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Abstract

Background: It has been repeatedly observed that gene order is rapidly lost in prokaryotic
genomes. However, persistent synteny blocks are found when comparing more or less distant
species. These genes that remain consistently adjacent are appealing candidates for the study of
genome evolution and a more accurate definition of their functional role. Such studies require
visualizing conserved synteny blocks in a large number of genomes at all taxonomic distances.

Results: After comparing nearly 600 completely sequenced genomes encompassing the whole
prokaryotic tree of life, the computed synteny data were assembled in a relational database,
SynteBase. SynteView was designed to visualize conserved synteny blocks in a large number of
genomes after choosing one of them as a reference. SynteView functions with data stored either in
SynteBase or in a home-made relational database of personal data. In addition, this software can
compute on-the-fly and display the distribution of synteny blocks which are conserved in pairs of
genomes. This tool has been designed to provide a wealth of information on each positional
orthologous gene, to be user-friendly and customizable. It is also possible to download sequences
of genes belonging to these synteny blocks for further studies. SynteView is accessible through Java
Webstart at http://www.synteview.u-psud.fr.

Conclusion: SynteBase answers queries about gene order conservation and SynteView visualizes
the obtained results in a flexible and powerful way which provides a comparative overview of the
conserved synteny in a large number of genomes, whatever their taxonomic distances.

Background

As prokaryotic species diverge, their gene order is increas-
ingly fading away, except in rare locations where a few
genes retain their neighborhood. Such observations gave
rise to the concept of genomic context [1-9]. Accordingly, it
is assumed that a small number of genes remain adjacent
either because their expressions occur at the same time, or
because they encode proteins that are constituents of the
same molecular machine (e.g. membrane ATPase) or

involved in the same cellular function [10]. These genes
that remain persistently adjacent in constantly moving
genomes form synteny blocks. In a recent work [11], we
have identified such synteny blocks in a large and diverse
set of nearly 600 microbial genomes using a three-step
process. In step one, we compared each protein encoded by
a completely sequenced genome with all other available
microbial proteomes in order to identify the full set of
homologous proteins they share. In step two, we outlined
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an approach allowing the identification of bona fide
orthologues among all recognized homologues when
comparing many pairs of genomes. This second step is
based on an adaptation of the method designed by Wall
et al. [12] to compute the reciprocal smallest distance
(RSD) that separates the homologues present in a pair of
genomes. Step three allowed further research among the
correctly identified orthologues to pinpoint those that
belong to a minimal unit that is conserved in each pair
of genomes, i.e., a pair of positional orthologous genes
(POGs) that remain adjacent in each genome. Then, after
extending these minimal units as far as possible, it
becomes feasible to assess the relative amount and size
of synteny blocks in close and distant species. Such synteny
blocks are appealing candidates in the study of the
mechanisms of genome evolution and in the verification
of the functional annotation of neighboring genes.
Accordingly, visualizing these blocks in a large number of
genomes at various taxonomic distances help to study their
features. In this paper, we describe how to assemble all
these synteny data in a relational database (SynteBase) and
we develop a tool (SynteView) to visualize all conserved
synteny blocks in a large number of completely sequenced
prokaryotic genomes.

Implementation

SynteView was designed to display homology and gene
context data that are organized in a relational database,
SynteBase, described in detail below.

Creating a relational database for synteny data and
populating its tables with a dedicated suite of

softwares and other tools

We installed PostgreSQL [13], one of the most advanced
open source relational database management systems, on a
Linux platform and used it to create SynteBase, which is
made up of five tables (Fig. 1). The database can be further
populated with home-made data using the different tools
we developed (see the user guide [Additional file 1]).
Alternatively, one can directly use the SynteBase version we
built for our own usage (this paper and [11]).
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Relational schema of SynteBase. The SynteBase
database is made up of five tables, which store information
about genes/proteins, genomes, orthologous relationships,
positional orthologous genes, and synteny blocks
respectively. Relationships between tables are made through
primary (PK) and foreign (FK) keys.

Step one: searching for homologues

Raw data extracted from public genomic databanks
(GenBank/EMBL/DDB]J) were organized into two tables.
The genome table contains information for the 598
prokaryotic genomes that were compared. The gene/
protein table contains many features of their 1,928,135
encoded proteins, such as amino acid sequence, length,
species name, location of encoding gene, etc. An
exhaustive comparison of all these proteins led to the
identification of all homologues. A complete suite of
programs (Table 1) was used to compare each pair of
proteomes using the following criteria: a pair of aligned
proteins was retained as a couple of homologues if their
E-values were smaller than 107, and if the alignment
extended for at least 80% of the length of the shorter
matching protein [11, 14].

Table I: A suite of programs to detect and identify synteny blocks

Step Step designation Tool Reference

| identifying homologues protein Blast [22]

2a identifying orthologues by RBH Perl script rsd ortho FL, this work
2b clustering homologues Perl script famtrans FL, this work
2c breaking bridges graph algorithm (Perl library) FL, this work
2d extracting significant clusters MCL algorithm [23]

3a identifying pairs of adjacent orthologous genes SQL query on SynteBase FL, this work
3b discovering synteny blocks Perl script synblock FL, this work
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Step two: identifying orthologues among the collected homologues
We further adapted the Reciprocal Best Blast Hit approach
[12] to analyze the Blast results obtained in the first
step. The best RSD orthologous pairs were determined in
each comparison of two proteomes as follows. Protein a
encoded by genome G, and protein b encoded by genome
Gp form the best pair of orthologues if the distance
separating a from b is smaller than the distance separating
both a from any other protein encoded by Gz and b from
any other protein encoded by G,. We automated this
search (Table 1, step 2a). The data obtained were used to
populate the ortho table (Fig. 1).

Step three: identifying positional orthologous genes among the
collected orthologues

Once populated, the first three tables were used to
identify the synteny blocks. We devised a specific SQL
query (see [Additional file 2]) to discover the pairs of
adjacent orthologous genes (Table 1, step 3a). Then,
blocks of size greater than 2 were detected by progressive
accretion of blocks of size 2 which shared a common
pair of orthologues (Table 1, step 3b). These computed
data were entered in the neighborpairs and synteny blocks
tables, respectively (Fig. 1).

Architecture of SynteView

To implement SynteView, we applied an object oriented
programming paradigm using the Java programming
language [15]. In this way, SynteView may be run either
as a Java Webstart application or as a local application
(Fig. 2). In both cases, SynteView can be used to query
SynteBase through a web service (web service mode), or
used to query a local synteny database (loca access mode).
The web service mode allows the user to visualize the
precomputed data that are present in our version of
SynteBase. To do so, SynteView connects to the Synte-
View web service to retrieve synteny data present in
SynteBase. The local access mode will be useful for those
who wish to work online, with home-made computed
data. This mode requires the local installation of the
Data Base Management System PostgreSQL [13], and the
creation of a committed SynteBase-like database that
must be populated with home made synteny data after
applying the following mandatory requirements to
visualize these data. SynteView requires information on
proteins (identifier, coding strand, sequence, function,
and length), genomes (species name, species name
abbreviation, strain name, taxonomy), and synteny
blocks (identifier of the blocks, and pairs of identifiers
of orthologous proteins belonging to this block). Note
that it does not matter how the data are organized in the
underlying local database. SynteView parameters can be
set to retrieve the data it needs. However, while Synte-
View is independent of the name of the selected fields,
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A - Web service mode
TR,

B - Local access mode

Figure 2

The two ways of using SynteView. In part A, the Web
access mode connects the user to a Web service to retrieve
synteny data stored in the SynteBase database http://www.
synteview.u-psud.fr. In part B, the local access mode
connects the user to a local database containing the
home-computed synteny data to be visualized.

their order is of importance for correct functioning.
Components required to set up a local database are
described in detail in the Additional file 1. Once the
custom-made database has been built, SynteView can
connect to it, after the settings, including connection
information (server, login, etc) and all the mandatory
queries have been filled out.

Results

Visualizing synteny data with SynteView

The whole set of synteny data that was stored in
SynteBase was further examined using SynteView. This
tool was designed to provide a wealth of information on
each positional orthologous gene, to be user-friendly
and customizable. For example, the user can choose the
set of genomes to be studied by defining either an array
of species names or a taxonomic sampling. The
procedure used to visualize synteny between a reference
species sI and a set of species (s2, s3, s4, s5) is
straightforward. The user first chooses a reference
species, in the "select reference genome panel" by
selecting nodes in the species tree (Fig. 3). Clicking on
a node produces a list of all the species that are its leaves
(right panel). Then, the reference species is chosen by
clicking on the species name in this list. Next, the set of
compared species is determined by means of the "select
compared species" tab (Fig. 3). As previously noted, the
user browses the taxonomic tree of prokaryotes. When
the user clicks on one node of the tree (e.g. Enterobac-
teriales), all the descendants of this node appear in the

Page 3 of 8

(page number not for citation purposes)


http://www.synteview.u-psud.fr
http://www.synteview.u-psud.fr

BMC Bioinformatics 2008, 9:536

http://www.biomedcentral.com/1471-2105/9/536

0%
& Selected Synteny species: Escherichia coli K12 B =
: Reference | Compared B
| LI- [=] root (598) Candidatus Blochmannia pennsylvanic.. |
p ¢ () Bacteria (550) Candidatus Carsonella ruddii PV
R = CW"“““"'? @9) Candidatus Ruthia magnifica str. Cm (.
Ey # (3 Proteobacteria (293) Candidatus Vesicomyosocius okutanii ...
> () Gammapcotecbacierta (138)) |y o ohaiobacter salexdgens DSM S04
@ | el BtapYG cORELR(ER (30) Citrobacter Koseri ATCC BAA-895
¢ (=] Alphaproteobacteria (72)
o- = delta/epsilonsubdivisions (36) |CoIwellla psychrerythraea 34H
o~ [ unclassifiedProteobacteria (1) | Coxiella burnetii Dugway 5J108-111
o (CJ Fibrobacteres/Acidobacteriagroup ( Coxiella burnetii RSA 493
o~ (=] Actinobacteria (45) Dichelobacter nodosus VCS1703A
o (=] Firmicutes (126) Enterobacter sakazakii ATCC BAA-894
o = Aquificae (1) Enterobacter sp. 638
o~ (= Bacteroidetes/Chlorobigroup (16) Escherichia coli 536
- (= Sirochactes (3) Escherichia coli APEC 01
o= (=3 Chlamydiae/Verrucomicrobiagroup
o 7 Chiorofiexi (6) Escherichia coli CFT073
o [ Deinococcus-Thermus (4) Escherichia coli E24377A
o [ Thermotogae (6) Escherichia coli HS
o~ (=3 Fusobacteria (1) Escherichia coli K12
o~ (=] Planctomycetes (1) Escherichia coli O157:H7 EDL933
o (] Archaea (48) Escherichia coli 0157:H7 str. Sakai
Escherichia coli UTI89
Kl [ | »|Escherichia coli st. K12 substr. W3110 ~
m Start data retrieval process . ”_'_‘?

Figure 3

Selecting species to be compared. Species selection is driven by the species taxonomy. By selecting a node in the species
taxonomy, the user of SynteView visualizes all the leaves descending from the selected node. It is then possible to select a
species set, and finally drag and drop it into the right hand side list. The "Start data retrieval process" button starts the querying

process and the visualization.

bottom panel. To choose one or several species, a drag
and drop of the selected names will move the corre-
sponding species into the right panel. This can be
repeated several times, until the required set of species
is selected. When this step is accomplished, clicking on
the "Start data retrieval process" button on the bottom of
the panel will launch the visualization step. The speed of
this process depends on the number and nature of the
chosen species. Once the retrieval process is completed,
all regions of each compared genome become accessible
for visualization in a scrollable window using the
following features as shown in Fig. 4. Each line
corresponds to a genome. The first line from the top
(light blue background) shows gene adjacency in the
chromosome of the reference species. Dark blue (posi-
tive DNA strand) and yellow (negative strand) rectangles
stand for genes belonging to a synteny block that is
conserved in at least one other species. Gray rectangles
are genes of this reference genome that do not have any

POGs in the set of compared genomes. Respective gene
names are labeled on each rectangle. The following lines
contain the different species that are compared to the
reference genome. SynteView automatically sorts the
chosen species by their taxonomic proximity to the
reference genome. For each gene of the reference
genome, columns contain the orthologous genes belong-
ing to a synteny block found to be conserved in the
different analyzed genomes with their respective names.
The same color code (blue or yellow) helps to
discriminate the strand of their respective location on
each genome. The number of genes present in a block is
displayed when the cursor is run over this block. Note
that synteny blocks in compared genomes are defined
exclusively with respect to the gene order in the reference
genome. Thus, in a SynteView window of synteny blocks,
the apparent proximity in compared genomes does not
imply that they are as physically close in these genomes
as their POGs are in the reference genome. By opening
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SynteView main window. The SynteView main window consists of a menu bar, a toolbar (on the left), a central panel which
displays synteny relationships between a reference species and the compared ones, and a bottom panel, which shows the
extent to which the reference species genes are conserved in blocks found in other species.

the Settings panel (to do so, click on the "settings" button
in the left toolbar menu) the user accesses a Dialog box
where it is possible to modify various default para-
meters. For example, clicking on the "Database" tab
allows the user to choose the retrieval mode (database or
web service). Once these various parameters have been
customized, it is possible to navigate along the reference
genome to estimate the density of the synteny blocks
present in the other genomes. For example, and as
expected, comparing E. coli with the other gammapro-
teobacteria reveals a rather high density of gene
conservation. The bottom blue background shape
portrays this rate of conservation in the compared
genomes as a histogram (Fig. 4).

Using SynteView for comparative analysis of gene context
Information about any annotated gene is immediately
available by clicking on the corresponding rectangle.
This opens, to the left of the window, the "gene
information" panel (Fig. 4) in which, for the selected
gene, its GenBank PID, its name, the species name and
the replicon to which it belongs are given; the function
of its product (if available), and its exact location on the
chromosome are also mentioned. This information

panel also contains a text field which permits simple
queries such as a search for a protein function, a gene
name or a PID in the analyzed genomes, as well as a
search for synteny blocks containing at least x adjacent
genes and having orthologous genes in at least y species.
Moreover, clicking on a gene delivers complete informa-
tion on its neighbors. For instance, it is possible to
estimate the various levels of conservation of detected
operons when comparing organisms separated by
various taxonomic distances. While the operon histidine
is rather well conserved in proteobacteria (Fig. 5, panel
A), the neighboring clusters of genes involved in the O-
specific lipopolysaccharide biosynthesis (rfb cluster) and
the production of extracellular polysaccharide colanic
acid (cluster wca), which are located at a short distance
and on the other strand, are rapidly fragmented to a
scarce number of 2-4 genes such as the rml genes in
Pseudomonas aeruginosa (Fig. 5, panel B). In addition,
clicking on the "get sequences" button in the informa-
tion panel opens a dialog box. SynteView shows the
sequence of the clicked gene in the first tab and that of its
orthologues in the second tab in Fasta format. This
further allows downloading of all these amino acid
sequences for future work.
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Displaying operon conservation. Part A shows that the order of genes belonging to the histidine operon is well conserved
in this set of proteobacterial genomes. Part B shows the contrasting low conservation of the neighboring rfb cluster. Note that
there is an interval of 12 E. coli genes (in the reference species) between gene hisl in panel A and gene rfbC in panel B.

Using SynteView for comparative analysis

of multiple views

SynteView was also designed to allow complex studies by
means of easy and simple operations. For example, looking
at a peculiar set of species makes it possible to immediately
visualize new assortments of synteny blocks. This is done
simply by selecting a new reference species by clicking on a
species name on the left of the display and/or by changing
the list of compared genomes. Moreover, contrary to
challenging tools (see Discussion below), SynteView allows
global analyses of the synteny data using various points of
view. Scrolling up and down the same window, one can
assess the level of conservation of gene order at various
taxonomic depths, the relative density of the synteny
blocks along the whole genome, the relative size of the
blocks, and the respective events of gene insertion/deletion
in close and distant species.

Using SynteView to quantify synteny data

Besides being a visualization tool, SynteView can display
various kinds of histograms which are computed on-the-
fly. For example, the percentage of species displaying
POGs in the same synteny block in the reference species
is automatically computed and displayed as a histogram
(blue background shape at the bottom of the main
display). It is also easy to display the distribution of the
size of synteny blocks which are conserved between
genomes by selecting a pair of species and clicking on the
Histogram button in the left toolbar. This histogram may
be saved for further use by selecting the "Save as" button
located in the contextual menu in the window. Table 2
summarizes the data obtained when comparing the
model organism Bacillus subtilis with various bacteria
and archaea. It appears that the number of genes present
in conserved synteny blocks depends on the
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Table 2: Obtaining information on synteny blocks
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species | species 2 synteny blocks

B. subtilis® Taxonomy Species name Taxonomy Proteome size average size longest size
Bacillaceae Oceanobacillus iheyensis Bacillaceae 3500 3.6 23
Firmicutes Shewanella oneidensis Proteobacteria 4471 24 8
Firmicutes Synechocystis species Cyanobacteria 3167 2.8 8
Firmicutes Mycobacterium tuberculosis Actinobacteria 4187 2.5 I
Bacteria Methanosarcina acetivorans Archaea 4540 23 7

The average size (number of genes) of synteny blocks is dependent on the taxonomic distance separating a pair of genomes that have been compared

at the level of their genetic context.
* The size of the B. subtilis proteome is 4112.

phylogenetic (taxonomic) distance between species.
Indeed, the mean size of synteny blocks is close to 3.3
genes when comparing two closely related bacteria such
as the Bacillaceae B. subtilis and Oceanobacillus iheyensis,
whereas it diminishes to nearly 2 when comparing a
bacterium (B. subtilis) and an archaeon (Methanosarcina
acetivorans), although these genomes encode a similar
range of proteins (3000-4500). Likewise, the longest
block ranges from 19 to 4 for the same species
comparisons.

Discussion

SynteView was designed to allow fast and easy visualiza-
tion of the conservation of gene adjacency in many
genomes for which orthology and neighborhood data
were computed and stocked in a dedicated relational
database SynteBase. Our goal was to develop a flexible
yet powerful tool to work directly with home-computed
data obtained after comparing large and diverse sets of
species. Indeed, our tool can be easily installed on any
personal computer endowed with one of the main
operating systems (Windows, Mac OS X or Linux).
Moreover, SynteView can be customized in many
aspects. In particular, it can be used with another,
home-made, database in place of SynteBase. We
observed that among the other tools to visualize synteny
data [16-20] that have been designed to be locally
installed, not one is adapted to the use of the abundant
genomic data for prokaryotic species. Contrary to these
previously published softwares [16-20], SynteView
allows the user to compare the gene order in many
different genomes in the same window. Finally, the strict
relationship between SynteBase and SynteView allows
their user to enlarge the study of gene order by means of
specific queries on SynteBase. In addition to the
visualization of synteny blocks, it is possible to obtain
productive information through various requests such as
"How many genes are involved in a neighbouring
relationship, for each pair of genomes?"

Conclusion

We anticipate that we will be inundated by thousands of
completely sequenced genomes in the next few years
[21]. Our tool SynteBase/SynteView has been designed
to support such large sets of prokaryotic data. This tool
will serve to quickly evaluate the conservation of gene
order in newly-published genomes as soon as they have
been compared to those already analyzed.

Availability and requirements
e Project name: SynteView/SynteBase

e Project home page: http://www.synteview.u-psud.fr

e Operating System(s): Windows, Linux, MacOS X (Java
web start)

e Programming Language: Java

e Other requirements: Java 1.5

e License: GNU GPL

e Any restrictions to use by non-academics: none

e Perl scripts: available on request

Abbreviations
POGs: Positional Orthologous Genes; RSD: Reciprocal
Smallest Distance; SQL: Structured Query Language.
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Additional material

Additional file 1

SynteView user guide. This guide helps the user in 1) Installing
SynteView, 2) Using SynteView, 3) Adapting SynteBase/SynteView to
his/her own purposes. It is available at http://www.synteview.u-psud.fr/
documents.php

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-536-S1.pdf]

Additional file 2

SQL Query computing POGs. This file contains the SQL query for
computation of POGs using SynteBase. The main idea is to join the
ortho table with itself, and to take only the tuples which form a gene
quadruplet where each vertical pair is made up of orthologues and each
horizontal pair consists of adjacent genes in their respective genomes.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-536-S2.pdf]
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