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Abstract
Background: The nucleotide substitution rate matrix is a key parameter of molecular evolution.
Several methods for inferring this parameter have been proposed, with different mathematical
bases. These methods include counting sequence differences and taking the log of the resulting
probability matrices, methods based on Markov triples, and maximum likelihood methods that infer
the substitution probabilities that lead to the most likely model of evolution. However, the speed
and accuracy of these methods has not been compared.

Results: Different methods differ in performance by orders of magnitude (ranging from 1 ms to
10 s per matrix), but differences in accuracy of rate matrix reconstruction appear to be relatively
small. Encouragingly, relatively simple and fast methods can provide results at least as accurate as
far more complex and computationally intensive methods, especially when the sequences to be
compared are relatively short.

Conclusion: Based on the conditions tested, we recommend the use of method of Gojobori et al.
(1982) for long sequences (> 600 nucleotides), and the method of Goldman et al. (1996) for shorter
sequences (< 600 nucleotides). The method of Barry and Hartigan (1987) can provide somewhat
more accuracy, measured as the Euclidean distance between the true and inferred matrices, on long
sequences (> 2000 nucleotides) at the expense of substantially longer computation time. The
availability of methods that are both fast and accurate will allow us to gain a global picture of change
in the nucleotide substitution rate matrix on a genomewide scale across the tree of life.

Background
The nucleotide substitution rate matrix, conventionally
denoted Q, holds the rate of change from each type of
nucleotide to each other nucleotide in the Markov model

of molecular evolution [1] (see [2] for review). Q is often
treated as a nuisance parameter in phylogenetic recon-
struction, and is often assumed to be constant over a phy-
logenetic tree. However, if Q were really constant, all
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genomes would have identical composition, assuming
that sufficient time had passed for the process to reach
equilibrium. Neutrally-evolving sites reach equilibrium
rapidly (e.g. within individual genera of nematodes [3]).
However, genomes range in GC content (the fraction of
nucleotides that are G or C, as opposed to A or T) from
about 25% to 75% [4,5], and members of all three
domains of life have a wide range of GC content [6]. Con-
sequently, discovering how Q varies is key to building bet-
ter phylogenies and to understanding fundamental
processes of molecular evolution. However, there are

many methods for providing an estimate of Q, i.e. , that

may differ substantially in accuracy and performance, and
lack of information about these performance characteris-
tics has hindered discovery of patterns of Q on a large
scale within and between genomes. Several factors are
known to influence the proportions of the four nucle-
otides in the genome (hereafter, genome composition),
and hence presumably Q, under specific conditions. For
example, in the spirochete Borrelia burgdorferi, the strand-
specific compositional biases induced by deamination are
so great that the strand on which each gene is coded can
be determined simply by examining its composition [7,8].
Other examples include the influence of CpG doublets on
mammalian gene composition [9], deamination biases in
mitochondria [10], and the origin of mammalian iso-
chores through variation in mutation patterns [11].
Within vertebrate genomes, the balance between oxida-
tion and deamination mutations can also differ radically
[12]. However, despite the potential for relating changes
in Q to specific mutational processes, little attention has

been paid to obtaining empirical  in specific lineages

[13,14].

That Q does vary, and that variations in Q can tell us
something interesting about the underlying processes in
molecular evolution, has thus drawn substantial attention

only in the last 10–15 years. Most interest in obtaining 

has come from studies of phylogenetic reconstruction: for
example, likelihood methods for tree-building typically

involve optimizing a single  matrix for a phylogenetic

tree [15], and testing for the symmetries in  that best

explain the sequence data [16] is a standard part of mod-
ern phylogenetic inference workflows [17]. Although
some work has been done on non-stationary models [18-
23], and recent evidence suggests that non-stationarity
may have a large influence on the accuracy of phyloge-
netic reconstruction [24,25], no comparison of the differ-

ent methods for obtaining  has yet been performed.

Available methods for obtaining  are based on different

underlying assumptions, and are hence expected to differ
both in accuracy and in speed of calculation. Most availa-

ble methods obtain , where the entries of  are the esti-
mated probabilities of changing from each base to each

other base after a defined time interval of duration t.  is

related to  by the equation . Therefore, t can

be obtained from  in two ways: either by simply taking

the matrix logarithm of , or by using constrained opti-

mization to find a valid t without negative off-diagonal

elements that, when exponentiated, produces  with
minimal error. The time factor can be removed by scaling

t so that the trace is (-1), leaving  on a standard scale

(but with arbitrary units). For equilibrium processes, the

weighted trace can be scaled such that , tak-

ing into account the equilibrium base frequencies [26] to
standardize to a fixed number of substitutions per site, but
for nonstationary processes this procedure is not justified.

The simplest method for obtaining  is to count the fre-

quencies that a base i ∈ {A, C, G, T} in one sequence is

aligned with base j ∈ {A, C, G, T} in the other sequence,
and denote this by nij. To isolate the effects of mutation,

regions of the sequence that are thought to be under no
selection or very weak selection, e.g. introns or 4-fold
degenerate synonymous sites, are used for this purpose. If
the substitution process is time-reversible, nij = nji in expec-

tation. It suffices to consider the special case where the
observed counts n is symmetric. If n is not symmetric, we
replace n by the average of n and the transpose n'[26].

Then the entries of  are given by , which can

then be used to obtain  as described above [2,26,27].

Alternatively, since this method of obtaining  assumes

the divergence between sequences is small, .

Then an estimate for the rate of change of i to j is given by

 for i ≠ j, and the diagonal elements are set

such that each row of t sums to 0 [28,29]. We refer to

this method as the 'Goldman' method [29]. Again the

time factor can be removed by scaling t. However, both

of these methods are based on the assumption that the
evolutionary process is time-reversible. A method that can

Q̂

Q̂

Q̂

Q̂

Q̂

Q̂

Q̂

P̂ P̂

Q̂

P̂ ˆ ˆ
P eQt= Q̂

P̂

P̂

Q̂

P̂

Q̂ Q̂

− =∑ p Qii iii
ˆ 1

P̂

P̂ P̂ij
nij

nikk
= ∑

Q̂

P̂
ˆ ~ ˆP I Qt+

( )Qt ij
nij

nikk
= ∑

Q̂

Q̂

Page 2 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:511 http://www.biomedcentral.com/1471-2105/9/511
better recapture non-time-reversible substitution proc-
esses uses rooted triples of sequences where X and Y are
the sister taxa, and Z is the outgroup [30]. If X has the
same base at that position as Z, the assumption is that the
change most likely occurred between Y and its common
ancestor with X. This method thus leads to a directional

and not necessarily time-reversible , which can then be

used to obtain  (see [31] for additional details, and for

a comparison of directional and undirectional estimates
of Q). We refer to this three-sequence method as the

'Gojobori' method of otaining [30], and use the imple-
mentation in the PyCogent toolkit [32].

More elaborate methods include maximum likelihood
methods and Markov triple analysis [13,33,34]. Each of
these methods assume nucleotide sites are independent
and identically distributed, and do not require the evolu-
tionary process to be stationary or reversible (recall that
the sequence composition produced by evolution accord-
ing to a Markov process over time need not match the
composition of the starting sequence, which might be
modeled differently). To explain the methods, we intro-
duce the following notation. Consider a rooted triple of
sequences from taxa X, Y, Z. Define R to be the root and

let  denote the estimated vector of nucleotide proba-

bilities for the sequence at R. Let  denote the estimated

nucleotide probability transition matrix from R to taxa U,

for U ∈ {X, Y, Z}, i.e.,

The transition probabilities in each row of  sum to 1,

therefore each matrix  consists of 12 unknown param-

eters and similarly the vector  consists of 3 unknown

parameters. To determine the unknown parameters, the
methods each make use of the observed joint probability

distribution between the three taxa. Let  denote this

distribution. That is,

Each state of  can be written in terms of , ,

 and . For example,

Maximum likelihood methods obtain ,  and  by

finding the values for the parameters that maximize the
likelihood of the observed joint frequencies [33,34]. That
is, align the X, Y, and Z sequences and let nXYZ(i, j, k)

denote the number of times X = i, Y = j, Z = k occurs in the
alignment. The likelihood function is proportional to the
conditional probability, given by

One method for finding the 39 unknown parameters (12

unknowns in each of three  and three unknowns in

) is to use a global optimization algorithm to search

parameter space and find , ,  and  that max-

imize the likelihood. We refer to this method as the 'MW'
method below. Since the chosen ordering of the nucle-
otides is arbitrary, there are 4! permutations of the ele-

ments of  (while keeping the nucleotide ordering

fixed), and 4! corresponding permutations of the rows of

the  matrices, that will result in the same  and

therefore the same likelihood. Thus, once the global opti-
mization algorithm converges to one of the maximum
likelihood solutions, a unique solution can be deter-
mined by choosing the permutation that maximizes the

sum of the traces of the ,  and  matrices [34],

which provides the solution that implies least change in
the overall sequence (the diagonal elements represent the
probability that a nucleotide remains unchanged after t
time units). If the underlying process is not one that max-
imizes the diagonal entries, the process is unidentifiable
using this method (i.e. cannot be recovered even with infi-
nite sequence data). One solution might be to restrict the
class of processes to those with diagonal-dominant P [35],
although we did not perform such restrictions in this
study.

An alternate approach for finding the maximum likeli-
hood parameters that does not involve a global optimiza-
tion routine was introduced by Barry and Hartigan and is
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referred to as the 'BH' method [33,34] below (we ran this
method using default parameters as supplied). BH
rewrites the likelihood function in terms of joint probabil-
ity matrices along each edge of the tree. Solving for the
maximum value of the likelihood leads to a system of iter-
ative equations for the joint probability matrices along
each edge. Thus, given initial starting guesses for the joint
distributions along each edge, the system can be iterated
until convergence is reached [33,34]. The joint probability
matrices along each edge can then be used to obtain their

corresponding  matrices.

BH is valid on unrooted trees of any size, but for simplic-
ity we briefly outline it here using the unrooted version of
the rooted triple defined above. Let ui denote the ith ele-
ment in the sequence from taxon U, with U ∈ X, Y, Z. Sim-
ilarly, let ri denote the ith element in the sequence at node
R. Then

Let N denote the length of the sequences. Then the condi-
tional probability can be written as

The maximum likelihood solutions are therefore the val-

ues of ,  and  that maximize the likelihood

subject to the constraint that the entries in  sum to 1,

as it is a joint probability matrix. In other words, BH max-
imizes

Differentiating with respect to  and λ and setting

equal to zero leads to the following iterative equation for

,

where I(x ∈ {xi}) is an indicator function that takes the
value 1 if x = xi and 0 otherwise [33,34]. This iterative
equation can be written entirely in terms of joint distribu-
tions along each edge by using the relation

These steps are repeated to derive iterative equations for

 and , leading to an iterative system for ,

 and . Suitable initial values are chosen and the

system is iterated until it converges [33].

The  matrices can then be converted to  matrices along

each edge using the relationship in (3). Finally, the 

matrices can then be used to obtain  matrices using the

relationship .

Both the global optimization and BH methods maximize
the same likelihood function, but they differ in the com-
putational methods used to find the maximum and in
whether they write the unknown parameters in terms of
joint probability matrices or probability transition matri-
ces. Maximizing the likelihood does not result in a unique
solution without adding further restrictions. MW chooses

the  matrices with the largest sum of the traces, while in
the BH method, the initial starting values determine
which maximum is chosen. The BH method's default ini-

tial  matrices, are diagonally dominant. Thus we expect

the iteration to converge to a diagonally dominant solu-
tion (if one exists). Thus, in theory the BH and MW meth-

ods will result in the same  matrices. In practice, their

answers can differ if either converge instead to a local
maximum, or if the initial starting points used in either
algorithm lead to too slow of a rate of convergence, or if
the original P matrices used to generate the sequences are
not diagonally dominant.

Another method, which we refer to as the 'Lake' method,
uses Markov triple analysis (MTA) as a different approach

to finding the  matrices for rooted triples of sequences

[13]. This method uses the fact that the conditional joint

probabilities  can be written in terms of , ,

and , where  is the probability transition matrix

from taxon Z to R. (Note that because the evolutionary

process is not required to be reversible,  differs from

.) For example,
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MTA uses the observed conditional joint probabilities as
estimates of the true conditional joint probabilities. This
results in a system of 48 nonlinear equations in terms of

the 36 unknowns in ,  and . MTA solves this sys-

tem by first using the properties of determinants to set up

a simpler system in terms of . Specifically, determi-

nants of the conditional joint probabilities are used to

derive a system of 6 quartic polynomials.  is deter-

mined by first finding the roots of the polynomials and
then searching through 245 possible orderings of the roots
to find the ordering that results in a consistent system. In
the case that the original system of 48 equations is incon-
sistent, the Lake method chooses the ordering that mini-
mizes an inconsistency function defined by the author
[13]. These ordered roots are coefficients in a system of

equations that is linear in the unknown parameters of .

Thus once the ordered roots are found,  can be deter-

mined by solving the linear system. Again, any of the 4!

permutations of the columns of  will also be a valid

solution. Thus the Lake method chooses the ordering with
a positive determinant that maximizes the trace. Once a

unique  has been determined, 3 systems of equations

that are linear in the parameters of , ,  can be

solved to determine these matrices. Again, the  matrices
estimated using the Lake method can then be used to

obtain  matrices.

If the observed conditional frequencies do in fact accu-
rately estimate the true conditional frequencies and result
in a consistent system of 48 equations, the Lake method
provides a computationally feasible way to find the solu-
tions of the system. However, since this method estimates
the joint probability distribution from observed frequen-
cies, the accuracy of this estimation will be dependent on
sequence length and sequence alignment. Therefore, the
system of 48 equations can often be inconsistent (i.e. val-
ues for the 36 parameters that satisfy all of the equations
and that are between 0 and 1 do not exist). In this case, it
is possible that the Lake method will be unable to find
valid estimations of the probability transition matrices, as
the linear systems in the method may also be inconsistent

or may result in ,  or  having negative elements.

In this paper, we present a comparison of the speed and
accuracy of the different methods described above, using
sequences of different lengths and divergences. We also

compare two methods for obtaining  matrices from the

resulting  matrices: using the matrix log [36] and using
constrained optimization.

Results and discussion
In principle, each of the methods described has advan-
tages and disadvantages. The Goldman method uses the
observed number of changes between two sequences to

obtain . It is thus very simple and fast computationally.

However it assumes that the evolutionary process is time-
reversible and that the divergence between sequences is
small, which may not model real evolutionary processes

well. The Gojobori method obtains  from groups of
three taxa in which the outgroup is known, by counting
the directed changes in two sister taxa relative to the out-
group, then normalizing the rows of this count matrix. It
does not require the evolutionary process to be time-
reversible and thus is more general than the Goldman
method. Since both the Goldman and Gojobori methods
rely on the count matrix, we would expect them both to
do better on longer sequences, which provide more

observed data for more accurately sampling  and .

The maximum likelihood methods (MW and BH) do not
require the evolutionary process to be stationary or revers-
ible, and in principle should be more robust to sampling
error in the observed count matrix. However, maximizing
the likelihood alone does not lead to a unique solution

for the  matrices without imposing further restrictions.
By default, these methods resolve this issue by searching
for the diagonally dominant solution. Thus, we expect
these methods to do the best when the original Q matrices
are such that their corresponding P matrices are diago-
nally dominant for the level of sequence divergence under
consideration.

Finally, the Lake method uses observed conditional joint
probabilities as estimates for the true conditional proba-
bilities. If the observed probabilities accurately estimate
the true probabilities and result in a consistent system of
equations, the Lake method should provide an accurate
estimate of Q. However, because this method depends on
solving several linear systems that may be inconsistent on
the given data, it is the only method of those we consider
that, in certain cases, fails to provide any valid output for

. We would expect it to do worse on shorter sequences,
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when the observed conditional joint probabilities esti-
mate of the true joint probabilities poorly due to sampling
error. Overall, although some of the methods are
restricted in their solution space, our primary interest is in
determining empirically how accurately each method

obtains  from a randomly generated Q.

Different techniques differ by orders of magnitude in 
performance, and the fastest techniques are among the 
most accurate

The different techniques for obtaining , and hence ,

vary widely in both accuracy and performance. We meas-
ured accuracy by testing for the ability to recover Q from
three-taxon trees with specified topology and branch
length using the standard Markov model of evolution and
arbitrary, randomly generated substitution matrices with
no constraints on symmetry or the relative sizes of the ele-
ments. Error was measured using the Euclidean distance
between the parametric Q that the sequences were evolved

under and the inferred  for the same sequences.

The speed and accuracy of each method were tested under
the following conditions. The length of the sequence
ranged from 100 to 1000 in steps of 100, then 1000 to
5000 in steps of 1000 (inclusive). The length of the inner
branch ranged from 1 to 10% divergence in steps of 1%,
and from 10 to 50% divergence in steps of 5%. The branch
ratio, i.e. the ratio of the inner branch to the outer branch,
was 0.1 to 1 in steps of 0.1, and 1 to 10 in steps of 1. The
substitution matrix was either kept constant for the two
inner branches, or varied between these two branches. We
sampled 100 random matrices under every possible com-
bination of these conditions. The overall workflow,
including a description of these parameters, is shown in
Figure 1 (adapted from [31]). Because we are studying
nonstationary processes, we scaled the trace to (-1) (i.e.
we did not weight by the equilibrium base frequencies),
but this procedure is valid for the purposes of comparing
the methods and was used consistently for all methods.

Figure 2 summarizes the speed and accuracy of the differ-
ent methods. Each point shows the average for all points
where the condition holds, e.g. the point for sequence
length 100 averages over all the trials in which the

Q̂

P̂ Q̂

P̂

Overview of the workflowFigure 1
Overview of the workflow. The overall workflow is as follows. First, one or more random rate matrices (depending on 
parameter settings) is generated, and sequences evolved according to a three-taxon tree of known topology. These sequences 
are generated as an ungapped alignment, so alignment issues do not affect the result (i.e. we assume that the alignment process 
is perfect). Depending on the algorithm, we then either (a) infer counts that differentiate specific pairs of sequences, then infer 
the probability matrices for different branches by normalizing the count matrices, or (b) infer the probability matrices for dif-
ferent branches directly from the alignment. Finally, the rate matrices are inferred from the probability matrices (either by the 
matrix log method or the constrained optimization method), normalized to eliminate the time component, and compared 
against the original rate matrix or matrices used to generate the sequences. Parameters that we varied during the analysis are 
marked on the tree and shown in the bottom-left of this figure.
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sequence length was 100 nucleotides. Whether the two
inner matrices were the same or different had negligible
effect on either the speed or accuracy of the methods (data
not shown, results shown are averages over both condi-
tions). The Lake method appears to be most accurate

under a wide range of conditions, although this is an arti-
fact of its inability to operate on data generated using
matrices that produce inaccurate results using all methods
(see the next section below). The Gojobori and Goldman
methods ran up to 3 orders of magnitude faster than the

Results considering all matricesFigure 2
Results considering all matrices. Results for accuracy (left column) and speed (right column) for the different methods 
(legend in panel a) under different simulation conditions. Error is measured as the mean Euclidean distance between the matrix 
used to generate the sequences and the inferred matrix (arbitrary units); time is measured in seconds. Figures show effects of 
DNA length (a, b), branch ratio (c, d) and branch inner length (e, f) on accuracy and speed. The effect of whether the inner 
branches evolved according to the same or different matrices was negligible, and is not shown.
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other methods, and had comparable or better accuracy
(specifically, the Goldman method outperformed the oth-
ers at short sequence lengths, less than 600 nucleotides,
and the Gojobori method performed well at longer
sequence lengths). In general, there was no clear associa-
tion between speed and accuracy: the MW method is
among the slowest methods but not generally among the
more accurate methods under the conditions tested, for
example, whereas the Gojobori method is generally the
fastest and has accuracy very similar to methods that it
outperforms by orders of magnitude. However, the BH
method is most accurate on very long sequences (over
2000), although it is much slower than either the Gojo-
bori or Goldman method in this range. One cautionary
note about the MW method is that we reduced the maxi-
mum number of iterations from 1000 to 100, and
increased the tolerance from 10-10 to 10-5, to improve run-
time. Using the default parameters might increase the
accuracy at an additional substantial runtime penalty,
although even under the conditions tested this method is
too slow for large-scale applications.

The apparent benefits of the Lake method are due in large 
part to its failure to run on difficult datasets
From the data in Fig. 2, it appears that the Lake method is
more accurate than most other methods under most con-
ditions. Because the Lake method is one of the slower
methods, and also fails to produce results on a substantial
fraction of matrices, we decided to test whether this appar-
ent increase in accuracy was due to the method rejecting
datasets for which the other methods produced especially
inaccurate predictions. Figure 3 demonstrates that this is
the case: when we consider only the subset of datasets on
which the Lake method was able to complete successfully,
we find that the results of the Lake method are worse than
the results of other methods under many conditions, and
are only better in a minority of cases where the branch
ratio (ratio between inner and outer branches) is very
long, the sequence is short, or the inner branch length is
short. For these reasons, and because the method fails to
complete on as many as 80% of the datasets under some
conditions, we believe that the apparent advantages of
this method do not outweigh its disadvantages relative to
other methods.

The two methods for converting probability matrices to 
rate matrices performed indistinguishably
We compared two different methods for converting the
probability matrices to rate matrices: simply taking the
matrix logarithm, and constrained optimization of the
rate matrix to ensure that the resulting rate matrices con-
tained only non-negative off-diagonal elements (a com-
mon numerical issue with rate matrix inference: negative
off-diagonal elements have no meaning). The accuracy
results (i.e. the Euclidean distance between parametric

and inferred matrices collected under each condition)
were visually and statistically indistinguishable, and the
values from 265 randomly sampled points did not differ
significantly in mean error (two-sample t test, p =0.53).
We performed an additional internal control by testing
whether the estimates of the two inner branches' rate
matrices were equivalent when the two inner branches
were simulated under the same Q with similar results (p =
0.49, n = 265). Matrices with negative off-diagonal ele-
ments were not corrected in any way: however, the dis-
tances between these matrices with negative off-diagonal
elements and the corresponding matrices corrected by
constrained optimization were apparently equivalent.
This result is not necessarily unexpected because most
negative off-diagonal elements produced by taking the
logarithm of the P matrix are small compared to the neg-
ative elements on the diagonal.

Conclusion
In general, fast methods provided little or no degradation
of accuracy relative to slower methods under the condi-
tions tested: either the Gojobori method or the Goldman
method, which were orders of magnitude faster than the
other methods, gave equivalent or improved accuracy
under most conditions. Overall, we recommend the Gojo-
bori method when the sequences are long (at least 600
nucleotides), the Goldman method for shorter sequences,
and the BH method for very long sequences (over 2000
nucleotides) if computation time is not an issue. We did
not observe improved accuracy (as measured by Eucli-
dean distance between the matrices) using constrained
optimization rather than the matrix logarithm for obtain-

ing  matrices from  matrices, but constrained optimi-

zation does have the desirable property that the resulting
matrices have only non-negative off-diagonal elements
(the results shown are averaged over all matrices, whether
or not they have negative off-diagonals). One cautionary
note about the work presented here is that we examined
random rate matrices: as data are collected about which
kinds of rate matrices are biologically reasonable, it may
be useful to revisit this study using biologically-inspired
rate matrices, which may reveal larger differences among
methods.

The findings presented here open the door to very large-
scale studies of the variation in nucleotide substitution
matrices in different genes and taxa, which would be com-
pletely impractical with the slower methods. We can thus
begin to explore the evolution of this fundamental param-
eter in all models of molecular evolution, and perhaps
ultimately discover the molecular basis for differences in
nucleotide substitution patterns in different organisms.

P̂ Q̂
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Results showing the subset of alignments on which the Lake method completed successfullyFigure 3
Results showing the subset of alignments on which the Lake method completed successfully. Results for probabil-
ity of completion (left column) considering all matrices, and accuracy (right column) considering only the subset of matrices for 
which the Lake method completed, for the different methods (legend in panel a) under different simulation conditions. Com-
pletion is measured as the fraction of trials in which a given method completed; error is measured as the mean Euclidean dis-
tance between the matrix used to generate the sequences and the inferred matrix (arbitrary units). Figures show effects of 
DNA length (a, b), branch ratio (c, d) and branch inner length (e, f) on ability to complete successfully and accuracy respec-
tively. Insets in panels b, d, and f show the subset of the data where the branch lengths were below 600 nucleotides, where the 
Goldman method performed relatively well: scale is the same as the main panel in each case, except for b (where the length 
ranges from 100 to 600 nucleotides, as shown). The effect of whether the inner branches evolved according to the same or dif-
ferent matrices was negligible, and is not shown.
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Methods
The implementations of the methods we used for the
comparison were as follows: the MTA algorithm was
implemented in C by Michael Newton; the BH algorithm
was implemented in Java, written by V. Jayaswal, L. Jer-
miin, J. Robinson as provided at the following website:
http://www.bio.usyd.edu.au/jermiin/programs/
BH.htm[33]; the MW method was implemented in C by
Michael Woodhams using simulated annealing as the
optimization routine; and the Gojobori and Goldman
methods were implemented in Python and contributed to
PyCogent [32]. Simulations were run on a 200-core
Opteron cluster using PBS-Torque and custom scripts.
Inferred rate matrices with negative off-diagonal elements
were used directly for error calculations. All programs
were run with default parameters unless otherwise
described: for the BH method, we set the number of itera-
tions to 100. Random rate matrices were generated using
PyCogent's random rate matrix generation capabilities:
specifically, a vector of uniformly distributed random
numbers between 0 and 1 is generated for the off-diagonal
elements of each row, the diagonal element is set such
that the row sums to 1, and the entire matrix is normal-
ized so that the trace is -1.
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