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Abstract
Background: Illumina bead-based arrays are becoming increasingly popular due to their high
degree of replication and reported high data quality. However, little attention has been paid to the
pre-processing of Illumina data. In this paper, we present our experience of analysing the raw data
from an Illumina spike-in experiment and offer guidelines for those wishing to analyse expression
data or develop new methodologies for this technology.

Results: We find that the local background estimated by Illumina is consistently low, and
subtracting this background is beneficial for detecting differential expression (DE). Illumina's
summary method performs well at removing outliers, producing estimates which are less biased
and are less variable than other robust summary methods. However, quality assessment on
summarised data may miss spatial artefacts present in the raw data. Also, we find that the
background normalisation method used in Illumina's proprietary software (BeadStudio) can cause
problems with a standard DE analysis. We demonstrate that variances calculated from the raw data
can be used as inverse weights in the DE analysis to improve power. Finally, variability in both
expression levels and DE statistics can be attributed to differences in probe composition. These
differences are not accounted for by current analysis methods and require further investigation.

Conclusion: Analysing Illumina expression data using BeadStudio is reasonable because of the
conservative estimates of summary values produced by the software. Improvements can however
be made by not using background normalisation. Access to the raw data allows for a more detailed
quality assessment and flexible analyses. In the case of a gene expression study, data can be analysed
on an appropriate scale using established tools. Similar improvements can be expected for other
Illumina assays.

Background
A BeadArray is an array of randomly positioned, three
micron diameter, silica beads. A specific oligonucleotide
sequence is assigned to each bead type, which is replicated
about 30 times on an array. A series of decoding hybridi-

sations is used to identify every bead [1]. BeadArrays can
be used in a wide range of genomic applications including
SNP genotyping, methylation profiling, and copy number
variation analysis. In this paper we concentrate on data
from single-channel gene expression BeadArrays [2]. After
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hybridisation and washing, each array is scanned by Illu-
mina's scanning software (BeadScan) to produce an image
in the Tagged Image File Format (TIFF), along with files in
a proprietary file format containing intensity and location
information. The latest version of BeadScan can also out-
put a text file giving the identity and position of each bead
on the array. The collection of TIFF images and text files is
referred to as the bead level data for an experiment and are
presented in the same format, regardless of the assay used.

Analysis of BeadArray data is routinely carried out using
the BeadStudio application developed by Illumina. This
software takes the proprietary files and produces bead sum-
mary data, comprising a mean and standard error on the
original unlogged scale, for each bead type on each array.
When the raw data are analysed using BeadStudio, there is
no control over image processing or the method used to
combine the replicate observations for a given bead type
into a single, summarised, value. Also, the user loses the
ability to perform a detailed quality assessment of the
data.

Information about how to obtain bead level data has
only recently been released and these data cannot be gen-
erated retrospectively. Therefore, no publications have
taken the processing of bead level data into account apart
from our own preliminary investigations [3]. In compar-
ison to Affymetrix, which is an established technology,
there is a lack of in-depth literature on the low-level anal-
ysis of Illumina data. Publications involving Illumina
expression data tend to use Illumina's recommendations
for normalisation, with the exception of [4] who found
this method to have a negative impact on data quality
and who used quantile normalisation instead. Also, there
is no publicly available dataset for which the bead level
data may be obtained and for which there is some expec-
tation about the results. Such datasets are available for
Affymetrix and have allowed researchers to understand
more about the technology and to develop new analysis
methods [5].

This paper presents our guidelines regarding the pre-
processing of Illumina data and explores some common
issues raised during the analysis of other microarray plat-
forms. After discussing the bead level properties and qual-
ity assessment of a spike-in experiment, we investigate the
effects of the image processing and summarisation meth-
ods used by Illumina on a typical DE analysis.

Image processing is an important consideration for micro-
arrays and involves calculating foreground intensities
using the pixels that make up each feature on the array,
and estimating a local background intensity using the pix-
els surrounding each feature. A background correction cal-
culation is then used to correct for non-specific or random

contributions to the overall signal. Within BeadScan, the
local background measures are subtracted from the bead
foreground values to produce the intensities in the bead
level text files. This method is the same for all Illumina
technologies. Previous studies have shown that back-
ground subtraction introduces missing values, increases
variability and has a negative impact on the detection of
differentially expressed genes [6,7]. Therefore, it is crucial
to investigate the automatic background adjustment used
within BeadScan.

In addition to local background subtraction, Illumina also
recommends a secondary calibration procedure for
expression data, known as background normalisation, which
is performed on summarised data. For a given array, this
method involves subtracting the mean intensity of the
negative controls (bead types with randomly permuted
probe sequences attached and no targets in the genome)
from each bead summary value. This is intended to com-
pensate for differences between arrays in both non-spe-
cific binding of dye and cross-hybridisation. After
background normalisation, an additional normalisation
using rank invariant genes or cubic splines can be carried
out between arrays. We demonstrate the effect of applying
this normalisation to the spike-in experiment.

For Affymetrix data, it has been shown that the base com-
position of the 25-mer probes can have an effect on the
observed intensity, and methods have been proposed to
deal with this effect [8]. Other probe effects have also been
described for two-colour microarrays with longer probes
[9], but have not been reported for Illumina data, which
typically uses 50-mer probes. Additionally, the reliability
of Affymetrix probe sets has been called into question,
with a large percentage of probes on an array sometimes
not mapping to the intended transcript. Naturally, this
can lead to misleading conclusions in a DE study [10]. We
investigate if such effects are apparent in Illumina gene
expression data.

Data
The Illumina spike-in experiment investigated in this
paper consists of eight customised Mouse-6 version 1
BeadChips hybridised with a complex mouse back-
ground. In addition to the ~48,000 bead types included as
standard, the bead pool for these chips was modified to
include 33 bead types chosen to target 9 different bacterial
and viral genes absent from the Mouse genome [2]. These
33 bead types are referred to as spikes in this paper and the
remaining bead types on the array are referred to as non-
spikes. Each array also includes a number of standard Illu-
mina controls, including 1616 negative controls. Each
BeadChip comprises six arrays and each array is made up
of two strips on the chip surface. The first strip interrogates
targets from the curated MEEBO database, and the second
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strip mostly contains targets from the RefSeq and RIKEN
databases.

The spikes were added at concentrations of 1000, 300,
100, 30, 10 and 3 pM on the six arrays from the first four
BeadChips. A further four chips were hybridised with
spikes at concentrations of 1, 0.3, 0.1, 0.03, 0.01 and 0
pM. The spikes on a given array were all added at the same
concentration. Each concentration was allocated to the
same position on all replicate BeadChips. For example,
1000 pM was always array 1 on a chip and 300 pM was
array 2 and so on. The spike-in experiment was designed
and scanned by Illumina. Raw data from the experiment,
which includes the TIFF image and text file for each strip,
are available as supplementary materials [11]. Annotation
information (including the 50-mer probe sequence
attached to each bead type), additional figures and R
scripts are also available online [11].

Results
Bead level issues
Figure 1 shows the raw foreground intensities and local
background estimates for all beads on each strip from a
typical BeadChip. We see that the signal on the first strip
is generally higher and has a greater dynamic range than
the signal from the second strip. The local background
estimates show very low variability both within and
between arrays, with a median of 634 on the original scale
(9.3 on the log2 scale). The distribution of background sig-
nal is the same for all strips, despite differences in fore-
ground signal. Closer inspection of the raw images
revealed that although the higher intensity pixels within
the same size window varied between bead centres, the
median value obtained within the local background of a
bead is very similar to the overall median of background
pixels on the array and not much higher than the five low-
est pixels, which are used in the calculation of local back-
ground. When looking at the replicates of a particular

Raw foreground and background intensities for each strip on a typical BeadChipFigure 1
Raw foreground and background intensities for each strip on a typical BeadChip. Each BeadArray is made up of two strips (col-
our-coded) on the chip surface. The consistency of foreground and background signals between arrays is evident from this 
plot, as is the tendency for beads from the first strip to have higher intensities than those from the second strip, which is 
related to chip design.
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bead type, the variability of the foreground estimates was
substantially larger than that of the background estimates
(data not shown).

Access to the bead level data allowed us to identify a sig-
nificant spatial artefact on one BeadChip in the experi-
ment. An error in the scanning of the chip resulted in the
x coordinates of many beads on the left-hand side taking
negative values. Consequently, the Illumina algorithm for
image processing was unable to calculate foreground and
background intensities for these beads and set their fore-
ground intensities to zero. This problem affected between
4.4% and 7.3% of the total number of beads from each
strip on this chip, with the percentage of affected beads
decreasing from the top to the bottom of the chip. These
beads were subsequently removed as outliers by Illu-
mina's summary algorithm. No other significant spatial
effects were found on the remaining chips and arrays. We
note that after background correcting the bead level data,

the median percentage of beads with negative intensities
on a strip was 0.32% with a 75th percentile of 0.56%.

Before proceeding with an analysis of summarised data,
we investigated how robust Illumina's technology is to the
spatial effects observed above. Arrays with varying num-
bers of saturated beads were simulated as described in
Methods. These data sets aimed at assessing how many
outliers could be tolerated by Illumina'a default summary
method compared to other methods (mean, trimmed
mean and median). Figure 2 shows the average bias and
variance versus the percentage of outliers introduced. Illu-
mina's summary method performs best overall, with the
lowest bias (Figure 2A) and variance (Figure 2B). After
around 20% of the bead intensities become saturated, the
bias and variance start to increase. Using a trimmed mean
which excludes 10% of the smallest and largest intensities,
we see an increase in bias and variance after more than 5%
of the beads are saturated. This is not surprising as the out-

The average bias (A) and log2 variance (B) versus percentage of simulated outliers plotted for each summary methodFigure 2
The average bias (A) and log2 variance (B) versus percentage of simulated outliers plotted for each summary method. In panel 
A, we see that Illumina's summary method can handle up to about 20% of saturated intensities before the bias starts to 
increase dramatically. The trimmed mean breaks down much earlier, at around 5%. The median is comparable to Illumina's 
method. Similar trends can be noticed in the variance (B).
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liers are not simulated to be symmetric around the mean,
which this method is suited to handle. The median offers
similar robustness to Illumina's method. Similar results
were obtained if the analysis was performed on the log-
scale, or if the data were censored at 0 rather than at 216

(refer to supplementary materials).

After applying the Illumina summary method, the median
number of beads per bead type on an array was 36 with
25th and 75th percentiles of 31 and 41 respectively. The
median number of beads per bead type per array removed
as outliers was 1 with a 95th percentile of 4.

The effects of pre-processing on DE analysis
In Figure 3 we show the bead type means and variances
calculated on the log2 scale, for the 33 spikes across all

arrays in the experiment using three background correc-
tion methods (no background adjustment, background
subtraction and normexp model-based adjustment – see
Methods). These boxplots of non-normalised data are
arranged according to the concentration of the spikes on
the array. Different background correction methods are
shown in different colours and data from each array are
plotted in a separate boxplot. Given the design of the
experiment, we would expect to see a decrease in observed
intensity as the concentration of the spikes decreases.

Note that even though the data shown are not normal-
ised, we can see that the replicates of the same array proc-
essed using the same method show low variability and
only slight differences in the medians. The same trend can
be seen for all background correction methods. A satura-
tion effect can to be seen between 300 pM and 1000 pM,
as the increase in the concentration of the spikes is not
reflected in a change in observed intensity. At 3 pM, there
is a clear difference between arrays with no background
adjustment and arrays where a local background estimate
has been subtracted. The linear relationship between
spike concentration and observed intensity persists below
3 pM for the background subtracted data, whereas with-
out background adjustment, an attenuation in signal is
evident below 3 pM.

The variances of each method are similar in the range
1000 pM to 100 pM. However, at 10 pM we see a steep
decrease in the variability for the non-adjusted data,
whilst the background subtracted data shows a slight
increase. The rate of decrease in variability for the no back-
ground adjustment option is greater than the rate of
increase in variability for the subtracted data. For concen-
trations of 0.1 pM and below, the variance of the spikes
does not decrease any further with decreasing concentra-
tion.

We now quantify how well the expected change in spike
concentration is recovered by different background cor-
rection methods. In Figure 4 we show an MA-plot (see
Methods) of the log2 transformed data from an array
with spikes at 3 pM and an array with spikes at 1 pM. The
data shown in Figure 4A were not background adjusted
and we can see that the range of M-values is very low for
all genes. The largest M-value we see is around 1.2 and
the A-values are in the range 10 to 15. The observed log-
ratios for the spikes are much lower than the expected
value of 1.73. Figure 4B shows the same data after back-
ground subtraction. We see a wider range of M and A val-
ues compared to Figure 4A, and the log-ratios for the
spikes are closer to the expected value on average. Notice
that although these data have not been normalised, the
non-spikes lie around M = 0, indicating no differential
expression.

Boxplots of the means (A) and variances (B) for the 33 spikes on all arrays in the experiment after outlier removalFigure 3
Boxplots of the means (A) and variances (B) for the 33 spikes 
on all arrays in the experiment after outlier removal. The 
boxplots are arranged in decreasing order of spike concen-
tration, with different background correction methods 
labeled in different colours. The no background adjustment 
option shows dramatic attenuation in signal, which begins at 
a higher concentration than the other background correction 
options.
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In Figure 4C we show the same comparison for data
which have been background subtracted and background
normalised. This is equivalent to processing the raw data
using BeadStudio's recommended settings. For visualisa-
tion purposes, and to compare with the other methods,
we log2 transformed the background normalised data. The
difference that this makes to the MA-plot is striking. We
see a much increased range of M-values as A decreases.
There are clearly a large number of genes which would be
selected as differentially expressed if a simple cut-off
approach were used, even though few genes are expected
to change for this comparison. In addition, the log-ratios
of the spikes are systematically over-estimated by this
method. There are also a large number of bead types with
negative intensities on each array after applying back-

ground normalisation, ranging from 11.18% to 49.35%
(median 39.06%). These become missing values after a
log2 transformation, which is undesirable in downstream
analyses.

Analyses of replicated arrays use statistical methods to
determine genes that show DE for a particular contrast of
interest. In this paper, we chose the linear model
approach of [12]. Figure 5A shows the log-odds scores for
the contrast between 3 pM and 1 pM and for data proc-
essed using different background correction methods.
Separate boxplots are shown for the spikes and non-spikes
(solid and transparent colour respectively) and results are
shown both with and without weights in the model (see
Methods). Outliers for the non-spikes are indicated by

MA-plots comparing the bead summary values for one array with spike concentration 3 pM to an array with spike concentra-tion 1 pMFigure 4
MA-plots comparing the bead summary values for one array with spike concentration 3 pM to an array with spike concentra-
tion 1 pM. An increased density of points is indicated by darker shades of blue. Red points highlight the spikes. The horizontal 
line at M = 1.73 represents the expected log-ratio for the spikes, and the line at M = 0 is the desired level for the remaining 
non-spikes. Each panel shows the data processed using different background correction methods. Panel A shows the data with 
no background adjustment, while in panel B local background has been subtracted and in panel C the data has been background 
subtracted and background normalised. When the data are background subtracted, the range of M and A-values increases and 
the spikes are closer to the true value than for the non-adjusted data. Background normalistion produces the most variable M-
values and over-estimates the M-values for the spikes.
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crosses. Background subtraction is seen to increase the
log-odds of being differentially expressed for the spikes.
Moreover, a greater distinction between the log-odds of
the spikes and non-spikes is seen after background sub-
traction.

Five non-spikes are seen to have high log-odds both
before and after weights were used. These bead types were
ranked amongst the spikes for all contrasts and had a sim-
ilar expression profile to the spikes. Further investigation
revealed these probes are controls from the MEEBO data-
base and not used in current Illumina chips. Generally,
the spikes were the top ranked probes for each contrast
with very few false discoveries. The choice of background
correction method was found to have little impact on the
number of false discoveries (see supplementary materi-
als).

When weights are used in the linear model for a particular
correction method, we see an increase in the log-odds
scores calculated for the spikes. At the same time, we do
not see a substantial change for the non-spikes. The most
dramatic increase in log-odds by using weights is seen for
the non-adjusted data. It is interesting to note that the log-
odds of the different methods are more comparable when
weights are used. We produced the same plot for all con-
trasts in the linear model (data not shown). The log-odds
typically increased for all contrasts in the middle of the
concentration range when weights were used. However,
for contrasts comparing 0.3 pM to lower concentrations,
we found little improvement, or sometimes a decrease in
log-odds. Figure 5B shows the estimated coefficients for
the comparison between 3 pM and 1 pM. For this contrast,
we would expect the spikes to have a log-ratio of log2(3)
or 1.73. For data processed without background adjust-

Boxplots of the log-odds scores (A) and log-ratios (B) obtained after fitting a linear model to all genes across all arrays in the spike experiment and making contrasts between 3 pM and 1 pMFigure 5
Boxplots of the log-odds scores (A) and log-ratios (B) obtained after fitting a linear model to all genes across all arrays in the 
spike experiment and making contrasts between 3 pM and 1 pM. A separate box is shown for each background correction 
method with and without bead variances as inverse weights in the linear model. Two separate boxplots are shown for each 
method and weighting scheme to indicate the log-odds scores for the spikes (bold colours) and non-spikes (transparent col-
ours). The use of weights improves the log-odds scores for the spikes without increasing the log-odds for the non-spikes, 
which represents an increase in power to detect true DE. In panel B, we show that the log-ratios for the spikes are under-esti-
mated when the data is not background adjusted, whereas the background subtracted and normexp processed data recover 
values much closer to the true log fold-change (dashed line, M = 1.73).
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ment, the highest log-ratio seen for the spikes is not much
greater than 1. For the subtract and normexp methods, the
log-ratios are centered around the expected value. For
other contrasts (data not shown), the log-ratios were often
underestimated by all methods, especially at high and low
concentrations. Pairwise contrasts 30 pM to 10 pM, 10 pM
to 3 pM and 3 pM to 1 pM accurately recovered the pre-
dicted log fold-changes. The non-adjusted data consist-
ently produced the most biased values for all contrasts.

Probe properties and annotation considerations
We now repeat a similar analysis to Figure 3, but consider
the behaviour of each spike separately. In Figure 6, we
show the coefficients for each spike estimated by fitting
the linear model described in Methods to the background
subtracted data. For clarity, each spike was labelled and
coloured according to its target gene. A smoothed curve
was fitted to the coefficients for each spike. Note that bead
types with the same target name (e.g. ela_2) have the same
probe sequence attached, but are located on different
strips. We can clearly see different intensities for spikes at
the same concentration. These differences are consistent
across the concentration series. For example, ela_2 always
shows the lowest intensity at all concentrations, whereas
gus_2 and lux_2 tend to have the highest intensity. The dif-
ference between the spikes is quite dramatic for some con-

centrations. For instance, at 30 pM the highest intensity
spikes measured are 14, whereas the lowest intensities are
at 11. It is also apparent that the spikes respond differently
to the decrease in concentration. The ela_2 spikes show a
larger decrease between 1000 pM and 300 pM than the
other spikes and the curve for these spikes flattens out at a
higher concentration. Conversely, the spikes for gus_2 are
flatter for concentrations 1000 pM to 100 pM, but attenu-
ate at lower concentrations than the other spikes. Some
small differences can be seen for bead types having the
same probes sequence, but hybridised to different strips.

After re-annotation of the available probe sequences, bead
types were categorised according to where they map in the
genome. Some probe sequences were found to match to
intronic and intergenic regions. The percentages of bead
types on the second strip with intronic and intergenic
matches were 27.67% and 9.64%, respectively, compared
to 2.84% and 0.32% on the first strip. There were 16,332
and 7,317 unique genes represented on the first and sec-
ond strips respectively, in addition to the 2,263 genes
interrogated on both strips. As expected, re-annotation of
the spikes and negative controls produced no matches in
the genome.

An important subset of the non-spikes are the negative
controls, which in addition to not changing between
arrays, should have a low intensity on every array. In Fig-
ure 7, for 50 negative controls picked at random, we plot
the (background adjusted) averaged values for each con-
trol over all arrays. As expected, each control shows inten-

The distribution of background subtracted and summarised intensities for 50 negative controls across all arrays in the experiment, ordered by increasing medianFigure 7
The distribution of background subtracted and summarised 
intensities for 50 negative controls across all arrays in the 
experiment, ordered by increasing median. Each control is a 
bead type with a random sequence attached which should 
not hybridise to any target in the genome. Despite this, some 
controls clearly appear to show consistently higher intensi-
ties than others.
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The log2 intensities for the 33 spikes on each array estimated using the linear modelFigure 6
The log2 intensities for the 33 spikes on each array estimated 
using the linear model. Each spike is indicated by a different 
colour and line. Despite being added at the same concentra-
tion, consistent differences are seen between the spikes, for 
example, ela_2 consistently has the lowest intensity.
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sities at the lower end of the values observed on an array
(Figure 1). However, we do see some variation in median
intensity between the different probes, with a greater than
two-fold difference in intensity measured between the
bead type on the far left and far right of the plot.

In Figure 8 we see the normalised intensity of all non-
spikes on strip 1 of a particular array grouped according to
how many A, C, T or G bases are found in the sequence
attached to each bead type. Generally, we see that an
increase in the number of As or Ts in the sequence is asso-
ciated with a decrease in mean intensity, whereas an
increase in the number of Cs or Gs results in an increase
in mean intensity. Moreover, as the GC content increases,
the variance of the bead types decreases. We also see that
probes with either a G or C as the first base have a higher
normalised intensity and lower variance relative to having
a T at that position. The distribution of GC content for the
spikes was skewed towards higher GC content and
showed little variation. Therefore, we did not have suffi-
cient information to conclude a GC-related effect for these
probes alone (data not shown). Similarly, we could find
no evidence for an effect of the GC content on the inten-
sity of the negative controls.

Ideally, we would like such probe effects to be removed
when comparisons are made between arrays. In Figure 9
we show the ranking of the log-odds scores of the contrast
shown in Figure 7 for all non-spikes on strip 1. Clearly
there is a preference for bead types with 18 to 21 GCs in
the sequence to be higher in the list. On average,
sequences with 19 GCs are 10,000 places higher in the list
than sequences with 24 GCs.

The "hump" seen in Figure 9 was evident for most con-
trasts in the linear model. We have observed similar trends
in experiments which use Human version 1 BeadChips
(data not shown).

For the Affymetrix spike-in experiments, the thermody-
namic properties were shown to explain some of the vari-
ation between observed intensities for different probes
spiked in at a nominally consistent level [13]. In this Illu-
mina experiment, similar strong correlations are seen at
high concentrations (see Figure 10). The correlation of the
negative control intensities to ΔH, ΔS and ΔG (see Meth-
ods) have inter-quartile ranges of 0.13 to 0.15, 0.13 to
0.16 and 0.07 to 0.09 respectively. The intensities of the
negative controls are highly correlated from array to array,
although the agreement between arrays is quite poor.
Thus, for the most robust analysis we compare the ther-
modynamic properties to the average within-array rank of
the negative controls. The correlations are 0.13 for ΔS,
0.13 for ΔH and 0.08 for ΔG. Whilst these values are small
in magnitude, they are significantly non-zero.

Discussion
Data quality
The data produced using Illumina technology are widely
reported to be of high quality. Naturally, we would still
recommend careful quality assessment of Illumina arrays
and not to take high data quality for granted. Whilst initial
quality assessment using the raw data showed little varia-
tion between arrays, we were able to detect a consistent
spatial effect on a particular BeadChip. However, we
found that in this case, there was no impact on further
analysis due to the random placement of beads and
robust summary method used by Illumina. Although
BeadStudio is capable of giving a good overview of an
experiment, it will miss important artefacts on arrays, as
spatial information is lost when the data are summarised.
We found that the two strips for each array show consist-
ently different intensities with the first strip showing a
wider range of expression values. We have noticed this
effect for other mouse expression data and also for
Human-6 Version 1 chips (data not shown). The second
strip contains a large number of bead types with
sequences that target rare transcripts, or match to intronic
or intergenic regions, which could partly explain the lower
signal on this strip. The default options within the BeadS-
tudio software combine the two strips for every array on a
whole genome BeadChip. In the Version 2 whole genome
BeadChips, the replicates of each bead type are spread
between the two strips with potentially 20 replicates on
each strip. Clearly, the summary value could be affected
by any differences in underlying intensity between the
strips, in which case analysing strips separately would be
appropriate.

Local background estimation and subtraction
It is interesting to note the consistency of the estimated
background for individual beads, which is observed
within and between arrays. The background estimation
used by Illumina takes an average of the five dimmest pix-
els within a comparatively large area surrounding each
bead. This gives a very low estimate for background that is
related to the optical properties of the array surface rather
than being specific to the sequence attached to each bead.
In contrast, background estimation for two-colour arrays
typically uses the mean or median value of pixels sur-
rounding each feature, producing higher, more variable
estimates. The approach Illumina uses is more akin to a
morphological background estimation, which has been
shown to perform well for two-colour arrays [6,7].

In other data sets, we have used the predictability of the
background signal as a simple diagnostic to identify poor
quality arrays on which the background level was consid-
erably higher and more variable than usual (data not
shown). When analysing this experiment, we found that
subtracting this low estimate of the background was ben-
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Normalised log2 intensities for all non-spikes on strip 1 of a particular array in the experiment grouped according to the number of As, Ts, Gs or Cs in the probe sequenceFigure 8
Normalised log2 intensities for all non-spikes on strip 1 of a particular array in the experiment grouped according to the 
number of As, Ts, Gs or Cs in the probe sequence. The normalised log2 intensities and bead type variances are also shown in 
terms of GC content. The width of each box is proportional to the number of observations. Probes with higher GC content 
are shown to have higher intensity on average and a lower variance. Finally, estimated effect sizes are shown for each base 
position relative to having a T at that position. The normalised intensities are seen to be higher if a G or C is present at the 
first base in the sequence and have a lower variance. However, no other systematic trend is seen.
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eficial for detecting differentially expressed genes. At low
spike concentrations (around 1 pM), the observed values
for the spikes are close to the negative controls. Therefore,
when comparing arrays with low spike concentrations
that have not been background subtracted, the calculated
log-ratios will be biased towards zero as the difference in
spike concentration is obscured by the background noise.
Background subtraction reduces this bias, although, as
anticipated, we see an increase in variability after a log2
transformation of the subtracted data. The results of the
simplest method of subtracting the background estimates
are comparable to those of the model-based approach of
normexp. This is due to the low percentage (less than 1%)
of negative intensities produced using the subtract
method, hence methods that avoid these negative values
have little scope for improvement. This is encouraging for
users without access to raw data who perform pre-process-
ing using Illumina's default settings.

Summarisation
Illumina's default summary method was able to handle
around 20% of outlier beads before the estimates became
noticably biased in our simulations. This provides a rough
guideline on how much of an array can be corrupted
before the analyst needs to worry about biases creeping
into the estimates and inflating the variances. In addition,
Illumina's method is better at accommodating asymmet-
ric outliers than regular trimmed means. This is desirable,
as these artefacts arise frequently in data sets we have ana-
lysed.

Normalisation
In this study we did not conduct a thorough investigation
into normalisation methods. Given the low variability of
replicate observations, it is important that the data are not
"over-normalised", thus removing potentially interesting
biological information. An important conclusion from
the spike-in experiment is that the background normalisa-
tion recommended by Illumina is not appropriate for
some DE analyses. This method is seen to introduce sub-
stantial variability into the data, particularly at low inten-
sities, and also to increase the numbers of false positives.
Another consequence of this normalisation is that low
expression values become negative and cannot be log2
transformed. In the spike-in experiment, we found that
around 40% of the data were missing on average per array.
Illumina keep the bead summary data on the unlogged
scale and their model for differential expression takes the
relationship between the mean and variance of each bead
type into account [14]. DE analyses performed outside of
BeadStudio, such as limma eBayes [12], SAM [15], or other
methods, usually require data that have been subjected to
a log2, or similar, transformation to ensure the gene-wise
variances are comparable. Therefore we recommend that
only non-normalised data are exported from BeadStudio
if they are to be analysed using established statistical

The correlation of observed spike intensity with the thermo-dynamic properties calculated using the spike sequencesFigure 10
The correlation of observed spike intensity with the thermo-
dynamic properties calculated using the spike sequences. 
Consistent with findings from an Affymetrix spike-in experi-
ment, the observed spike intensities are seen to correlate 
well with melting temperature and free energy at high spike 
concentrations.
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methods. Otherwise, a small offset could be added to the
intensities to ensure positivity of the background normal-
ised data.

DE analysis
We find that using the bead type variances as inverse
weights increases the evidence for DE for the spikes for
each background correction method in most contrasts. At
the same time, the log-odds scores for the non-spikes are
not affected; this represents a gain in statistical power. The
weights also produce more comparable log-odds between
processing methods. Less precise observations arising
from arrays with quality issues, or intensity-dependent
trends in variablity introduced by the chosen pre-process-
ing option, are down-weighted in the analysis. At very low
concentrations (less than 1 pM), this improvement was
reversed, with DE statistics decreasing for the spikes.
Although this would seem undesirable, it indicates that
after considering the underlying variability of the observa-
tions, it is difficult to distinguish between very small
changes in concentration, which is a limitation of any
microarray technology. Having access to the bead level
data allows bead type variances to be calculated on the
appropriate scale so that they may be used in the linear
model.

Annotation
Probe annotation should be given careful consideration
during the analysis. The second strip should assist in the
investigation of rare transcripts, but it also contains many
probes that will not produce any meaningful signal in
many gene expression studies. One way of exporting data
from BeadStudio is to average the probes for the same
gene. We would discourage combining the signal from
two probes, as there may be differences in the reliability of
the probes, particularly if one maps to an intron or inter-
genic region. We found the intensities of probes on an
array to be related to base composition. In particular,
probes with a higher GC content were seen to have a
higher intensity, as were probes with a G or C at the first
base. These effects were observed on normalised data
from strip 1 and persisted in the between-array compari-
sons. Inflated differential expression statistics were found
for probes with 17 to 22 GCs in their sequence.

A possible probe effect is also suggested by the intensity
differences in both spikes and negative controls. Given
these observations and previous work for Affymetrix
arrays, it would seem that more sophisticated methods
than background normalisation are needed to account for
sequence-specific hybridisation effects. The correlation of
observed intensities with the melting temperature or free
energy is seen to decline with the spike concentration, pre-
sumably as the signal-to-noise ratio diminishes. Similar
correlations were seen in Affymetrix spike-in experiments.

While it is clear that some of the behaviour of the negative
controls can be explained by their thermodynamic prop-
erties, 2 – 3% of the variation is explained at best. Since
the intensities of the negative controls are reproducible
across strips and arrays, it seems implausible that the
remainder could consist of random noise. Thus, we con-
clude that other sources of variation are to be identified.

Application to other Illumina technologies
In this paper, we describe the advantages of analysing a
gene expression experiment using bead level data. We also
anticipate that the analysis of other Illumina assays (e.g.
GoldenGate, Infinium, DASL) can benefit from using
bead level data. For instance, recent genotyping methods
for Affymetrix technology successfully use the full raw
data and therefore having access to the bead level data is
likely to be useful in developing similar methods for Illu-
mina. If log-ratios are required for genotyping, the situa-
tion is similar to expression data where the values output
by BeadStudio are not on the desired scale. With the raw
data, it is possible to obtain log ratios for every bead and
then calculate an average and variance for each bead type.

Conclusion
The main findings presented in this paper are:

• Access to bead level data promotes more detailed quality
assessment and more flexible analyses. Bead level data can
be summarised on a relevant scale. We were able to use
the means and variances of the log2 data in the DE analysis
to improve our ability to detect known changes in the
spikes.

• The background correction and summarisation methods
used in BeadStudio reduce bias and produce robust gene
expression measurements. However, we find that back-
ground normalisation introduces a significant number of
negative values and much increased variability.

• Base composition of probes has an effect on intensity
and further investigation is required to remove this effect.

Methods
The raw data were read using the beadarray package (version
1.6.0), available through the Bioconductor project [16].

Image analysis
The foreground estimation algorithm used by Illumina is a
two-step process described in more detail in [2]. The main
steps in Illumina's image analysis are

i) All pixel intensities are altered using a sharpening trans-
formation. The intensity of a particular pixel is made higher/
lower if its intensity is higher/lower in comparison to the
intensities of the pixels surrounding it.
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ii) Foreground intensities are calculated as a weighted aver-
age of signals obtained using the four pixels nearest to each
bead centre as a "virtual bead centre". Sharpened pixel
intensities are used in the calculation. The value returned is
unlogged.

Background intensities are estimated using an average of the
five dimmest pixels (unsharpened intensities) within the 17
× 17 pixel area around each bead centre.

We also read the TIFF images using the EBImage package
[17]. We then created an incidence matrix indicating
whether each pixel was within a bead or part of the back-
ground. This allowed us to assess the intensity of pixels in
the area immediately surrounding each bead. These pixels
were ranked in order of increasing intensity to establish the
variation in the pixels used to estimate the local back-
ground.

Background correction
The following methods were used to adjust the fore-
ground (yf) of each bead using the corresponding back-
ground estimate (yb) to obtain an estimate of the true
signal due to hybridisation (y).

• No adjustment – Use the estimated foreground (y = yf)
in the analysis (assume yb = 0).

• Subtract – The estimated background is subtracted from
the foreground for each bead (y = yf - yb). No guarantee is
given against negative values appearing.

• Normexp – A normal-exponential convolution model is
fitted to the background subtracted signal (y = yf - yb) to
adjust the intensities from each strip separately (see [7] for
details). This model has the advantage of returning strictly
positive intensities.

The background correction method used in BeadScan is
the Subtract method.

Summarisation
Most analyses in this paper used the background adjusted
(see above), log2 transformed data from replicate beads
on a given array and summarised these values using Illu-
mina's default method. This method removes outliers
greater than 3 median absolute deviations (MADs) from
the median and calculates a mean, standard error and
number of observations for the remaining intensities. To
look at how robust Illumina's method is relative to other
summarisation methods (mean, trimmed mean removing
10% of highest and lowest intensities or median), we
measured the bias for each method from simulated data,
where varying numbers of outliers were added (from 0%
to 40% in increments of 5%). The true values were

assumed to be the means calculated from the original
data. Data from a good quality BeadChip from this exper-
iment was replaced at random by intensities at the satura-
tion level (216). Saturation artefacts are fairly common in
experiments we have analysed, and often occur at the
edges of an array. By varying the number of outliers, we
can roughly assess the break-down point of Illumina's
summary method. Data for each simulation was summa-
rised on the original and log2 scale. Bias was computed by
subtracting the summary values obtained from the simu-
lated BeadChip from the summary values obtained from
the original data for each probe on each array. Per array,
per probe variances were also calculated within each sim-
ulated data set. The bias values and variances were aver-
aged across arrays and probes within each simulation to
produce the values plotted in Figure 2.

Visualisation of data

We use MA-plots to show the variablity between arrays for
different methods. For two given arrays (k1 and k2) the
summarised intensities for a given bead type, yk1 and yk2,

were used to calculate log-ratios M, where M = log2(yk1) -

log2(yk2) and average log intensities A, where

. The M- and A-values were

then plotted on the y- and x-axis respectively. A value of M
= 0 indicates no differential expression between arrays,
and most probes in the spike-in experiment should be
centred around this value.

Normalisation
The log2 summarised data were quantile normalised as in
[4]. This approach is reasonable given that the majority of
genes do not change between arrays, and hence the inten-
sity distribution between arrays should be the same. In
principle, this could affect the intensity of high intensity
spikes, although we found the effect to be small. Back-
ground normalisation was carried out on the non-nor-
malised, background subtracted data by subtracting the
average value of the negative controls on each array out-
put by BeadStudio from the summarised intensities of the
non-control probes. M- and A-values were calculated to
allow comparison with quantile normalised results.

Linear models and contrasts

The limma package [12] was used to assess DE. Bead level
data were created using different background correction
methods and then summarised to give an expression
matrix Y, where yjk represents the log2 normalised expres-

sion of probe j on array k. A linear model E[yj] = Xαj was

fitted to each probe, where  is the jth row of Y, and αj

is a vector of coefficients to be estimated for each probe at

A y yk k= +1
2 2 1 2 2[log ( ) log ( )]

y j
T
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the 12 different concentrations. The contrasts of interest

are given by βj = CTαj, where C is a contrast matrix created

to make all pairwise comparisons between concentrations
(e.g. 1000 pM vs 300 pM, 300 pM vs 100 pM etc). After
empirical Bayes variance shrinkage, the moderated t-sta-
tistics and log-odds scores for each contrast were analysed
separately to assess the performance of different back-
ground correction methods. A second series of linear
models was fitted to take the variability of bead types into

account. We now assume that  where

wjk is a weighting factor for bead type j on array k. Weights

, where  is the sample variance calculated

using the standard error and the number of observations
of bead type j on array k, were used. Using inverse vari-
ances as weights gives less influence to observations with

higher variability in the linear model. The coefficients, αj,

were estimated using weighted least squares and contrasts,

βj, were calculated as before.

See supplementary materials for the R code used to fit the
linear models.

Annotation
Probe sequences were BLASTed and BLATed against the
corresponding mouse genome and transcriptome, which
included UCSC Genome Browser [18], RefSeq, and Gen-
Bank transcripts. The subsequent annotation and probe
classification were performed with a Perl script, compris-
ing BioPerl modules [19], and relied on transcriptomic
annotation tables downloaded from the UCSC Genome
Browser. The resulting annotation table is available in
supplementary materials.

We defined A, C, G and T to be matrices of binary values
with j = 1,..., ~48,000 rows and p = 1, ..., 50 columns to
represent the sequence of each probe, where Ajp = 1 if the
sequence for probe j contained an "A" at position p, or 0
otherwise.

The total number of As (aj) in the sequence of the j'th

probe is simply . The total number of Cs (cj)

Gs (gj) and Ts (tj) were defined in a similar fashion. The

GC content for probe j was then defined as gj + cj,

We then plotted the normalised intensities of the strip 1
probes on a given array in terms of their aj, cj, gj, tj and GC
content. Similarly, for a particular contrast, we ranked the

same probes according to their log-odds scores and plot-
ted probes with the same GC content together.

The linear model E[yk] = Aαk + Cβk + Gγk, was fitted to the
intensities and variances of the k'th array to estimate coef-
ficients α, β, γ representing the effect of having an A, C or
G at each position, relative to having a T at that position.

The melting temperature, free energy (ΔG), entropy (ΔS)
and enthalpy (ΔH) were calculated for each spike and neg-
ative control probe using values taken from [20] with
code calibrated against OligoCalc [21], although we rec-
ognise that these values may not be strictly applicable to
50-mer oligos.
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