± 0.6 3.9 ± 0.4 1.1 ± 0.2 0.9 ± 0.2 0.5 ± 0.2
NNC 10.4 ± 0.6 3.4 ± 0.4 1.2 ± 0.3 0.9 ± 0.2 0.8 ± 0.2

ANOVA+Correlation [11] OVO.SVM-L 10.7 ± 0.6 3.4 ± 0.4 1.4 ± 0.3 0.6 ± 0.2 0.8 ± 0.2
OVO.SVM-R 10.8 ± 0.6 3.6 ± 0.4 2.1 ± 0.4 1.9 ± 0.4 1.8 ± 0.4
OVA.SVM-L 9.4 ± 0.6 2.8 ± 0.4 1.2 ± 0.3 0.4 ± 0.2 0.5 ± 0.2
OVA.SVM-R 8.8 ± 0.6 2.9 ± 0.4 1.6 ± 0.3 1.5 ± 0.3 1.4 ± 0.3

NMC 8.1 ± 0.6 3.1 ± 0.4 0.9 ± 0.2 0.5 ± 0.2 0.6 ± 0.2
NNC 10.0 ± 0.5 3.0 ± 0.4 1.0 ± 0.2 0.5 ± 0.2 0.7 ± 0.2

Leukemia GDI.Dominant OVO.SVM-L 13.4 ± 0.8 9.0 ± 0.5 7.3 ± 0.5 6.3 ± 0.5 5.8 ± 0.5
OVO.SVM-R 15.0 ± 0.9 9.0 ± 0.6 6.9 ± 0.4 6.1 ± 0.4 5.8 ± 0.5
OVA.SVM-L 13.8 ± 0.8 9.8 ± 0.6 8.2 ± 0.4 7.1 ± 0.5 6.4 ± 0.5
OVA.SVM-R 15.0 ± 0.9 9.2 ± 0.6 6.5 ± 0.5 6.0 ± 0.4 5.3 ± 0.4

NMC 13.8 ± 0.8 9.1 ± 0.6 7.1 ± 0.5 6.4 ± 0.5 5.9 ± 0.4
NNC 13.7 ± 0.8 9.6 ± 0.6 7.6 ± 0.5 7.0 ± 0.5 6.0 ± 0.5

OVA.SNR [12] OVO.SVM-L 13.4 ± 0.8 9.1 ± 0.6 7.5 ± 0.5 7.0 ± 0.5 6.4 ± 0.4
OVO.SVM-R 13.5 ± 0.8 8.8 ± 0.7 7.2 ± 0.5 6.6 ± 0.4 6.4 ± 0.5
OVA.SVM-L 14.2 ± 0.8 10.9 ± 0.7 8.4 ± 0.5 7.2 ± 0.5 6.8 ± 0.4
OVA.SVM-R 13.6 ± 0.8 9.5 ± 0.6 7.2 ± 0.5 6.4 ± 0.4 6.1 ± 0.5

NMC 15.0 ± 0.7 8.8 ± 0.5 7.0 ± 0.5 6.7 ± 0.5 6.4 ± 0.5
NNC 13.5 ± 0.7 8.7 ± 0.5 7.8 ± 0.5 7.7 ± 0.5 7.2 ± 0.5

ANOVA+Correlation [11] OVO.SVM-L 12.9 ± 0.8 10.2 ± 0.6 8.1 ± 0.5 7.9 ± 0.5 7.1 ± 0.5
OVO.SVM-R 13.5 ± 0.8 10.0 ± 0.7 7.7 ± 0.5 7.1 ± 0.5 6.9 ± 0.5
OVA.SVM-L 12.7 ± 0.8 11.6 ± 0.6 9.3 ± 0.5 8.5 ± 0.5 7.6 ± 0.5
OVA.SVM-R 12.7 ± 0.8 9.8 ± 0.6 8.0 ± 0.6 6.8 ± 0.5 6.4 ± 0.5

NMC 14.5 ± 0.8 9.4 ± 0.6 7.8 ± 0.6 7.1 ± 0.5 6.6 ± 0.5
NNC 12.3 ± 0.7 9.8 ± 0.6 8.8 ± 0.6 7.4 ± 0.5 6.9 ± 0.5

Here m-fold corresponds to the case when m top most dominant genes are used for each class. For example, the column labeled 3-fold represents 
the results using 12 genes (3 dominant genes from each of the 4 classes) for the SRBCT data set. Similarly, for the Leukemia data set the same 
column represents results using 9 dominant genes as there are 3 classes.
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level of dominancy/dormancy of the genes. For these we
have used scatterplot of individual gene to assess each
gene separately and also have used Sammon's projection
to get an idea about the overall quality (discriminating
power) of a set of genes selected by our GDIs. These plots
have clearly revealed the class specific signatures of the
genes selected by the GDIs.

To further demonstrate the utility of the identified genes,
we have used six classifiers. Our experiments show that a
few dominant genes can yield very good prediction accu-
racies. We have compared our results with published
results and found that the dominant genes identified by
our method can result in a comparable performance usu-
ally with fewer genes than other methods. But as
explained earlier, it may be difficult to find strong dor-

Table 6: Comparison of performance for the CNS and Lung Cancer data sets using six classifiers with the same number of genes 
chosen by three gene selection methods

Data Sets Gene Selection Methods Classifiers m-fold of genes

1-fold 2-fold 3-fold 4-fold 5-fold

CNS GDI.Dominant OVO.SVM-L 35.5 ± 1.0 32.0 ± 1.1 27.4 ± 1.0 26.6 ± 1.1 24.3 ± 1.0
OVO.SVM-R 36.5 ± 1.1 30.8 ± 1.1 27.4 ± 1.1 25.8 ± 1.1 24.0 ± 1.0
OVA.SVM-L 35.9 ± 1.4 32.8 ± 1.2 28.8 ± 1.0 27.8 ± 1.0 26.3 ± 1.0
OVA.SVM-R 35.2 ± 1.2 29.9 ± 1.2 27.7 ± 1.0 26.3 ± 1.0 25.3 ± 1.0

NMC 33.5 ± 1.1 27.0 ± 1.0 23.7 ± 1.0 22.9 ± 1.0 21.4 ± 0.9
NNC 33.0 ± 1.1 28.1 ± 1.1 25.6 ± 1.0 26.1 ± 0.9 25.1 ± 0.9

OVA.SNR [12] OVO.SVM-L 37.1 ± 1.1 30.5 ± 1.0 27.0 ± 1.0 23.5 ± 1.0 21.6 ± 1.0
OVO.SVM-R 35.9 ± 1.1 29.6 ± 1.0 27.1 ± 1.0 23.2 ± 1.0 21.6 ± 1.0
OVA.SVM-L 36.8 ± 1.1 30.9 ± 1.1 26.8 ± 0.9 22.8 ± 0.9 20.8 ± 0.9
OVA.SVM-R 35.2 ± 1.1 29.1 ± 0.9 26.1 ± 0.9 23.7 ± 0.9 21.6 ± 1.0

NMC 32.8 ± 1.1 26.3 ± 1.0 23.5 ± 1.0 20.6 ± 0.8 18.5 ± 0.9
NNC 34.9 ± 1.0 28.3 ± 1.0 26.0 ± 1.0 24.0 ± 0.9 21.5 ± 1.0

ANOVA+Correlation [11] OVO.SVM-L 38.5 ± 1.1 32.2 ± 1.0 27.0 ± 0.9 24.0 ± 0.8 21.6 ± 0.8
OVO.SVM-R 37.1 ± 1.1 30.8 ± 1.0 27.4 ± 1.0 25.0 ± 0.9 21.4 ± 0.8
OVA.SVM-L 38.5 ± 1.1 33.4 ± 1.0 27.4 ± 1.0 25.5 ± 0.8 23.2 ± 0.8
OVA.SVM-R 35.8 ± 1.1 31.0 ± 1.1 26.0 ± 1.0 25.1 ± 0.8 24.1 ± 0.9

NMC 33.7 ± 1.3 24.9 ± 0.9 20.8 ± 0.8 19.7 ± 0.8 19.2 ± 0.8
NNC 36.0 ± 1.2 29.7 ± 1.0 24.4 ± 0.9 23.3 ± 0.8 21.4 ± 0.7

Lung Cancer GDI.Dominant OVO.SVM-L 9.5 ± 0.3 8.1 ± 0.3 7.8 ± 0.3 7.8 ± 0.3 7.4 ± 0.3
OVO.SVM-R 10.0 ± 0.4 8.3 ± 0.3 8.1 ± 0.3 7.1 ± 0.3 6.9 ± 0.3
OVA.SVM-L 9.4 ± 0.3 7.7 ± 0.3 7.8 ± 0.3 7.5 ± 0.3 7.8 ± 0.3
OVA.SVM-R 10.1 ± 0.3 8.3 ± 0.3 8.2 ± 0.3 7.5 ± 0.3 7.4 ± 0.3

NMC 9.8 ± 0.4 7.2 ± 0.3 6.3 ± 0.2 5.8 ± 0.2 5.8 ± 0.3
NNC 11.9 ± 0.4 9.0 ± 0.3 8.3 ± 0.3 7.7 ± 0.2 7.3 ± 0.3

OVA.SNR [12] OVO.SVM-L 9.8 ± 0.3 8.0 ± 0.3 8.1 ± 0.3 8.0 ± 0.3 7.4 ± 0.3
OVO.SVM-R 10.2 ± 0.3 8.8 ± 0.3 7.6 ± 0.3 7.4 ± 0.3 7.2 ± 0.2
OVA.SVM-L 9.6 ± 0.3 8.3 ± 0.3 7.9 ± 0.3 7.9 ± 0.3 7.9 ± 0.3
OVA.SVM-R 10.0 ± 0.3 8.7 ± 0.3 8.1 ± 0.3 7.7 ± 0.3 7.2 ± 0.3

NMC 9.5 ± 0.3 7.6 ± 0.3 6.7 ± 0.2 6.5 ± 0.2 6.1 ± 0.2
NNC 11.9 ± 0.3 9.3 ± 0.3 7.8 ± 0.2 7.3 ± 0.2 7.4 ± 0.3

ANOVA+Correlation [11] OVO.SVM-L 6.9 ± 0.3 7.5 ± 0.3 7.4 ± 0.3 7.5 ± 0.3 7.7 ± 0.3
OVO.SVM-R 7.6 ± 0.3 7.1 ± 0.3 6.4 ± 0.3 6.6 ± 0.2 6.7 ± 0.3
OVA.SVM-L 7.1 ± 0.3 6.9 ± 0.3 7.1 ± 0.3 8.1 ± 0.3 7.8 ± 0.3
OVA.SVM-R 7.9 ± 0.3 7.4 ± 0.3 7.1 ± 0.3 7.4 ± 0.3 6.7 ± 0.3

NMC 7.8 ± 0.3 6.3 ± 0.3 5.7 ± 0.2 5.1 ± 0.2 5.3 ± 0.2
NNC 9.8 ± 0.3 8.0 ± 0.3 7.5 ± 0.3 7.3 ± 0.3 6.7 ± 0.3

Here m-fold corresponds to the case when m top most dominant genes are used for each class. For example, the column labeled 3-fold represents 
the results using 15 genes (3 dominant genes from each of the 5 classes) for both the CNS and Lung Cancer data sets.
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mant genes and hence usually we require more dormant
genes than dominant genes to achieve comparable classi-
fication performance. When dominant genes are com-
bined with dormant genes, the performance of the system
usually, but not necessarily, improves. It would be better
to design diagnostic systems using dominant genes and
the result of the diagnosis then can be authenticated/vali-
dated using the dormant genes, if they exist.

Materials and methods
Data sets
SRBCT data set [13]
The cDNA microarray data set contains 63 samples from
4 classes of childhood small round blue cell tumors
(SRBCT): 23 Ewing sarcomas (EWS), 8 Burkitt lympho-
mas (BL), 12 neuroblastomas (NB), and 20 rhabdomy-
osarcomas (RMS). Each sample is represented by 2308
genes. In addition, an independent data set with 6 EWS, 3
BL, 6 NB, and 5 RMS samples are used in the validation

A synthesized example to illustrate a false positive dominant gene identified by SNR (OVA)Figure 17
A synthesized example to illustrate a false positive dominant gene identified by SNR (OVA).
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process. Both data sets are available at http://
research.nhgri.nih.gov/microarray/Supplement/.

Leukemia data set [14]
This Affymetrix high-density oligonucleotide array data
set contains 57 samples from 3 classes of leukemia: 20
acute lymphoblastic leukemia (ALL), 17 mixed-lineage
leukemia (MLL), 20 acute myelogenous leukemia (AML),
each with 12582 genes. In addition, an independent data
set with 4 ALL, 3 MLL, and 8 AML samples are further used
in the validation process. Both data sets are available at
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

CNS data set [15]
This is also an Affymetrix high-density oligonucleotide
microarray data set containing 42 samples from 5 differ-
ent tumors of the central nervous system (CNS): 10
medulloblastomas (MD), 10 malignant gliomas (MGlio),
10 atypical teratoid/rhabdoid tumors (Rhab), 8 primitive
neuro-ectodermal tumors (PNET), and 4 human cerebella
tumors (Ncer). For this data set each sample is represented
by 7129 genes. This data set is available at http://
www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

Lung Cancer data set [16]
This Affymetrix high-density oligonucleotide array data
set contains 203 samples in 12600 dimensions. There are
5 categories: 139 lung adenocarcinomas (Adeno), 21
squamous cell lung carcinomas (SQ), 20 pulmonary car-
cinoids (COID), 6 small-cell lung cancer (SCLC), and 17
normal lung specimens (Normal). This data set can be
obtained from http://www.pnas.org/content/suppl/
2001/11/13/191502998.DC1/DatasetA_12600gene.xls

Preprocessing
For the Leukemia and CNS data sets, in the preprocessing
step the gene expression values smaller than 100 are
raised to 100; while expression values greater than 16000
are set to 16000, and then the expression values are sub-
jected to a base 10 logarithmic transformation. After that,
the distribution of gene expression values in each sample
is adjusted to zero mean and unit variance. For the SRBCT
data set, we do not make any change to the gene expres-
sion values as that had already been preprocessed in the
original data source [13]. For these three data sets, we
adopt the same data preprocessing protocols as in [8]. For
the Lung Cancer data set (not used in [8]), we use the
same preprocessed data as used in [16] without doing any
additional preprocessing.

Experiment design
In order to confirm the efficacy of our proposed new gene
selection method and to make proper comparisons, we
followed the same experimental protocols as used in [8].
First, for gene selection, in addition to our proposed

method, we have used two gene selection strategies men-
tioned in [8]: maximum margin criterion-based recursive
feature elimination (MMC-RFE) and support vector
machine-based recursive feature elimination (SVM-RFE).
Here we have not implemented the MMC-RFE and SVM-
RFE algorithms, but simply extracted the results from [8].

Second, for evaluating the performance of each gene selec-
tion method, we have used the repeated random splitting
methodology utilized in [8] in which the samples (not
including the independent test data that are available for
the SRBCT and Leukemia) are partitioned randomly into
a training set and a test set such that the training and test
sets maintain the same proportions of samples from dif-
ferent classes as in the whole data set. The training set con-
sists of two-thirds of the entire sample set, and test set
consists of the remaining one-third of the samples. This
random training-test splitting is repeated 100 times. For
each such random training-test splitting (called outer level
splitting), we again randomly split the training set 100
times to produce a smaller training set. In this inner-level
splitting, we use three-fourth of the training data for find-
ing dominant and dormant genes, which are then used to
evaluate the performance of classifiers on the outer level
test data. This classifier performance evaluation process is
explained using the following step-algorithm, Classifier
Performance Evaluation.

Algorithm Classifier Performance Evaluation
1. Outer Loop: Repeat 100 times – Classifier perform-

ance estimation.

1.1 Partition the data set X into XTR (training set) and

XTS (test set), such that XTR = X, XTS = X - XTR, r <s; for

example, here we use r = 2, s = 3, XTR = X.

1.2 Inner Loop: Repeat 100 times – Frequency-based
gene selection.

1.2.1 Partition the training set XTR into XTR1 and

XTR2, such that XTR1 = XTR, XTR2 = XTR - XTR1, p <q;

here we use p = 3, q = 4, XTR1 = XTR.

1.2.2 Use XTR1 to compute GDIs for each gene and
then note the set of best m dominant and m dormant
genes for each class. Update the frequency of the selected
genes.

1.3 Generate the set SG with the m most frequently
occurring dominant and dormant genes from each class.

r
s

2
3

p
q

3
4
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Computation of GDI and finding the lists of dominant genes and dormant genesFigure 18
Computation of GDI and finding the lists of dominant genes and dormant genes.
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1.4 Train classifier(s), C, using XTR considering all or
part of the genes in SG.

1.5 Evaluate classifier(s), C, on the test set XTS.

2. Classifier evaluation: Summarize performance of the
classifiers over the 100 outer level trials.

In our investigation in Step 1.2.2 and Step 1.3 we have
used m = 5. In Step 1.4 we have used six kinds of classifiers
for comparison (three of them are used in [8]): the Near-
est Mean Classifier, the Nearest Neighbor Classifier, and
four kinds of the Support Vector Machine Classifiers. The
adopted SVM classifiers include the one-versus-one SVM
with linear kernel (OVO.SVM-L), the one-versus-one SVM
with Gaussian kernel (also called SVM with Radial Basis
Function, OVO.SVM-R), the one-versus-all SVM with lin-
ear kernel (OVA.SVM-L), and the one-versus-all SVM with
Gaussian kernel (OVA.SVM-R). Note that, only the
SVM.OVA-L was used in [8]. We have implemented the
NMC and NNC classifiers; while for application of SVM to
multi-class problems, we have used the e1071 library of R
http://www.r-project.org which is based on the LIBSVM
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. For SVMs, the
training data are further randomly split into two equal
parts (training and validation) for determining the opti-
mal hyper-parameters for the SVM classifiers. The optimal
hyper-parameters are then used to design SVM classifiers
with the training data and their performance is evaluated
on the test data. Here for C (the constant for regulariza-
tion), we use four choices {1, 10, 100, 1000} and for the
spread of Gaussian kernel γ, we consider eight choices
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}.

Gene dominant and dormant indices (GDI)
As we mentioned in Background, our main contribution
is to develop a gene evaluation index, called "Gene Dom-
inant/Dormant Index (GDI)", to select significant genes
for multicategory classification problems. This GDI con-
cept is similar in spirit to the Signal-to-Noise ratio (SNR),
broadly adopted for gene selection in two-class problems
[2], but the GDI can be applied to multicategory prob-
lems. Moreover, GDI further helps to identify dominant
and dormant genes as defined next.

Dominant Gene
A gene that is over-expressed in only one of the classes and
under-expressed in the remaining classes. Thus a domi-
nant gene is defined with respect to a set of diseases/
classes and it has a very strong class specific signature.

Dormant Gene
A gene that is under-expressed in only one of the classes
but over-expressed in the remaining classes. Thus a dor-

mant gene is also defined with respect to a set of diseases/
classes and it also has a strong class specific signature.

From the above definitions, it is clear that dominant
genes, if any, will be good biomarkers because such genes
are expected to play active roles for the disease. It also
appears that finding a dominant gene may not be a diffi-
cult task, particularly for a given set of cancers, because
usually some genes will be highly expressed for a particu-
lar type of cancer. But dormant genes may not always be
available in a given set of diseases as the requirements of
dormant genes are harder to satisfy. It is easy to visualize
that both dormant genes and dominant genes will have
high discriminating power. Moreover, one can design a
diagnostic system using the dominant genes and then can
authenticate the decisions using information available
with the dormant genes. These can lead to more reliable
diagnostic systems. In simulation results we demonstrate
that we can make more accurate prediction for several
multiclass problems based on dominant or dormant
genes selected by the GDI criterion (compared to two
existing gene selection methods for multiple classes, such
as SVM-RFE [8] and MMC-RFE [8]). For an easy under-
standing, Fig. 18 depicts the steps involved in the compu-
tation of GDI, which are explained next.

Normalization
The expression values of each gene are normalized in the
range from 0 to 1 across samples. This step preserves the
richness in the original expression values for each gene
among the samples and helps us to easily visualize the dis-
tribution of expression values for the dominant or dor-
mant genes.

Computation of mean and standard deviation
For each gene, the mean and standard deviation of the
gene expression values in each class are calculated. Let the
mean and standard deviation for gene i in class j be μij, σij.

Sorting of the mean values
For notational simplicity, to explain the computation of
the GDI for gene i, we ignore the index i. We sort μj; j = 1,
..., k in descending order. Let the sorted mean values be
μj(s); j = 1, ..., k. Suppose μ1(s) is the mean for class m. This
means that the gene under consideration is most highly
expressed in class m. Similarly, if μ2(s) corresponds to class
r, then if we exclude class m, then amongst the remaining
classes this gene has the highest expression level on aver-
age in class r. Thus, if the gene under consideration has a
distinct class specific signature, then μ1(s) and μ2(s) must be
well separated and if that is not so, then this gene cannot
be a dominant gene. Note that, to make this conclusion,
we do not need to look at the mean values corresponding
to other classes. We can do so because we have sorted the
class means in descending order.
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Computation of GDI for dominant genes
Now we define the GDIDom for the gene under considera-
tion as:

As discussed above, the index at Equation 1 can be com-
puted for each gene and then the GDIDom values can be
sorted in descending order. A higher value of GDIDom indi-
cates that the gene for the m-th class is significantly over-
expressed compared to the r-th class and obviously it is
more strongly over-expressed compared to the remaining
classes. Thus, it is a dominant gene for class m or 1(s).
Dominant genes, if exist, will appear at the top of the
sorted list. A set of genes can then be selected from this
sorted list for further processing. Note that, for a two class
problem, although we do not use the absolute value in the
numerator, because of the sorting, Equation 1 is exactly
the same as that of Golub's SNR index [2]. In other words,
the GDIDom can be viewed as true generalization of
Golub's SNR for a multiclass problem.

Computation of GDI for dormant genes
However, the GDIDom in Equation 1 will not be able to
find the dormant genes, if any. In order to find the dor-
mant genes we can proceed as follows. If the gene under
consideration is a dormant one, then it will be unex-
pressed for one class but at least moderately expressed for
all of the remaining classes. In this case, (μk-1(s) - μk(s))
should be considerably high, where μk(s) is the last value in
the sorted sequence; in other words, it is the mean expres-
sion level for the class in which the gene under considera-
tion is least expressed. Thus, we define the GDIDor for
identifying the dormant gene as

Note that, Equation 1 uses the class mean values and
standard deviations of the top two classes in the sorted list
while Equation 2 uses the class means and standard devi-
ations corresponding to the last two values in the sorted
list. Consequently, if GDIDor is significantly high for a
gene, then this gene is a dormant gene for the class repre-
sented by k(s).

It is easy to see that for a two class problem, GDIDor
reduces to the SNR of [2]. Thus both GDIDom and GDIDor
can be viewed as generalizations of SNR. We can combine
Equations 1 and 2 and write in a convenient manner as in
Equation 3.

In Equation 3 when x = Dom, p and q correspond to the
top two classes, respectively, in the sorted list and when x
= Dor, then p and q correspond to the last two classes in
the sorted list, respectively.

We want to emphasize that a dominant gene is dominant
for a class with respect to the given set of classes/groups
under consideration. For example, given the SRBCT
group, a gene may be dominant for the Neuroblastoma
class implying that this gene is highly expressed for the
Neuroblastoma cases but unexpressed for the other three
types of childhood cancers. Now if we augment the set of
four childhood cancers by one more type, then this partic-
ular gene may not remain dominant with respect to the
group of five childhood cancers. Similar is the case with
dormant genes.

Finding a list of dominant/dormant genes for each class
After calculating the GDIDom values of all genes, a list of
dominant genes for each class can be obtained as follows.
For each gene, the GDIDom is associated to the class repre-
sented by 1(s); in other words, it is associated to the class
corresponding to the top element in the sorted list. In this
way, every gene is associated with a class and a value of
dominancy as expressed by GDIDom. We can now sort the
genes associated with a particular class according to the
GDIDom values. In this way we get a sorted list for each
class. We can now select useful genes for a class from the
top of the list. Clearly, when selecting the dominant
genes, the higher the GDIDom, the more dominant the gene
is. A similar procedure can be applied for the generation
of a list of dormant genes for each class using the GDIDor
values.

Gene selection strategy
If we use several dominant (or dormant or both kinds of)
genes from each class ranked according to GDIDom values
to design diagnostic systems, we are expected to get suffi-
cient discriminating power for all classes in multi-class
discrimination problems. But since in each resampling
experiment we may get a different set of dominant (dor-
mant) genes for a class, it would be better to aggregate the
output of several resampling experiments. Different strat-
egies are possible for this. Next we propose one such strat-
egy:

Frequency-based method
The gene selection scheme is displayed in Algorithm Gene
Selection. It proceeds as follows. In each of the 100 trials,
we select the top m (= 5) dominant (dormant) genes for
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each class to compute the frequency with which each such
gene appears as a candidate gene for a class. A good dom-
inant (dormant) gene is likely to appear more frequently.
In order to find the set of interesting (marker) genes for
each class we select the top five most frequently occurring
genes. However, some class may have more than five
genes with strong class specific signatures. If that happens,
we should include those genes also if our goal is to find
the set of interesting (marker) genes, not just designing of
a classifier. Hence, in addition to the top five genes, if
there are other genes with frequency of appearance 50 or
more (in 100 trials) we also consider those genes impor-
tant. In this manner we find a set of genes that may be bio-
logically interesting. But all these genes may not be
necessary for designing a classifier, because for a k-class
discrimination, even a set of less than k good genes may
be adequate. Tables 1, 2, 3, 4 are generated by this scheme.

Algorithm Gene Selection
1. Repeat 100 times.

1.1 Partition the data set X into XTR and XTS, such that

XTR = X, XTS = X - XTR, p <q; here we use p = 2, q = 3,

XTR = X.

1.2 Use XTR to compute GDIs for each gene.

1.3 Find the set of best m dominant and m dormant
genes for each class.

1.4 Note the frequency of the selected genes.

2. Generate the set of dominant (dormant) genes with
the m most frequently occurring dominant (dormant)
genes from each class.

Permutation test to assess statistical significance of GDI 
indices
To assess the statistical significance of the GDI indices
associated with the identified dominant and dormant
genes, a permutation test has been performed. The proce-
dure followed is summarized below. Both un-adjusted p-
values and q-values adjusted for multiple comparisons are
computed. Let G be the total number of genes and S be the
total number of sample points.

(1) Given an expression matrix D (xgs is the expression
intensity of gene g and sample unit s; 1 ≤ g ≤ G, 1 ≤ s ≤ S)
with class labels (ys, 1 ≤ s ≤ S), we compute the gene dom-
inant index GDIDom, mg and gene dormant index GDIDor,
rg, for each gene g.

(2) Randomly permute the class labels ys for B times. In

the bth permutation (1 ≤ b ≤ B), compute , the new

GDIDom and , the new GDIDor for gene g using the

expression matrix D and the permuted labels .

(3) The p-value of the observed dominant GDI, mg, for
gene g is

where I(·) is an indicator function that takes the value
one when true and zero otherwise. Similarly the p-value of
the observed dormant GDI, rg, is

(4) To account for the multiple tests being performed in
the G genes, q-values of the observed mgand rg are calcu-
lated as
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