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Background

In the field of cancer research, classical clinical variables
have long been used as prognostic markers. Indeed, many
strong clinical determinants that explain most of the prog-
nosis have already been identified. Nevertheless, certain

Abstract

Background: In cancer research, most clinical variables have already been investigated and are
now well established. The use of transcriptomic variables has raised two problems: restricting their
number and validating their significance. Thus, their contribution to prognosis is currently thought
to be overestimated. The aim of this study was to determine to what extent optimism concerning
current transcriptomic models may lead to overestimation of the contribution of transcriptomic
variables to survival prognosis.

Results: To achieve this goal, Cox proportional hazards models that adjust for clinical and
transcriptomic variables were built. As the relevance of the clinical variables had already been
established, they were not submitted to selection. As for genes, they were selected using both
univariate and multivariate methods. Optimism and the contribution of clinical and transcriptomic
variables to prognosis were compared through simulations and by using the Kent and O'Quigley p?
measure of dependence. We showed that the optimism relative to clinical variables was low
because these are no longer submitted to selection of relevant variables. In contrast, for genes, the
selection process introduced high optimism, which increased when the proportion of genes of
interest decreased. However, this optimism can be decreased by increasing the number of samples.

Conclusion: Two phenomena have to be taken into account by comparing the predictive power
and optimism of clinical variables and those of genes: overestimation for genes due to the selection
process and underestimation for clinical variables due to the omission of relevant genes. In
comparison with genes, the predictive value of validated clinical variables is not overestimated,
which should be kept in mind in future studies involving both clinical and transcriptomic variables.

characteristics of cancer are still poorly understood, and
these need to be elucidated to improve treatment. Thus,
cancer research is making use of new technologies, espe-
cially microarrays, and survival analysis methods have
been extended to take into account the potential informa-
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tion from microarray analysis with the hope that this tran-
scriptomic information will supersede clinical data. For
example, Shipp et al. [1] showed that a 13-genes-signa-
ture-based outcome predictor provided additional infor-
mation not reflected in the clinical prognostic model
based on the International Prognostic Index. Today, can-
cer clinicians would like to combine genes and classical
clinical variables in the same models to improve assess-
ment of cancer prognosis. In the recent years, some
authors addressed this question in two ways. The first way
is to involve classical clinical and transcriptomic variables
in the same models [2-4]. However, not all authors took
into account the particularity of each type of variable. The
second way is to consider the additional predictive value
of genes. In this context, Tibshirani and Efron [5] warned
in 2002 against too premature conclusions regarding the
predictive power of transcriptomic variables. Using the
breast study from Van't Veer [6], those authors showed
that the effects of genes were overestimated with regard to
the classical clinical variables like tumor grade or size.
They proposed a "pre-validation" strategy to correct the
artificial importance given to genes.

In the very recent literature, few authors joined those two
ways in unique models. Thus, Binder and Schumacher [7]
proposed an offset-based boosting approach in the con-
text of survival data. This approach allows also answering
the question whether prediction is improved or not by
adding transcriptomic variables to classical clinical varia-
bles in the same model. Shortly later, Boulesteix et al. [8]
proposed a more general approach than that of Binder
and Schumacher, in the sense that it was not limited to
survival data. This approach is based on PLS, random for-
est, and the pre-validation strategy suggested by Tib-
shirani and Efron.

The interesting thing in the two above approaches is that
they allow simultaneously to construct a classifier com-
bining both types of variables and to determine whether
microarray data present additional predictive value.

In agreement with this consideration, we think it is of
major importance when designing statistical models to
keep in mind that the characteristics of transcriptomic var-
iables are completely different from those of clinical vari-
ables. Specific clinical variables have already been
validated in many large studies. Thus, most of these clini-
cal variables are no longer included in the selection proc-
ess (e.g. the estrogen receptor status in breast cancer or the
international prognostic index in lymphoma). In contrast,
the selection step is still needed for genes, and various
issues are still a matter of debate. First, fewer studies have
been conducted on transcriptomic variables than on clin-
ical variables; thus, there are fewer datasets available to
repeat the analyses and validate the relationships. In most
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cases, genes selected in a single study are assumed to have
a general prognostic value. This selection is presented as a
benchmark for the disease without external validation
studies on new datasets. Second, whenever available,
these datasets are rather small compared to the number of
genes under study. Considering the high number of varia-
bles and the relatively low number of observations,
microarray data can easily lead to a high number of false-
positive variables. By chance alone, many genes may be
found significantly associated with the outcome even
though most of them may not actually be linked to prog-
nosis.

Some publications have clarified certain additional issues
related to the selection process in microarray analysis. Ein-
Dor et. al showed that the final gene signature depends
highly on the subset of patients used for gene selection
[9]. Later, the same team pointed out that the reproduci-
bility of a signature depends on the number of samples
used for the analysis [10]. Other teams were interested in
the False Discovery Rate (FDR); that is, the expected pro-
portion of false positives among the genes declared as sig-
nificant. When looking for differential genes, Pawitan et.
al showed that the FDR is mostly influenced by the pro-
portion of truly differentially expressed genes and by the
sample size [11].

The same problems are met in survival studies where the
construction of transcriptomic models raises simultane-
ously the problem of restricting the number of genes to
include and that of validating the selected genes. When a
model is too complex - i.e., the number of free parameters
to estimate is too high given the information contained in
the data - the strength of that model will be exaggerated
due to overfitting. Some conclusions of the analysis may
be due to noise or to some spurious associations between
the covariates and the outcome. In this case, the model
has high adequacy and predictive accuracy for the dataset
on which it was built but is not able to accurately predict
the outcome with new datasets. Thus, the ability of the
model to predict outcome with new datasets is overesti-
mated: this is called optimism. The main objective of this
article is to quantify to what extent the optimism of tran-
scriptomic models induced by the selection process may
lead to overestimation of the contribution of transcrip-
tomic variables to prognosis, especially in comparison
with clinical variables when they are included in a single
model. To be able to control the contribution of the two
types of variables, the following study was conducted on
simulated datasets.

Methods

To compare optimism relative to clinical and transcrip-
tomic models within the context of survival, the study was
based on simulated datasets that included both clinical
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and transcriptomic variables. We wanted to simulate the
"real situation" faced by clinicians and statisticians: classi-
cal clinical variables are already validated, whereas tran-
scriptomic variables are still in the selection and
validation process. Regarding clinical variables, only vali-
dated ones are considered to build combined classifiers,
while regarding genes, many of the considered ones are
still superfluous noise genes.

To analyze one dataset, the following procedure was
employed: (1) The variables of interest were first identi-
fied; (2) Once clinical variables or genes had been chosen,
Cox proportional hazards models including both types of
variables were constructed; (3) To measure the predictive
information contained in each survival model, the p?
measure of dependence from Kent and O'Quigley was
used so that optimism for both types of variable could be
compared [12,13].

R and S-Plus codes used in our analyses are available at

ftp://pbil.univ-lyon1.fr/pub/logiciel/Optimism.

Simulation of the datasets

A classical way to link variables to censored survival data
is to use the Cox proportional hazards model. Let us
define X an (n, m) matrix of m variables for n individuals.
For each of the n patients, the follow-up times were noted
ty,..., t, as were the event-indicators d,, ..., d, with d; = 1 if
the event occurred and d; = 0 if it did not occur. At time t,
the Cox proportional model is given by:

A1tX) = Zo()exp(5X) (1)

where 1,(t) is a baseline hazard function, S = {8,,.... 5.}
is the vector of parameters and X, ..., X,, are the vectors of
length n describing each of the m variables for the n
patients.

Through this model, we simulated a virtual population of
size n in which the m variables consisted of both clinical
and transcriptomic variables. The simulation process was
inspired from the simulation study from Gui and Li [14],
which R code is publicly available.

More precisely, each patient was described by two clinical
variables, p genes and survival information. The aim was
to estimate in a single model the relationship between the
two types of variables and survival times.

Clinical variables were simulated using binomial distribu-
tions with probabilities 0.5 and 0.4, respectively, as
parameters for success (e.g. the positive vs. negative estro-
gen status). Normal distributions N(0, 1) were assumed
for the transcriptomic variables. A Weibull distribution
with shape parameter 5 and scale parameter 2 was used

http://www.biomedcentral.com/1471-2105/9/434

for the baseline function. For censoring times, a uniform
u(o, 8) was used, leading to about 40% censoring. The
underlying model was:

M| X, Xp) = Ao(t)exp(BcX ¢ + BrXy) (2)

where X and X were respectively the matrix describing
the clinical and the transcriptomic variables.

As there were two clinical variables, X was an (n, 2)
matrix. As for genes, p were under study, leading to an (n,
p) matrix X;. Only p, of the p genes were considered as
related to survival; the p, remaining genes were under the
null hypothesis H,, of no association with survival. Note
thatp = p, + pyand m = p + 2. The relevance of most of the
clinical variables had already been established through
several studies. The two clinical variables were then con-
sidered significant, and coefficients for both of these vari-
ables were set at 0.8: £ ;= 0.8, i = 1, 2. Coefficients for
transcriptomic variables related to survival were set at 0.2:
Pri=0.2,i=1,.., p; and the remaining p, were set at 0: S
i=0,i=p;+1,..,p.

For a fixed set of parameters p and p,, r = 60 training sets
of n patients were simulated according to the design
described above. For each of these training sets, 50 corre-
sponding test sets were drawn following the same design.
This overall process was performed varying n, p and p,
sequentially. The number of patients n was considered in
{50, 100, 200, 400}, p was considered in {500, 1000,
2000, 4000} and p, was considered in {5, 10, 20}.

A single Cox proportional hazards model involving both
clinical and transcriptomic variables could then be esti-
mated for each of these simulated datasets, as described
below.

Variable selection and model construction

Cox proportional hazards model

In the traditional Cox model, the vector of parameters is
such that it maximizes the following Cox partial likeli-
hood (PL):

o T en(B'xp)
&) !:D[ZjeRkexP(ﬁlxj)

where D is the set of indices of the events and R, is the set
of indices of the individuals at risk at time ¢,.

3)

In our case, there were p + 2 parameters to estimate. This
leads to a huge number of variables in comparison with
the number of individuals; the high dimensional space of
the transcriptomic predictors thus precludes the use of the
standard maximum Cox partial likelihood method to esti-
mate the parameters. Several methods have been pro-
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posed in the literature to deal with this high dimension
issue in survival models involving genes.

Adaptation to high-dimensional data

The first solution aims at selecting a lower subset of genes
according to the relevance of each gene taken separately.
This approach takes each feature in an univariate way and
also does not take into account the interactions between
genes. We used the log-rank statistic to order genes; the
number of genes to be involved in the model was chosen
a priori. We retained the 20 genes with the highest statis-
tical values, so that the number of selected genes was in
the same order of magnitude as in the approach which fol-
lows. The second solution is a multivariate selection
method that simultaneously selects genes and estimates
their effect on survival. One way to do this is to maximize
the partial likelihood under constraints using L1 or L2
penalization. Contrary to the L2 penalization [15,16],
which uses all genes in the prediction, only some genes
are used in the prediction with the L1 penalization [17].
The threshold gradient descent (TGD) method proposed
by Friedman and Popescu [18] allows a compromise
between the L1 and L2 penalizations. Through the choice
of a defined threshold, it approximates the L2 (low
threshold) and L1 (high threshold) penalized estima-
tions. Gui and Li [19] extended the TGD to the survival
model and demonstrated the ability of their approach to
select relevant genes and to provide good predictive per-
formance. We therefore used this model to select the
genes to include in our models.

Briefly, the TGD method is based on the gradient method,
which is classically employed to determine the minimum
of a loss function. With this method, the parameters vec-
tor is derived in a sequential manner following the direc-
tion of the negative gradient of the loss function, here the
partial log-likelihood noted I(f;) and defined as I(8;) = -

logPL( ;). The negative gradient is defined as: g(v) = -0l/
Of Starting with ﬁT = 0, the vector of estimated parame-

ters B is then updated at each iteration:

Br(v +Av) = Br(v) + Avh(v)

The parameter v, which begins at zero, controls the
number of iterations. A(v) controls the incremental
movement along the gradient. h(v) is defined as:

hv)={f;(v)-g;(")}7. with fi(v) = I [lgW| =
7.Max; 4<,|8,( V)|, I [.] being the indicator function, and 7

€ [0, 1] a user-defined constant. Through f( v), only coef-
ficients for which the gradient exceeds the threshold deter-
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mined by 7 are updated at each step. The final model is

given by the value of v which minimizes the cross-vali-
dated partial log-likelihood (CVPL).

The final vector of parameters By has only one piece of

non-null coefficients that corresponds to genes that are
relevant to predict survival.

The number p, of non-null coefficients depends on the
choice of 7. Note that the set of the p, genes selected by the
TGD may differ from the initial p, set of simulated genes
we considered linked to survival. With 7= 0, all genes are
kept in the final model. Thus, all the predictive variables
are selected but, in return, all the noisy variables are also
selected. In contrast, with 7 = 1, only one gene is kept at
each iteration. This time, only a restricted number of
genes is selected. Among these selected genes, the majority
is actually predictive but, in return, some important varia-
bles are missed. We have chosen 7 = 0.8, which allows
finding a compromise between the two extreme situations
obtained with 7= 0 and 7= 1. This choice leads to a lim-
ited number of selected genes: between 20 and 40 genes
with our simulated datasets, which is a reasonable
number of selected genes regarding the number of genes
simulated under HO.

Although the TGD method combines selection of genes
and estimation of their effect on survival, we used it only
for selection purposes; that is, to select genes irrespective
of their estimated coefficients.

Thus, we used two approaches to select genes: a univariate
approach using the log-rank, and a multivariate approach
based on the TGD. As for clinical variables, they were con-
sidered as validated and, thus, directly included in the
final model.

The optimism arising respectively from the clinical and
the transcriptomic variables was then estimated and com-
pared as follows.

Comparison of the contribution of the variables to the
prognosis

p2 as a measure of explained variability

Different criteria allow selection and comparison of mod-
els based on their capacity to predict the outcome of indi-
viduals who did not participate in the model building.
Among them, explained variability reflects the robustness
of the model, and its efficiency in predicting outcomes on
new datasets. It measures the information given by some
variables involved in a specific model.

In linear regression, the coefficient of determination
R2quantifies the proportion of variability in a data set that
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is accounted for by a statistical model. Kent and O'Quig-
ley proposed rewriting the R2 based on the Kullback-Lei-
bler Information [20], which quantifies the information
gain brought by variables involved for example in a Cox
Proportional Hazards model. This measure is defined as:

P’ =1-ep| -2(1(8)-1(0)) |

where 2(I( ) - 1(0)) quantifies the difference between

information from the model with [§ estimated vector and

the null model with no covariables. p? is comprised

between 0 and 1, with p? = 0 for the null model and p2 —
1 when all parameters tend to infinity.

Application
We used this measure to quantify the optimism arising
from the clinical and transcriptomic variables. For this,

three p? with different meanings were computed: p Iz)op/

p1, and p7, . These values were computed respectively

for each type of variable in the model involving both of
them.

p ﬁop reflects the information accounted for by the varia-
bles in the virtual global population. It is computed using
the S vector of coefficients defined earlier in the simula-

tion process. Only the p, non null parameters contribute

to its computation. p ﬁop therefore only depends on p, and

has the same value whatever n and p. In contrast, p7, and
p1, take into account the selection and the estimation

processes. More precisely, p%, reflects the information
accounted for by the variables selected on one specific
training set sampled from the global population. It is
computed using the p, coefficients of the model estimated
on the training sets. p7, reflects the information

accounted for on test sets by variables selected on the
training set. It is computed using coefficients estimated on

the test sets. We used p7, , which is the mean of the p3,

computed on the 50 test sets associated with each training
set.

As for p3,, coefficients of genes selected on the training
set were estimated on the test set. In fact, the computation

of p? only requires the knowledge of the coefficients of the
Cox model and the distribution of the corresponding pre-
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dictive variables. By re-estimating the coefficients of the
Cox model on the test set to compute p7,, we are able to

evaluate the predictive information actually given in the
test set by the genes selected on the training set. A lack of
re-estimation of the coefficients would have assumed that
the predictive power of the genes selected on the training
set-given by the coefficients of the Cox model estimated
on the training set- is equal on the test set. The selection
process introduces much optimism. The latter must be
taken into account by re-estimating the coefficients on the
test set. By doing so, the predictive information of the
selected genes will be closer to their effective predictive
information in the test set.

These measures were estimated for both the clinical and
the transcriptomic variables.

Optimism quantification

Optimism was quantified by computing relative differ-
ences between the various p?, as described in equations 4
to 6. By comparing p? values estimated in the training and
the test sets, A, (Equation 4) shows the error made by
considering that the signature given by one dataset is the
real signature and delivers the same information on other
datasets. In other words, it gives the difference between
the predictive information anticipated on one dataset and
the effective information on another.

Arrpyp (Equation 5) and Ay,p, (Equation 6) compared
respectively pf, and p7, with pﬁop. Both measures

quantify the relative difference between effective predic-
tive information in one dataset and the detected one.

Comparing pﬁop to p%,. quantifies how the predictive

information thought to be contained in one training set
moved away from information contained in the whole
population it is sampled from. It allows the validation

process to be evaluated. Comparing pﬁop to 5%3, allows

the selection process to be evaluated.

The three following measures were computed for each i =
1,..., 60 training sets simulated with each combination of
the parameters p, p, and n.

50 2
» 27=1PTeij

— 4
ATrTe,i =Prri— 50 = P1ri = PTe,i ( )
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2 2
PTr,i~PPop,i

ATrPop,i = 2 (5)
pPop,i
50 .2 -2 2
1| Z3=1PTeii PTe,i =P Pop,i
ATepap,i = “Ppropi |T— 5
2 50 2
PPop,i P Pop,i
(6)
Results

Results are shown through boxplots. We found this way of
representation well-suited to show the distribution of the
various differences obtained over each set of 60 training
datasets. Each point contributing to the boxplot corre-
sponds to one measure of A, one A being computed for
each of the 60 training sets.

Number of patients

Results are shown in an example with p = 1000 genes. For
the clarity of the figure, only results obtained with p, = 10
are shown. They remain the same with p, = 5 or p, = 20.

Figure 1 shows the results obtained for A, (differences

between p7. and p7, ) for the clinical model and for the

Clinic Transcriptome M Transcriptome U

- -+

|-——-———|:|:i———-———-|
] I

E E + L oL g 1 e
< - 7T T T = < L
[ L
i | |
3--4-51 rer R R -
! +
1
[
I
I
I [ I
-k
o o o
. a4 o
1
1
1
1
£
57 =R ==
LI B T T T T T T
S 10 20 o0 S 100 20 0 S0 100 200 0
Sample size Sample size Sample size
.
Figure |

Evolution of A, with the sample size. Boxplots repre-
sentative of the evolution of Ay, with the sample size for the
clinical variables (first panel), and the transcriptomic variables
selected through the multivariate (second panel), and the uni-
variate (third panel) way. p = 1000 genes.
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two transcriptomic models obtained with the multivariate
(transcriptome M) or univariate selection (transcriptome
u).

Regarding clinical variables, A, varied around zero and

overall did not depend on the sample size. Regarding
genes, the difference decreased with increasing sample
size; the difference never reached zero in the multivariate
case. The decreasing effect was even stronger with the uni-
variate selection method. This can be explained by the fact
that the number of selected genes depended on the test set
for the multivariate method whereas it is fixed a priori in
the univariate method; in the former, the number of
selected genes also varied and we observed that this
number increased with the number of patients. The TGD
selected genes that were not truly related to survival (False

Positives) contributed to the computation of p3

although they were noise. As a consequence Ar,g, had

higher values for the transcriptomic model in multivariate
selection than in univariate selection, even for n = 400
patients. These results show that transcriptomic and clini-
cal variables have different behaviors. The predictive
power of genes selected on one dataset is overestimated
with regard to the predictive power they would have with
other datasets. On the contrary, the predictive power of
clinical variables is the same with both training and test
sets. As a result, the two types of variables cannot be inter-
preted the same way.

Figure 2 shows the differences between p7, and pf)op

with transcriptomic and clinical models. Only results for
the transcriptomic variables from multivariate selection
are shown.

Regarding clinical variables, their predictive power was
clearly underestimated. This observation was amplified
with high values of p, (results not shown). This can be
explained by the bias due to missing covariates when a
model is badly specified. This phenomenon is an illustra-
tion in the high-dimensional setting of a known bias
adjustment phenomenon demonstrated by Chastang in
1988 [21] in the classical context of n >> p. Through for-
mulae and simulations studies, the author showed that
when explanatory variables are omitted in a non-linear
model-multivariate exponential Cox and Weibull survival
models- the effect of non-missing covariates is underesti-
mated. This is typically what happens when selecting
genes on the training set and when some relevant genes
are not detected by the method. Because the TGD method
selects nearly the same number of genes whatever p,, the
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Figure 2

Evolution of Arp,,, with the sample size. Boxplots rep-
resentative of the evolution of A,p,, with the sample size for
the clinical variables (first panel) andpthe transcriptomic varia-
bles selected through the multivariate way (second panel). p
= 1000 genes.

higher p,, the greater the number of genes missed at selec-
tion. Note that, on the contrary, including non-relevant
genes in the model does not bias the estimation of the
other covariates.

Regarding genes, Ar,p,, tended to zero when the number

of patients increased; the higher the number of patients,
the nearer the adjusted p? was to the expected p 12)0p.

When the sample size is too small, the highly predictive
information assumed to be given by the selected genes is
far from true information. We were also interested in dif-

ferences between adjusted p7, and pf)op (figure 3).

Regarding the clinical variables, the results were the same
as for the previous differences.

Regarding genes, by using the ones selected with the train-
ing set in the test set, the differences Ay,p,, were mainly
negative when the sample size exceeded 50 patients: this
means that the selected genes were not able to report the
true information contained in the dataset. In other words,
the genes selected on the previous dataset had no predic-
tive power on other datasets because they were not rele-
vant.
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Evolution of Ap,, with the sample size. Boxplots rep-
resentative of the evolution of Ar,p,, with the sample size for
the clinical variables (first panel) ancfthe transcriptomic varia-
bles selected through the multivariate way (second panel). p
= 1000 genes.

When selecting the p, genes, these can be either really
related to survival (genes among the p, ones under the
alternative hypothesis H;) or not (genes among the p,
ones under the null hypothesis H). The former are true
positives (TP), and the latter false positives (FP). To study
the influence of the TP on optimism, we compared the
evolution of p? due to the TP on the one hand, and to all
selected genes on the other hand. This was done with the
training and the test sets in the case of multivariate selec-
tion of genes. The left panel of figure 4 shows that increas-

ing n, p7, remained of the same order for all selected
genes whereas the p? due to the TP increased. In contrast,
the right panel of figure 4 shows that p;, for all selected
genes or for TP only evolved in the same way. In cases with
50 or 100 patients, there were no TP; p7, was also only

due to noise; this cannot be seen when using only one
dataset for a study and may lead to incorrect interpreta-
tion of noise as information. The high values observed for
all the genes for the 50 patients are due to the fact that
there were too few patients to get good estimations.
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Figure 4

Role of true positives. Boxplots representative of the evo-
lution of p7, (first panel) or p37, (second panel) with the

sample size given that all selected genes or only true posi-
tives are taken into account. p = 1000 genes.

Total number of genes

The need for a lot of individuals is valid whatever the
number of genes. However, for a fixed number of individ-
uals, the total number of features under study also has an
impact on optimism. Results are shown in an example
with p = 100 patients. Figure 5 shows the values of the dif-

ferences between p7, and p7, in the transcriptomic

model. When the total number of genes increased, A,
increased too. When there were too few genes of interest,
it was difficult for the selection method to find the rele-
vant ones (true positives). Genes selected on the training
set had no predictive power on the test sets, which can be
explained as follows. The more genes there are, the higher
the optimism: the greater the number of genes under
study, the more overestimated is the predictive power of

the transcriptomic model. The high value of p3, is due to

noise and not to real information. The study of Ay,p,,
indicated that genes selected on the training set are not
able to relay the predictive power really contained in the
test set when the number of genes truly related to survival
is too small relatively to the total number of genes.
Indeed, differences were negative, and increased with
increasing p;.
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Evolution of Ar,;, with the number of genes under
study. Boxplots representative of the evolution of A7, with
the number of genes under study for the transcriptomic vari-
ables selected through the multivariate (first panel) or the
univariate way (second panel). n = 100 patients.

Discussion

Genes are not yet validated as predictors of outcome. They
are selected on a single dataset and assumed to have the
same predictive power with other datasets. But results
show that this predictive power is overestimated in the
case of genes. This overestimation is even more significant
when the number of patients is low and the total number
of genes high. This is due to two phenomena which over-
lap: the gene selection mechanism and the power prob-
lem. When there are too few patients the genes that are
selected are not the true ones due to a lack of power. This
problem is not encountered for clinical variables, for
which the selection process is over because they have been
already validated. The same problem arises when there are
too many genes relatively to the number of genes truly
related to survival. This problem is difficult to solve in real
life studies and must be kept in mind. Indeed, the number
of genes of interest is not known in advance.

Many papers dealt with the choice of the best method for
gene selection. Our aim was not to study a specific
method but rather to study what happens once genes have
been selected. However, some comments may be made as
to the TGD. First, from one dataset to another, there is
considerable variety in the number and identity of genes
in a selected set. Nevertheless, the number of true posi-
tives, which increases with the number of samples, is
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more stable. Note that the number of selected genes
depends on the choice of the parameter z. With a fixed
value of 7 and p,, the conclusions would be the same
whatever the choice of this parameter: optimism increases
with the number of patients and decreases with the
number of genes involved in the study. Second, one point
that appears to us as a drawback of this method is that it
gives very low coefficient estimations, even for true posi-
tives. In our case, we only used the TGD for selection pur-
poses, and coefficients of selected genes were re-estimated
in a new Cox model. However, we noticed that some of
these genes had very low estimated coefficients on the
training sets, even more so with a low number of samples.
We may wonder why these genes were selected.

To answer the question of comparative optimism of clin-
ical and transcriptomic variables, we worked on simulated
datasets reflecting the real situation encountered by clini-
cians and statisticians. Thus, we simulated only two true
clinical variables, but many superfluous genes. Our con-
clusions depend on this choice of the simulation setup. It
is not the nature (classical clinical or transcriptomic) of
the two types of variables that explains the difference in
the introduced optimism but their status (selected and
validated or not): few validated variables for clinical vari-
ables and many variables under selection for genes, of
which noisy variables. It is clear that with 50 clinical vari-
ables and only 5 biologically pre-selected relevant cancer
genes, the situation would be reversed.

Concerning the simulation process, as the real correlation
structure of genes is not well known, we chose not to
include it in this work. Moreover, clinical variables and
gene-expressions were all modeled to be independent.
Future studies will aim to model dependence structures
between the two types of variables and genes.

Conclusion

By comparing the predictive power and optimism from
clinical variables with genes two phenomena have to be
taken into account: overestimation for genes due to the
selection process and underestimation for clinical varia-
bles due to the omission of relevant genes. By including
clinical and transcriptomic variables in the same model
these results must be kept in mind. The predictive power
of the clinical variables must not be neglected. In compar-
ison with genes, their importance is not overestimated,
which gives the feeling that they have less influence. In
reality, part of their impact is hidden by the optimism
encountered for genes.
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