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Abstract
Background: The identification of mutations that confer unique properties to a pathogen, such as host range, is
of fundamental importance in the fight against disease. This paper describes a novel method for identifying amino
acid sites that distinguish specific sets of protein sequences, by comparative analysis of matched alignments. The
use of mutual information to identify distinctive residues responsible for functional variants makes this approach
highly suitable for analyzing large sets of sequences. To support mutual information analysis, we developed the
AVANA software, which utilizes sequence annotations to select sets for comparison, according to user-specified
criteria. The method presented was applied to an analysis of influenza A PB2 protein sequences, with the objective
of identifying the components of adaptation to human-to-human transmission, and reconstructing the mutation
history of these components.

Results: We compared over 3,000 PB2 protein sequences of human-transmissible and avian isolates, to produce
a catalogue of sites involved in adaptation to human-to-human transmission. This analysis identified 17
characteristic sites, five of which have been present in human-transmissible strains since the 1918 Spanish flu
pandemic. Sixteen of these sites are located in functional domains, suggesting they may play functional roles in
host-range specificity. The catalogue of characteristic sites was used to derive sequence signatures from historical
isolates. These signatures, arranged in chronological order, reveal an evolutionary timeline for the adaptation of
the PB2 protein to human hosts.

Conclusion: By providing the most complete elucidation to date of the functional components participating in
PB2 protein adaptation to humans, this study demonstrates that mutual information is a powerful tool for
comparative characterization of sequence sets. In addition to confirming previously reported findings, several
novel characteristic sites within PB2 are reported. Sequence signatures generated using the characteristic sites
catalogue characterize concisely the adaptation characteristics of individual isolates. Evolutionary timelines
derived from signatures of early human influenza isolates suggest that characteristic variants emerged rapidly, and
remained remarkably stable through subsequent pandemics. In addition, the signatures of human-infecting H5N1
isolates suggest that this avian subtype has low pandemic potential at present, although it presents more human
adaptation components than most avian subtypes.
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Background
In the study of pathogens, it is fundamentally important
to identify the molecular elements that enable transmis-
sion and replication in humans, and understand their
evolutionary patterns as well as their functional role. This
knowledge is particularly relevant to disease prevention,
since it helps define the epidemiological characteristics of
new pathogen strains, and in some cases the extent of
their virulence [1]. Current widespread concern over the
potential threat of a human pandemic caused by mutated
H5N1 avian influenza viruses highlights the medical,
social, and economic value of tools that enable correct
assessment of the potential for transmissibility of avian
flu viruses amongst human hosts [2].

The influenza A virus is in equilibrium with its natural
hosts, aquatic wildfowl, amongst which widespread trans-
mission occurs, often without causing serious disease [3].
This virus has limited zoonotic potential: only four influ-
enza subtypes have been known to circulate amongst
humans, while at least 100 subtypes have been observed
in birds. Domestic poultry and some mammals, particu-
larly swine, are also hosts to a limited number of influ-
enza A subtypes. However, occasional transmissions of
influenza A to humans can have a tremendous impact.
The Spanish flu pandemic of 1918/19 claimed over 40
million lives, and was almost certainly caused by adapta-
tion of an avian H1N1 strain to humans [4]. Although the
circulating H5N1 subtype has negligible potential for
human-to-human transmission, there is a concern that it
might acquire the necessary mutations for this capability.

Studies of the determinants of influenza host range and
virulence have indicated that no single molecular factor
can be pinpointed [5]. A multiplicity of mutations, dis-
tributed across several viral proteins, appears to be
involved, making the experimental determination of the
critical factors a complex task. A computational method is
described in this paper, that compares arbitrarily large
multiple sequence alignments of viral proteins and meas-
ures mutual information between the alignments at each
amino acid site, leading to the identification of specific
mutation patterns which characterize sets of sequences.
Characteristic variant patterns of adaptation to human
hosts can thus be identified by comparing human-to-
human transmissible influenza strains to avian strains.
Sequence signatures, which summarize the isolate-specific
adaptation characteristics, can be extracted from these pat-
terns. When ordered along a timeline, sequence signatures
show the likely evolution of human-to-human character-
istic mutations.

This paper describes the mutual information analysis
method, and demonstrates its utility through an analysis
of the influenza RNA polymerase protein PB2. This pro-

tein is a component of the ribonucleoprotein (RNP) com-
plex, which is transported between nucleus and cytosol
during viral infection and is therefore likely to require
host adaptation. Indeed, specific mutations of the PB2
protein are known to participate in human-to-human
transmission adaptation [6], and several studies have
reported amino acid sites thought to be involved in this
adaptation [7,8]. We used the results of these studies to
show that mutual information analysis is highly effective
for identifying systematic differences between sets of
sequences. This method can be extended to the study of
other pathogens, and of properties other than the host
range.

Several methods for identifying the molecular determi-
nants of pathogenic traits have been proposed [6-12]. In
vivo and in vitro experiments are costly and time-consum-
ing, and their scope is usually limited to the study of sin-
gle mutations, rather than systematic screening. For
example, Subbarao et al. [6] sequenced several influenza
mutants of varying replication capabilities, which were
derived from a single-gene reassortant virus and impli-
cated a key role of a single mutation of the PB2 protein
(E627K) in replication of influenza in humans.

Ad hoc computational methods involve production of
multiple sequence alignments followed by visual inspec-
tion. Buckler-White et al. [9] identified 10 sites with dis-
tinctive human variants in influenza M1 and M2 genes by
inspecting a handful of sequences. In a similar study, Naf-
fakh et al. [7] identified seven sites in the PB2 gene from
human variants from 34 aligned sequences. These studies
lack statistical significance, which is a fundamental limita-
tion of visual inspections: as the number of sequences
increases, characteristic patterns become harder to dis-
cern. To alleviate this problem, researchers can split larger
alignments into subgroups, using phylogenetic guide trees
which cluster related sequences, making patterns more
clearly visible (e.g. [10]). This approach was applied by
Obenauer et al. [11] to define avian influenza proteotypes
from alignments of up to 300 sequences, using a visual
inspection method which is effective for sequence cluster-
ing, but cannot easily identify the residue mutation pat-
terns that characterize each cluster. Visual inspection
methods have additional drawbacks: they lack objective
measures for assessing mutations, and they do not scale
well-large-scale alignments make detailed inspections
impractical. Both problems become particularly acute in
sets characterized by multiple distinct mutations at the
same site. The study of multiple distinct mutations can be
addressed by formal methods, such as statistical diversity
analysis based on information theory. Korber et al. [12]
demonstrated the benefits of numerical variability meas-
ures by comparing the information entropy of separate
alignments of HIV protein sequences, sampled from
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blood and brain tissues. They identified sites which were
highly conserved (lower entropy) in the brain but not in
blood, suggesting that the virus had forgone mutations to
adapt to brain tissues. This method relies on entropy dif-
ferentials between the two groups, and only sites charac-
terised by high diversity in blood isolates were selected.
However, this method is not capable of identifying sites
which are conserved in blood isolates, but acquire muta-
tions as a result of tissue adaptation.

A list of distinctive human variants of influenza A virus
was compiled by Chen et al. [8], who identified sites with
low entropy in both avian and human alignments, but
with different consensus amino acids. By analyzing 401
full viral genomes, their study showed that entropy com-
putations are highly scalable. However, information
entropy alone is of limited use for comparative analysis,
since it measures variability in a single alignment, without
considering which variants occur in the other set. Of 52
characteristic sites reported by this study, eight were in the
PB2 protein; however, several sites were discarded,
because they exhibited either multiple variants or high
variability in the avian set.

Data analysis approach
Characteristic sites and variants
Residues located at functionally important positions in a
protein exhibit high conservation, since their mutations
affect basic protein function and are usually detrimental
to the organism's fitness. Conservation analysis is often
used as a tool for the identification of functional residues
[13,14]. This principle can be applied to functional com-
ponents that confer specific properties to a pathogen pop-
ulation. For example, a mutation required for viral
replication in a specific host must be conserved in host-
adapted strains, but not in other strains. Such functionally
important components can be therefore be found by com-
paring a characterized set of sequences (sequences selected
on the basis of a common property), against a reference set
(the pool of sequences that do not possess this property).
This comparison can identify one or more characteristic
sites: sites that exhibit residue variants which are common
in the characterized set, but rare in the reference set, and
are therefore likely to participate in conferring the defin-
ing property of the characterized set. In the present study,
human-transmissible sequences (characterized set) have
been compared to avian sequences which are not trans-
missible to humans (reference set). The sites identified in
this analysis are therefore candidate functional sites
responsible for human-to-human transmission. Our
working hypothesis is that the poor transmissibility of
most avian strains to humans could be accounted by the
infrequent occurrence of human characteristic residues in
avian sequences, at these sites.

Entropy and mutual information
Information theory [15], defines variability measures
such as information entropy, which are finding many appli-
cations in bioinformatics [16]. The entropy H(x) of a dis-
crete random event x, whose possible outcomes form the
set E = {e1, e2 ... en}, is a measure of the outcome uncer-
tainty, given by:

where pe(x) is the probability that e ∈ E is the outcome of
x. In protein alignments, we measure residue entropy by
identifying x with a site, and E with the set of amino acids
that occur at that site. Entropy values vary both with the
number of amino acids observed at the site, and with their
relative frequency. H(x) = 0 at sites with 100% conserved
residues, while variable sites have higher entropy, up to a
maximum of Hmax(x) = 4.322 (log220). Such extreme var-
iability is unlikely in closely related sequence sets and, in
practice, sites whose residue entropy exceeds 1.0 can be
regarded as highly variable.

Entropy can be used to measure variability in multiple
alignments and identify conserved residues or peptide
variants [17]. Because of its statistical nature, it is suitable
for analyzing arbitrarily large dataset, and can thus be
applied to large-scale diversity studies, such as the identi-
fication of stable antigenic targets over extended periods
of time [18], a key step in reverse vaccinology [19].

Entropy computations can be combined to determine
relationships between pairs of variables [15]. When con-
sidering two discrete events A and B, one can measure the
mutual information (MI) of the two events as follows:

MI(A, B) = H(A) + H(B) - H(A, B) (2)

where H(A, B) is the joint entropy of the two variables,
which is computed using Equation (1), replacing E with
the set of all unique pair of values (A, B).

MI is interpreted as the reduction in the uncertainty of the
outcome of B when the outcome of A is known, and thus
a measure of the dependence between the two variables. It
was shown [20] that MI is 0 for two fully independent var-
iables, while the MI of two variables that are fully co-
dependent is determined by their entropy:

0 ≤ MI(A, B) ≤ min{H(A), H(B)} (3)

MI has been used in mapping of genes and clustering of
genetic markers [21]. It has also been employed to iden-
tify pairs of co-evolving sites in proteins, which produce

H x p x p xe e

e E

( ) ( ) log ( )= − ( )
∈
∑ 2 (1)
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high MI values when individual and joint residue entro-
pies are combined using equation (2) [22].

Mutual information of characteristic sites
We have utilized MI to identify characteristic sites in sets
of aligned viral sequences. We compare pairs of homolo-
gous alignments to measure the relationship between the
amino acids residues observed at a site, and the alignment
in which they are observed. In a pair of homologous align-
ments, every residue site n in one alignment aligns with
the same site n in the other alignment. In practice, pairs of
homologous alignments may be formed by extracting sets
of aligned sequences from a master alignment, without
further realignment. Thus, variables A and B in equation
(2) are replaced with the observed residue a, and the label
S of the set (alignment) within which the residue is
observed. The MI at a site x is therefore computed by:

MI(x) = Ha(x) + HS(x) - HS,a(x) (4)

Ha(x) is simply the entropy at site x for the merged align-
ment, computed using (1). HS(x) is derived from the
number of sequences in each of the two sets (n1 and n2):

where N = n1 + n2. Finally, HS,a(x) is given by:

where p(S, a) is the probability of any given combination
of residue and set label (in other words, occurrences of the
same amino acid in two different sequence alignments
constitute distinct outcomes).

Characteristic sites present different residues in the two
sets, highly conserved within each set. Therefore, there is
a strong relationship between residues and set labels at
these sites, resulting in high MI values. Conversely, sites
with low MI (approaching 0) exhibit similar distributions
of amino acid variants in the two sets and are not charac-
teristics. Since there are exactly two sets, the upper bound
of HS(x) is 1, the maximum entropy for a variable with
two outcomes. From equation (3) we therefore infer that
0 ≤ MI(x) ≤ 1. However, since HS(x) = 1 only when both
alignments are equal in size, the range of I(x) is reduced
when one set is larger than the other.

Identification of characteristic sites and variants
A high MI value is the primary requisite of a characteristic
site. However, the selection process must take into
account a variety of factors that can reduce the MI. In
influenza adaptation, human characteristic variants are

sometimes present in a minority of avian strains, which is
expected if the mutations necessary for human adaptation
originate in the avian pool. Furthermore, sporadic ran-
dom mutations and episodes of infections from other
hosts can be observed in both sets. Finally, avian charac-
teristic variants are expected to be present in historical
sequences, sampled before these variants stabilized. To
select characteristic sites and variants, we identified four
criteria that help distinguish characteristic sites from the
background noise. The choice of threshold values for
these criteria is largely dependent on the analysis task
selection. The four criteria are:

• A characteristic site sc must have an MI value above
MImin, the MI threshold below which no characteristic
sites are deemed to be present.

• If a characteristic variant vc is present at site sc with prob-
ability pc(vc, sc) within the set it represents and po(vc, sc) in
the other set, the ratio r(vc, sc) = pc(vc, sc)/po(vc, sc) must
exceed a minimum frequency ratio rmin if po(vc, sc) is non-
zero. A high rmin ensures that the variant is significantly
more common in the set it represents.

• The probability pc(vc, sc) must exceed a minimum prob-
ability pcmin. Raising this threshold prevents statistically
insignificant mutations from being considered character-
istic, even when they are more frequent in one set than in
the other.

• At a characteristic site sc, the probability pc'(S, sc) of a set
S containing variants characteristic of the other set must
be lower that the maximum contamination probability
pc'max(S). This threshold prevents a site from being classi-
fied as characteristic if there is significant cross-contami-
nation of variants between the two sets. Depending on the
analysis task, it is desirable to specify a different threshold
for each set: for example, the tolerance for human variants
present in avian sequences may be greater than the toler-
ance for avian variants in human sequences, to account
for a more diverse pool of mutations in the avian virus
population.

The selection process produces a characteristic variant pat-
tern: a catalogue of characteristic sites, each possessing a
list of the characteristic variants identified for each of the
two sets. A characteristic variant pattern therefore presents
in a concise form the systematic differences between a pair
of aligned sequence sets, and can be used to derive a
sequence signature for any homologous sequence.
Sequence signatures comprise only the residues at charac-
teristic sites, and thus provide a concise representation of
any given isolate, useful for determining which character-
istic mutations it possesses.
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Experimental considerations
When choosing a MImin threshold, it is desirable to apply
the same threshold values to multiple different compari-
sons (for example, for all the influenza proteins). How-
ever, there are several statistical factors that influence MI
values between alignments. These factors include: the
presence of alignment gaps; the number of sequences in
the comparison sets; and the size ratio of these sets.

Alignment gaps, introduced by alignment algorithms,
need to be accounted for in MI computations. The gap
symbol is an artifact of the alignment and therefore can-
not be considered an additional amino acid. However, its
presence affects entropy calculations: although gaps are
indicative of high variability, they artificially lower the
entropy of sites where they are numerous [23]. Although
it is possible to estimate entropy at highly gapped sites,
one has to question whether it is meaningful to seek char-
acteristic variants at highly variables sites, where a large
proportion of the sequences have no residue at all. A max-
imum gap threshold should therefore be chosen (for exam-
ple, 50%), above which a position should be ignored for
MI computation purposes.

The number of sequences in a given set affects the com-
puted entropy values and hence MI values. Entropy is a
statistical measure, and thus most accurate as sequence
count approaches infinity. Previous studies [24] indicate
that smaller set sizes introduce an error which is inversely
proportional to the sequence count. Our own experi-
ments show that, when averaging over several random
subsets, this relationship holds for sets as small as 20
sequences. However, for very small sequence counts the
dramatic increase in sampling error makes entropy-based
comparisons unreliable (Figure 1). In the present study,
we only used sets of 50 sequences or more.

As previously discussed, any size disparity between the
two sequence sets being compared reduces the range of MI
values. Figure 2-A shows that, as one set becomes several
times larger than the other, MI values decrease at all sites.
This relative size bias is problematic if characteristic site
selection relies on absolute thresholds. When size dispar-
ity exists, we therefore correct for this bias using a sam-
pling method, which compares the smaller of the two sets
to multiple subsets of the larger set and evaluates the
mean MI. Each subset is randomly selected and equal in
size to the smaller set of aligned sequences. Figure 2-B
shows the effect of this correction: MI values remain stable
even as set size ratio exceeds 1:10, especially at sites with
high MI. Small sequence counts, however, affect the esti-
mate reliability at very low ratios. These measurements
indicate that the sampling correction gives reliable MI
results with size ratios up to 1:10.

The role of metadata
Multiple alignments used in comparative studies are con-
structed from sequences selected according to common
characteristics, for example human-to-human or avian-to-
avian transmission of infection. For small numbers of sets
with well-defined selection criteria, alignments can be
produced from separate queries to public databases such
as Genbank. However, matching the positions of sepa-
rately-produced alignments is often problematic due to
the presence of gaps, which are introduced by the align-
ment algorithm and whose position may vary in different
alignments. In practice, comparative studies often need to
test multiple hypotheses that require diverse selection cri-
teria (for example, restricting selections to specific time
periods, or geographical areas), demanding considerable
additional effort in alignment construction. To address
this problem, we constructed an annotated dataset in
which sequences are accompanied by descriptive meta-
data, including strain name, subtype, host, year and coun-
try of isolation, protein name. We produced master
alignments for each protein, so that subset alignments can
be subsequently extracted through metadata queries,
without further realignment. This method allows rapid
comparisons of sequence subsets using arbitrary selection
criteria.

Quality-controlled metadata is difficult to obtain from
public sequence databases, since the annotations of a
large proportion of sequence records are inconsistent,
incomplete, or even erroneous [25]. Several approaches
have been proposed to address these problems [26,27],
many of which require significant computing infrastruc-
ture or programming knowledge. This study made use of
the Aggregator of Biological Knowledge (ABK) [28], a
desktop tool that employs user-defined structural rules to
extract values from multiple annotation fields and from
multiple sequence records, and subsequently reconcile
conflicts in the extracted metadata. By automating the
metadata extraction process, this tool enables the rapid
construction of very large sequence datasets. More than
85,000 influenza records were processed and annotated
with relevant high-quality metadata for the current study.
The use of structural rules enabled us to complete this task
with only modest requirements for manual curation
effort.

Metadata-enabled analysis: the AVANA tool
The Antigenic Variability Analyzer (AVANA) tool, which
supports a variety of entropy-based analyses of multiple
sequence alignments, is the software engine used to sup-
port this study. This tool calculates and plots entropy pro-
files for multiple sequence alignments, allowing users to
inspect variants and their frequencies at each position.
AVANA can analyze the variability of peptides of any
lengths, which makes it suitable for studying antigenic
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Effect of set size on information entropyFigure 1
Effect of set size on information entropy. The probability density of entropy values at four sites of the Influenza A PB2 
proteins is plotted for alignments of decreasing sequence count N (graph A: N = 250; graph B: N = 50; graph C: N = 20). For 
each graph, we constructed 200 random alignments of the required size from the PB2 master alignment. The entropy mean 
and standard deviation measured from these alignments were used to plot the normal probability distributions shown in this 
chart. The entropy values for different sites are well-separated in large sequence sets (plot A) while the likelihood of distin-
guishing medium-entropy sites from high- or low-entropy sites drops dramatically at low sequence counts (plot C). The sites 
were selected based on their equally-spaced entropy values.
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Effect of set size bias on mutual informationFigure 2
Effect of set size bias on mutual information. In both graphs, the y-axis represents the measured mutual information (MI) 
between two sets of influenza A PB2 protein sequences, comprising human and avian sequences respectively. The x-axis repre-
sents the size ratio Nh/Na, where Nh and Na are the sequence count in the human and avian sets respectively. A) Changes in 
MI at selected alignment sites as Nh is varied (Na = 719). MI values fall rapidly as the ratio decreases, especially at sites with 
high MI. B) Each data point is computed by averaging the MI obtained by comparing the human set with 200 random subsam-
pled sets of avian sequences with the same sequence count. The estimated MI values remain stable up to a size ratio of approx-
imately 1:10. At very low ratios, increased sampling errors due to small set size tend to lower the reliability of the estimate.
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characteristics of pathogens [18]. For maximum flexibil-
ity, the tool is able to include arbitrary metadata fields
(annotations), and select subsets of the master alignment
using metadata values. Since metadata is loaded sepa-
rately from the master alignment, the latter can be pro-
duced using the multiple sequence alignment tool of
choice. MI computation, size bias adjustments and char-
acteristic site identification are built into the AVANA tool-
set, which automates the identification of characteristic

variant patterns and produces sequence signatures. Figure
3 shows a screenshot of the AVANA tools, which can be
deployed on any Java-enabled operating systems, and is
freely available upon request to the authors.

Results and discussion
Catalogue of characteristic sites
A total of 17 characteristic sites were identified in this
study (Figure 4). These 17 characteristic sites are present in

Screenshot of the Antigenic Diversity Analyzer (AVANA)Figure 3
Screenshot of the Antigenic Diversity Analyzer (AVANA). This screenshot shows the AVANA tools used in a com-
parison of the A2A (top) and HxN2 (bottom) subsets. The horizontal axis corresponds to the positions along the alignment, 
while the vertical axes represent the entropy of each subset (blue), and mutual information (green) between the two subsets. 
Characteristic sites are identifiable by the presence of MI peaks. On the left-hand site, AVANA displays the residue statistics at 
the currently selected position: the E627K characteristic mutation is shown in this example.
Page 8 of 18
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 1):S18 http://www.biomedcentral.com/1471-2105/9/S1/S18
both subtypes currently circulating amongst humans
(H1N1 and H3N2). All H2H characteristic variants
exhibit extremely high conservation in humans (>99%
except at position 613 where conservation is 96.8%),
which is indicative of a possible role in the adaptation
mechanisms of influenza A virus to human hosts. High
conservation at characteristic sites is also typical in avian
sequences (>95%), but not as uniformly, as some H2H
characteristic variants appear with low frequency in the
avian population (full details are shown in Table 1). Most
discovered sites showed very little presence of human var-
iants in avian sequences, with one notable exception: at
site 702 the human variant (arginine) was present in 10%
of avian sequences. This variant appears to be common in
H9N2 avian viruses, which are known to infect humans
[29]. However, the same variant was not present in the
H9N2 strain A/quail/HongKong/G1/97, thought to have
originated the PB2 gene of the H5N1 strains that claimed
human lives in Hong Kong in 1997 [30].

Previous studies have reported several of these sites as pos-
sible determinants of host-range specificity. The E627K
mutation affecting influenza replication in humans [6],
was also associated with the high virulence of human
H5N1 infections [31]. Seven characteristic sites in PB2
were identified by Naffakh et al. [7], while Chen et al. [8]
reported eight sites. Combined, all these studies identified
11 sites (Figure 4), all of which were also found in the
present study. All except one of the 17 characteristic sites
reported herein are found in experimentally determined
functional domains of the PB2 protein: signals controlling
translocation to cell nuclei [32], binding sites for proteins

in the polymerase complex [33] or RNA cap binding sites
[34,35]. This suggests that these mutations could play a
role in the adaptation of critical viral functions to human
hosts.

The high number of characteristic mutations, and their
location in areas of contact with other proteins, suggest
that H2H adaptation relies on complex interactions, and
that the contribution of individual mutations may diffi-
cult to quantify and demonstrate experimentally. In the
absence of experimental evidence, one cannot discount
the possibility that some of the mutations identified have
"hitch-hiked" alongside functionally important muta-
tions. It must be noted, however, that all characteristic
sites identified have remarkably stable in humans over a
period of nearly 70 years, which suggests that they are
important components of the adaptation, or that they
play a supports role to functionally important mutations.

In addition to the 17 characteristic sites common to both
H2H groups, we identified two characteristic sites unique
to the H1N1H set, and nine unique to the HxN2H set
(Table 2). Conservation is somewhat lower at these sites,
possibly because they emerged at a later date.

Evolutionary timelines
To reconstruct the emergence of characteristic mutations,
we used the characteristic sites catalogue to produce signa-
tures for all human PB2 sequences isolated between 1918
and 1970, a the period spanning over the three major 20th

Century pandemics (see Figure 5). The signatures were
arranged chronologically to form a timeline, as shown in

Characteristic sites for human-to-human transmission (H2H) identified in the PB2 protein of the influenza A virusFigure 4
Characteristic sites for human-to-human transmission (H2H) identified in the PB2 protein of the influenza A 
virus. The sites, whose position is indicated in the circles, are arranged along the length of the protein, with the avian (A2A) 
variants and the H2H variants indicated above and below the circles respectively. Where multiple variants are present at a site, 
they are shown in decreasing order of frequency. The coloured lines in the upper part of the figure show the extent of identi-
fied PB2 functional domains: the binding regions of PB2 to the PB1 and NP proteins [33] are shown in red and green respec-
tively; the RNA cap binding regions [34, 35] in blue; and the nuclear localization signals (NLS) [32] in orange. Except for site 
292, all characteristic sites identified are within one, or two functional domains. The lower part of the figure shows character-
istic sites previously identified in other studies [8, 7].

PB1 binding

NP binding

RNA cap binding

NLS

9 44 64 81 105 199 271 292 368 475 613 627 661 674567 588 702

DE M TITA IVA T A LR AE ASVAAV KDEA2A variants

NT T AVM TS MV S MK TK TTI RNH2H variants

Naffah (2000)

Chen (2006)
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Table 1: Full catalogue of characteristic sites for human-to-human transmission of influenza A identified for the PB2 protein. For each 
site, we show the position in the alignment; the characteristic variants of the avian-to-avian (A2A) and human-to-human (H2H) 
transmissible sequences; the characteristic variants found in human H1N1 and HxN2 subtypes; the year when the human 
characteristic variant was first isolated; the conservation of the characteristic variants in avian and human sequences; and finally the 
percentage of human sequences that exhibit avian variant. Sites where human characteristic variants were present in 1918 are 
highlighted in bold type.

Position Char. Variants 1st Human 
isolate

Conservation X-presence of 
A2A

A2A H2H A2A H2H

9 DE NT 1933 98.57% 99.33% 0.49%
44 A S 1940 96.82% 99.27% 0.61%
64 M T 1933 97.29% 99.58% 0.30%
81 T MV 1933 97.93% 99.27% 0.30%
105 TA VM 1933 98.41% 99.45% 0.36%
199 A S 1918 99.47% 99.76% 0.24%
271 TI A 1940 98.59% 99.51% 0.37%
292 IV T 1940 95.54% 99.15% 0.67%
368 R K 1940 98.12% 99.33% 0.67%
475 L M 1918 99.66% 99.76% 0.24%
567 DE N 1918 98.28% 99.39% 0.55%
588 AV I 1940 98.45% 99.63% 0.31%
613 VA T 1940 98.28% 96.82% 0.61%
627 E K 1918 99.31% 99.76% 0.12%
661 A T 1933 86.72% 99.39% 0.43%
674 AS T 1933 95.69% 99.63% 0.18%
702 K R 1918 89.70% 99.39% 0.49%

Table 2: Catalogue of subtype-specific characteristic sites for human-to-human transmission of influenza A identified for the PB2 
protein. The upper table shows characteristic sites exhibited only by H1N1 human viruses, while the lower table lists characteristic 
sites common to H2N2, H1N2 and H3N2. For each site, we show the same values as in Table 1, except that the human variants are 
subtype-specific.

Position Char. Variants 1st Human 
isolate

Conservation X-presence of 
A2A

A2A H1N1 A2A H1N1

114 V I 1918 100.00% 98.57% 1.43%
491 T A 1933 98.94% 97.48% 2.52%

Position Char. Variants 1st Human 
isolate

Conservation X-presence of 
A2A

A2A HxN2 A2A HxN2

67 I V 1964 99.68% 97.01% 2.99%
82 N S 1957 94.27% 97.15% 0.95%
120 E D 1970 99.52% 96.20% 3.73%
382 I V 1961 96.77% 98.53% 1.47%
453 PS H 1940 98.29% 99.49% 0.29%
526 K R 1972 99.65% 95.66% 4.34%
676 TA I 1965 96.21% 91.47% 4.93%
682 G S 1972 100.00% 94.56% 4.19%
684 A S 1957 96.90% 99.63% 0.22%
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Figure 6. Coloured backgrounds, distinguishing avian and
human characteristic variants, permit an intuitive visuali-
zation of the emergence of adaptation to humans.
Although the signature of the virus strain responsible for
the 1918 Spanish flu was clearly avian, it contained five
H2H variants (including site 627). By comparison, the
signatures of all 1174 avian (A2A) sequences revealed
only one sequence (H9N2) containing as many as three
H2H variants, with 77% of sequences containing no H2H
variants.

Fifteen years later, the signature of the H1N1 circulating in
the human population had acquired a predominantly

human signature, and viruses isolated in 1940 had signa-
tures identical to circulating strains today. In summary,
the characteristic variant pattern of human-to-human
transmission evolved fully with remarkable speed (20
years), and has shown great stability over the following 65
years. The timeline shows that the two pandemics of 1957
and 1968 (which introduced the H2N2 and H3N2 sub-
types respectively) had no effect on the continuity of the
H2H signature for PB2, although both pandemics were
probably zoonotic in origin. This supports the widely
accepted notion that these pandemics involved reassort-
ment of avian strains with human-adapted strains, in
which the PB2 protein which originally evolved from the

Evolution and reassortment of human Influenza A virusesFigure 5
Evolution and reassortment of human Influenza A viruses. This figure (adapted from [3]) shows how human-transmis-
sible Influenza A subtypes were acquired from the avian pool during 20th Century pandemics. A full complement of eight gene 
segments of avian origins originated the 1918 Spanish flu, while the following two pandemics followed the acquisition of a 
smaller number of avian genes through recombination. In 1957, the H2N2 Asian flu replaced the HA, NA and PB1 segments, 
while the H3N2 Hong Kong pandemic of 1968 replaced the HA and PB1 segments only. In each of these pandemics, the new 
subtype fully replaced the previously circulating subtype. The minor Russian pandemic of 1977 was caused by the reintroduc-
tion of a H1N1 strain almost identical to that circulating prior to 1957, leading to the widely-held view that it was caused by 
the release of 20-year old frozen viruses. The H1N1 strain has not supplanted H3N2, and the two lineages co-circulate in the 
human population to the present day; the recently emerged H1N2 subtype has arisen from their reassortment. All currently 
circulating PB2 proteins are therefore thought to have descended from the Spanish flu strain, although the PB2 protein associ-
ated with HxN2 has diverged significantly from that of the H1N1 lineage.
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Timeline of adaptation to human-to-human transmission for the influenza A PB2 proteinFigure 6
Timeline of adaptation to human-to-human transmission for the influenza A PB2 protein. Using the H2H charac-
teristic variant pattern (see Fig. 4), we produced signatures for each available human sequence isolated before 1970, and 
arranged them in chronological order. The signature columns show the residues observed at each of the characteristic sites, in 
the order given in Figure 4. Each signature is annotated with subtype, year and country of isolation, and isolate name. The first 
and the last pattern of the alignment are the consensus signatures for avian and human-to-human transmissible sequences 
respectively. Avian characteristic variants are shown on a dark blue background, human characteristic variants on a yellow 
background, and all other variants are on white. Red horizontal lines indicate the start of the 1957 and 1968 pandemics, which 
introduced the H2N2 and H3N2 subtypes respectively. The GenPept accession numbers for all sequences used are listed in 
Table S1 in Additional file 1.

D A M T T A T I R L D A V E A A K A2A

D A M T T S T I R M N A V K A A R H1N1,1918,USA,A/Brevig Mission/1/1918

N A T M V S T I R M N V A K T P R H1N1,1933,UK,A/WSN/1933 TS61

N A T M V S T I R M N V A K T T R H1N1,1933,UK,A/Wilson-Smith/1933

N A T M I S A I R M N I A K A T K H1N1,1934,PUERTO RICO,A/Puerto Rico/8/34

N A T M M S T I R M N V A K T T R H1N1,1935,AUSTRALIA,A/Melbourne/1935

N S T M M S A T K M N I T K T T R H1N1,1940,USA,A/Hickox/1940

N S T M M S A T R M N I T K A T R H1N1,1942,USA,A/Bellamy/42

N S T M M S A T R M N I T K V T R H1N1,1943,USA,A/WEISS/43

N S T M M S A T K M N I T K T T R H1N1,1946,,A/Cam/1946

N S T M M S A T K M N I T K T T R H1N1,1947,USA,A/FortMonmouth/1/47

N S T M M S A T K M N I T K T T R H1N1,1950,USA,A/FW/50

N S T I M S A T K M N I T K T T R H1N1,1954,MALAYSIA,A/Malaysia/54

N S T M M S A T K M N I T K T T R H1N1,1957,USA,A/DENVER/57

N S T M M S A T K M N I T K T T R H2N2,1957,CHILE,A/Chile/13/57

N S T M M S A T K M N I T K T T R H2N2,1957,JAPAN,A/Japan/305/1957

N S T M M S A T K M N I T K T T R H2N2,1957,RUSSIA,A/Leningrad/134/57

N S T M M S A T K M N I T K T T R H2N2,1957,SINGAPORE,A/Singapore/1/57

D S T M M S A T K M N I T K T T R H2N2,1958,USA,A/Albany/6/58

N S T M M S A T K M N I I K T T R H2N2,1959,AUSTRALIA,A/Victoria/15681/59

N S T M M S A T K M N I T K T T R H2N2,1960,USA,A/Ann Arbor/6/60

N S T M M S A T K M N I T K T T R H2N2,1961,PANAMA,A/Panama/1/61

N S T M M S A T K M N I T K T T R H2N2,1962,JAPAN,A/Japan/170/62

N S T M M S A T K M N I T K T T R H2N2,1964,JAPAN,A/Murakami/4/64

N S T M M S A T K M N I T K T T R H2N2,1964,TAIWAN,A/Taiwan/1964

N S T M M S A T K M N I T K T T R H2N2,1965,JAPAN,A/Kumamoto/1/65

N S T M M S A T K M N I T K T T R H2N2,1965,USA,A/Albany/1/65

N L T M M S A T K M N I T K T T R H2N2,1965,USA,A/Great Lakes/0389/65

N S T M M S A T K M N I T K T T R H2N2,1965,USA,A/Pittsburgh/2/65

N S T M M S A T K M N I T K T T R H2N2,1966,PANAMA,A/Panama/1/66

N S T M M S A T K M N I T K T T R H2N2,1966,USA,A/California/1/66

N S T M M S A T K M N I T K T T R H2N2,1967,JAPAN,A/Tokyo/3/67

N S T V M S A T K M N I T K T T R H2N2,1967,UK,A/England/10/67

N S T M M S A T K M N I T K T T R H2N2,1967,USA,A/AnnArbor/7/67

N S T V M S A T K M N I T K T T R H2N2,1967,USA,A/Georgia/1/67

N S T M M S A T K M N I T K T T R H2N2,1968,KOREA,A/Korea/426/68

N S T M M S A T K M N I T K T T R H2N2,1968,USA,A/Berkeley/1/68

N S T M M S A T K M N I T K T T R H3N2,1968,AUSTRALIA,A/NT/60/68

N A T M I S A I R M N I A K A T K H3N2,1968,AUSTRALIA,A/Victoria/1968

N S T M M S A T K M N I T K T T R H3N2,1968,CHINA,A/Beijing/1/68

N S T M M S A T K M N I T K T T R H3N2,1968,HONG KONG,A/Hong Kong/1/68

N S T M M S A T K M N I T K T T R H3N2,1968,HONG KONG,A/HongKong/16/68

N S T M M S A T K M N I T K T T R H3N2,1968,PANAMA,A/Panama/1/68

N S T M M S A T K M N I T K T T R H3N2,1968,RUSSIA,A/USSR/039/68

N S T M M S A T K M N I T K T T R H3N2,1968,USA,A/Memphis/1/68

N S T M M S A T K M N I T K T T R H3N2,1969,BRAZIL,A/Rio/6/69

N S T M M S A T K M N I T K T T R H3N2,1969,HONG KONG,A/Hong Kong/3/69

N S T M M S A T K M N I A K T T R H3N2,1969,TAIWAN,A/Taiwan/1/69

N S T M M S A T K M N I T K T T R H3N2,1969,UK,A/England/878/69

N S T M V S A T K M N I T K T T R H2H
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1918 H1N1 strain was retained [36]. At first sight, a com-
mon origin of PB2 in all three subtypes seems to contra-
dict the different variant patterns of H1N1H and HxN2H.
However, H1N1 reappeared unchanged, twenty years
after its elimination by the 1957 pandemic, possibly due
to accidental release from a laboratory [3,37]. The PB2
protein of this strain, effectively the ancestor of the H3N2
PB2, was thus re-introduced to form a separate lineage.

The timelines obtained can be useful for detecting epi-
sodes of zoonotic infections, since the signature of avian
and swine sequences are noticeably different from human
signatures. The signatures of recent human isolates reveal
that A/Hong Kong/1774/99 and A/Ontario/RV1273/
2005 strains possessed PB2 proteins with avian character-
istics, a sign of avian-to-human transmission, perhaps via
a swine intermediary [38]. In addition, our results show
that both human and avian characteristic variants circu-
late amongst pigs (Figure 7), making this group of
sequences singularly difficult to characterize.

Characterization of H5N1
Figure 8 shows a timeline of H2H signatures derived from
human H5N1 isolates. All signatures are clearly avian
although, unlike the majority of avian strains, most con-
tain at least one human variant. The presence of human
variants may help explain the multiple occurrences of
avian-to-human infections. However, the timeline sug-
gests that H5N1 strains are not accumulating mutations
that will increase their potential for stable adaptation to
humans: even the E627K mutation, present in some
sequences, is not conserved.

This finding is in agreement with the extreme rarity of
human-to-human transmission of avian influenza
viruses. It is also consistent with the observation that the
1957 and 1968 pandemic viruses needed to acquire most
of their internal genes from reassortments with human-
adapted strains. Even if H5N1 became capable of a similar
reassortment with human strains, its potential for patho-
genicity could be affected in unpredictable ways. Since
studies have failed to identify a single molecular compo-
nent responsible for H5N1 pathogenicity, it appears that
the pathogenicity is systemically determined, and that
internal proteins may be involved.

Metadata availability issues
The method described in this study is generic, and appli-
cable to any analysis of systematic differences between
sets of homologous sequences, selected on the basis of a
particular metadata field. For example, the emergence of
new characteristics can be studied by comparing sequence
sets representing different periods of time. The integration
of metadata capabilities in the analysis tools enables the
rapid analysis of multiple sequence subsets, with dramat-

ically reduced data preparation effort. Sequence metadata
is underutilized in current bioinformatic data mining
approaches. We have shown that analysis tools can be
greatly enhanced by this additional knowledge. However,
the quality of results depends on the quality of the under-
lying metadata. Collecting annotations is currently a sig-
nificant obstacle for large-scale analysis, largely due to the
uneven quality of annotations in large public databases.
Large-scale efforts, such as the NIAID project [39], and
specialized databases, such as NCBI Influenza Virus
Resource http://www.ncbi.nlm.nih.gov/genomes/FLU/
FLU.html, are improving the consistency of influenza A
annotations. Text mining techniques can support meta-
data gathering by analyzing publications associated with
sequence records. The availability of intuitive and reusa-
ble text mining tools is increasingly useful for extracting
annotations for specific purposes [40]. In the long term,
however, problems of data duplication and inconsisten-
cies in large-scale public databases are likely to persist.
There is a need to complement public molecular data-
bases with well-curated high-quality annotations. Knowl-
edge management approaches, such as Semantic Web
technologies [41], are likely to prove helpful in this area.

Conclusion
This paper presents a novel approach to the identification
of characteristic variant patterns, based on the compari-
son of pairs of sequence alignments. We have shown that
the method has important practical applications, includ-
ing the identification of host range determinant muta-
tions in Influenza A viruses.

The higher number of PB2 characteristic sites identified in
the present study with respect to previous studies show
that mutual information analysis is more powerful than
earlier methods applied for this purpose. This is largely
due to the enhanced comparative power and high scala-
bility of the statistical measures employed. The positions
of the identified characteristic sites indicate their potential
functional significance: 16 of 17 characteristic sites are
located in the well-defined functional domains of PB2
protein. Characteristic variant patterns are a useful tool for
interpreting historical data. Sequence signatures derived
from characteristic variant patterns provide for a concise
and understandable representation of individual
sequences and evolving strains, while the timelines
assembled from signatures of historical sequences are a
helpful tool for understanding the emergence of specific
characteristics. This method is generic and can be applied
to any studies where it is desirable to perform molecular
characterization of sequence groups from large-scale anal-
ysis, particularly for organisms with a high level genetic
variability.
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Signatures of swine-isolated influenza A PB2 proteins against the H2H characteristic variant patternFigure 7
Signatures of swine-isolated influenza A PB2 proteins against the H2H characteristic variant pattern. The H2H 
characteristic variant pattern is the same as that used in Figure 6. The symbol 'X' at a characteristic site indicates that the resi-
due is unknown, due to an incompletely sequenced protein. Some patterns, whose signatures are represented by other 
retained sequences, were removed from the alignment to make the figure more compact. The GenPept accession numbers for 
all sequences used are listed in Table S2 in Additional file 1.

D A M T T A T I R L D A V E A A K A2A

D A I T T S T I R M D A V K T A R H1N1,1930,USA,A/swine/Iowa/15/30

D A I T T S T I R M D V V K A A R H1N1,1931,USA,A/Swine/1976/31

N A T T T S T V K M D A V K S A R H1N1,1977,USA,A/swine/Tennessee/24/77

N A T T T S T V K M D A V K S A K H1N1,1977,USA,A/swine/Tennessee/25/77

N S T M V S A T K M S I T K T T R H3N2,1977,USA,A/Swine/Colorado/1/77

N S T M V S A T K M N I T K T T R H3N2,1980,USA,A/Swine/Wisconsin/194/1980

D A M T T A T I R L D A V E A A K H1N1,1982,FRANCE,A/Swine/Finistere/2899/82

D A M T T A T I R L X X X X X X X H1N2,1994,UK,A/swine/Scotland/410440/94

X A M T T A T I R L D A A E A V K H1N2,1997,FRANCE,A/swine/Cotes d'Armor/790/97

N S T M V S A T K M N I T K T T R H3N2,1997,CANADA,A/Swine/Ontario/41848/97

N S T M V S A T K M Y I T K T T R H3N2,1997,JAPAN,A/sw/Shizuoka/120/97

D A V T T A T I R L D T V E A A K H1N1,1998,ITALY,A/Swine/Italy/1513-1/98

X A M T T A T I R L D A A E A V K H1N2,1998,ITALY,A/swine/Italy/1521/98

X X X X X X X X K M N I P K T T R H3N2,1998,HONG KONG,A/Swine/Hong Kong/2429/98

D A I T I S T A K M X X X X X X X H3N2,1998,USA,A/Swine/North Carolina/35922/98

E A M T T A T I R L D A V E V A R H9N2,1998,HONG KONG,A/swine/Hong Kong/9/98

D A M T T A T I R L D A A E A A K H3N2,1998,ITALY,A/Swine/Italy/1523/98

D A M T T A A I R L D A V E A A K H1N2,1999,USA,A/Swine/Indiana/9K035/99

N S T M V S A T X X X X X X X X X H3N2,1999,FRANCE,A/swine/Finisterre/127/99

X X X X X X X X K L D A A E I A K H3N2,1999,HONG KONG,A/swine/Hong Kong/5200/99

D A M T T A S I R L D A V E A A K H3N2,1999,USA,A/Swine/Iowa/533/99

D A M T T A A I R L D T V E A A K H1N2,2000,USA,A/Swine/Minnesota/55551/00

X X X X X X X X K L D A A E I A K H3N2,2000,HONG KONG,A/swine/Hong Kong/7982/00

X X X X X X X X K M N I T K T T R H3N2,2000,HONG KONG,A/Swine/Hong Kong/312/00

X X X X X X X X K M N I T K T T R H3N2,2001,HONG KONG,A/Swine/Hong Kong/9285/01

X X X X X X X X K L D A A E I A K H3N2,2001,HONG KONG,A/Swine/Hong Kong/9296/01

X X X X X X X X K L D A A E M A K H3N2,2001,HONG KONG,A/Swine/Hong Kong/9745/01

D A M T T A I V R L D A A E T A K H3N2,2001,SPAIN,A/Swine/Spain/33601/2001

D A M T T A T I R L D A V E A A K H3N3,2001,CANADA,A/swine/Ontario/42729A/01

D A M T T A A I R L D A V E A A K H1N2,2001,USA,A/Swine/Iowa/930/01

D A M T T A A I R L D T V E A A K H1N2,2002,KOREA,A/Swine/Korea/CY02/02

X X X X X X X X K L D A A E I A K H3N2,2002,HONG KONG,A/Swine/Hong Kong/1144/02

X X X X X X X X K M N I T K T T R H3N2,2002,HONG KONG,A/Swine/Hong Kong/411/02

X X X X X X X X K L D T A E M A K H3N2,2002,HONG KONG,A/swine/Hong Kong/1197/02

N A I T T A A I R L D T V E A A K H1N1,2003,CANADA,A/swine/Ontario/53518/03

D A I T I S T I K M D I V K S A K H1N1,2003,CANADA,A/swine/Ontario/57561/03

N S T M V S A T K M N I T K T T R H1N2,2003,CANADA,A/swine/Ontario/52156/03

X X X X X X X X X X D A V K S T R H1N2,2003,JAPAN,A/swine/Miyagi/5/03

D A M T T A T T R L D A V E A E K H5N1,2003,CHINA,A/swine/Shandong/2/03

N A I T T S T I K M D A V K T A K H1N1,2003,CANADA,A/swine/Alberta/56626/03

D A I T I S T A K M D T V K S A K H1N1,2004,CANADA,A/swine/Ontario/11112/04

D A I T I S T V K M D T V K S A K H1N1,2004,CANADA,A/swine/Ontario/23866/04

D A I M T S T T K M D A V K G A K H1N2,2004,CHINA,A/Swine/Zhejiang/1/2004

D A M T K A A I R L D T V E A E K H3N1,2004,USA,A/swine/Minnesota/00395/2004

D A M T T A I I R L D V A E T A K H3N2,2004,SPAIN,A/swine/Spain/54008/2004

D A M T T A T I R L D A V E A A K H1N1,2004,KOREA,A/swine/Korea/S10/2004

D A M T T A T I R L D A V E A A K H9N2,2004,KOREA,A/Swine/Korea/S452/2004

D A M T T A A I R L D T V E A A K H3N2,2005,CANADA,A/swine/Alberta/14722/2005

N S T M V S A T K M N I T K T T R H2H
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Signatures of human-isolated H5N1 influenza A PB2 proteins against the H2H characteristic variant patternFigure 8
Signatures of human-isolated H5N1 influenza A PB2 proteins against the H2H characteristic variant pattern. 
The H2H characteristic variant pattern is the same as that used in Figure 6. Some patterns, whose signatures are represented 
by other retained sequences, were removed from the alignment to make the figure more compact. The GenPept accession 
numbers for all sequences used are listed in Table S3 in Additional file 1.

D A M T T A T I R L D A V E A A K A2A

D A M T T A T V R L E A V K T A K H5N1,1997,HONG KONG,A/Hong Kong/458/97

D A M T T A T V R L E A V E T A K H5N1,1997,HONG KONG,A/Hong Kong/481/97

D A M T T S T V R L E A V E T A K H5N1,1997,HONG KONG,A/Hong Kong/482/97

D A M T T A T V R L E A V K T A K H5N1,1997,HONG KONG,A/Hong Kong/483/97

D A M T T A T V R L E A V K T A K H5N1,1997,HONG KONG,A/Hong Kong/485/97

D A M T T S T V R L E A V E T A K H5N1,1997,HONG KONG,A/Hong Kong/486/97

D A M T T A T V R L E A V E T A R H5N1,1997,HONG KONG,A/Hong Kong/532/97

D A M T T A T V R L E A V E T A R H5N1,1997,HONG KONG,A/Hong Kong/542/97

D A M T T S T V R L E A V E T A K H5N1,1998,HONG KONG,A/Hong Kong/97/98

D A I T A A T I R L D A V E A A K H5N1,2003,HONG KONG,A/HK/212/03

D A I T A A T I R L D A V E A A K H5N1,2003,HONG KONG,A/Hong Kong/213/03

D A I T A A T I R L D A V E A A K H5N1,2004,THAILAND,A/Thailand/1(KAN-1)/2004

D A I T A A T I R L D A V K A A K H5N1,2004,THAILAND,A/Thailand/2(SP-33)/2004

D A I T A A T I R L D A V K A A K H5N1,2004,VIETNAM,A/Viet Nam/1194/2004

D A I T A A T I R L D A V K A A K H5N1,2004,VIETNAM,A/Viet Nam/3062/2004

D A I T A A T I R L D A V K A A K H5N1,2004,VIETNAM,A/Vietnam/CL26/2004

D A I T T A T T R L D A V E A A K H5N1,2005,INDONESIA,A/Indonesia/5/2005

D A I T T A T T R L D A V E A A K H5N1,2005,INDONESIA,A/Indonesia/CDC194P/2005

D A I T T A T T R L D A V E A T K H5N1,2005,INDONESIA,A/Indonesia/CDC287T/2005

D A I T T A T T R L D A V E A A K H5N1,2005,INDONESIA,A/Indonesia/CDC292N/2005

D A I T T A T T R L D A V E A A K H5N1,2005,INDONESIA,A/Indonesia/CDC7/2005

D A I T A A T I R L D A V K A A K H5N1,2005,THAILAND,A/Thailand/676/2005

D A I T A A T I R L D A V K A A K H5N1,2005,THAILAND,A/Thailand/NK165/2005

D A I T A A T I R L D A V K A A K H5N1,2005,VIETNAM,A/Viet Nam/DT-036/2005

D A I T A A T I R L D A V E A A K H5N1,2005,VIETNAM,A/Vietnam/CL115/2005

D A I T A A T I R L D A V K A A K H5N1,2005,VIETNAM,A/Vietnam/CL2009/2005

D A T T T A T I R L D A V E A A K H5N1,2006,CHINA,A/human/Zhejiang/16/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC326/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC329/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC357/2006

D A I T T A T T R L D A V K A A R H5N1,2006,INDONESIA,A/Indonesia/CDC370/2006

D A I T T A T T R L D A V K A A R H5N1,2006,INDONESIA,A/Indonesia/CDC370E/2006

D A I T T A T T R L D A V K A A K H5N1,2006,INDONESIA,A/Indonesia/CDC390/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC523/2006

D A I T T A T T R L D A V K A A K H5N1,2006,INDONESIA,A/Indonesia/CDC582/2006

D A I T T A T T R L D A V E T A K H5N1,2006,INDONESIA,A/Indonesia/CDC594/2006

D A I T T A T T R L D A V E T A K H5N1,2006,INDONESIA,A/Indonesia/CDC596/2006

D A I T T A T T R F D A V E T A K H5N1,2006,INDONESIA,A/Indonesia/CDC597/2006

D A I T T A T T R L D A V E T A K H5N1,2006,INDONESIA,A/Indonesia/CDC599/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC610/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC624/2006

D A I T T A T T R L D A V E T A K H5N1,2006,INDONESIA,A/Indonesia/CDC625/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC634/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC644/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC669P/2006

D A I T T A M T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC699/2006

D A I T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC739/2006

D A V T T A T T R L D A V E A A K H5N1,2006,INDONESIA,A/Indonesia/CDC742/2006

N S T M V S A T K M N I T K T T R H2H
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Future work
A further possible application of the MI approach is in
genotyping, which typically relies on the interpretation of
phylogenetic trees, usually involving a strong subjective
component. Mutation patterns often characterize geno-
types [11], and mutual information analysis can provide
an objective measure of clustering goodness, while charac-
teristic variant patterns and sequence signatures can be
used to classify sequences.

Methods
Data collection and preparation
We conducted a study on a set of influenza A sequences
annotated with the following metadata properties: isolate
name, country and year of isolation, host organism, sub-
type, and protein name. To include as much historical
information as possible, the working dataset was derived
from all available sequences (as of September 2006) from
the NCBI GenBank and GenPept databases [42], includ-
ing entries mirrored from UniProt [43]. Data collection
and cleaning was performed using the ABK tool, which
processed a total of 85,873 records retrieved using taxon-
omy-based queries. ABK merged complementary annota-
tions from DNA and protein records, checked them for
consistency and removed duplicate entries. The resulting
annotations were verified manually by two independent
curators, producing a set of 40,169 amino acid sequences,
grouped by protein. Both full-length and fragment
sequences were used, since entropy measurements do not
require that all sequences contribute to entropy at all sites.

The analysis described herein focused on a master set of
3,132 annotated PB2 polymerase protein sequences. The
master alignment was carried out using MUSCLE 3.6 [44].
AVANA was subsequently used to extracts alignments of
specific subsets of the collected sequences, based on anno-
tation values. Since the subsets were extracted from the
master alignment without realignment, a direct compari-
son of residue statistics could be made at each site.

Identification of distinctive sites and reconstruction of 
evolutionary timeline
A catalogue of characteristic sites for human-to-human
transmission was prepared using alignments of three sub-
sets of protein sequences:

• A2A: the subset of all avian sequences of all subtypes,
excluding those known to be transmissible amongst
humans (H1N1, H2N2, H1N2 and H3N2). The H5N1
subtype, which is known to infect humans, was also
excluded (719 sequences)

• H1N1H: the subset of all human sequences of H1N1
subtype (281 sequences)

• HxN2H: the subset of all human sequences of H2N2,
H1N2 and H3N2 subtypes (1369 sequences)

The H2N2, H1N2 and H3N2 subgroups are grouped into
a single HxN2H subset, because their PB2 proteins are
known to share a common lineage [3]. Human H1N1
sequences are grouped separately, since they constitute a
separate co-circulating lineage [3], as evidenced by phylo-
genetic analysis [45].

The AVANA tool analysis produced two catalogues of
characteristic sites, from comparisons of A2A to H1N1H,
and A2A to HxN2H. In both case, the same set of analysis
parameters was used, determined as follows.

• The threshold MImin = 0.4 was determined by an analysis
medium-MI sites in all internal proteins of influenza,
which indicated that avian and human sequences con-
verge to the same consensus amino acids as MI falls below
0.4 (data not shown).

• To identify characteristic variants, the threshold rmin = 4
was chosen (i.e. characteristic variants must be four times
more frequent in the set they characterize than in the
other set). To determine this value, we analyzed the prob-
ability ratio r(v, s) for all variants at each position in the
alignment (discarding variants with >99% conservation,
or probabilities below 1%). For PB2, the standard devia-
tion of log10r(v, s) was 0.52, corresponding to a ratio of
3.29 (the log transformation was applied so that ratios
could be compared on a linear scale). An identical analy-
sis of an alignment of NS1 protein sequences produced a
consistent ratio of 3.26, although NS1 is the most variable
internal influenza A protein. A slightly more conservative
threshold ratio of 4 was chosen for our analysis. Post-anal-
ysis verification confirmed that no H2H characteristic var-
iant presented ratios lower than 9.65, while the highest
ratio among H2H non-characteristic variants was 1.45.

• To classify characteristic variants, we chose a threshold
value pcmin = 0.02 (i.e. characteristic variants must occur in
at least 2% of the sequences), which translates to a mini-
mum support of approximately 30 sequences for H2H
characteristic variants. Post-analysis verification showed
that the lowest support for characteristic variants was 65
sequences (residue M at site 105), while support for non-
characteristic human variants at characteristic sites never
exceeded 11 sequences (with the exception of residue I at
site 613, which was supported by 41 sequences, but was
discarded because of insufficient frequency ratio r = 1.45).
These results indicate that no important characteristic var-
iant was omitted by our choice of threshold.

Rather than set arbitrary limits for pc'max (the maximum
contamination in each of the two sets), we manually
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inspected sites that presented contamination higher than
2%. All characteristic sites identified in both human sets
had less than 5% contamination from avian variants.
Above this value, the sites identified were discarded, as
they were only characteristic of one human lineage, usu-
ally because they emerged long after the lineage became
established (for example, variants developed by H1N1
after its reintroduction in 1977).

The H1N1H and HxN2H catalogues were combined,
selecting only positions contained in both catalogues to
produce a characteristic variant pattern of human-to-
human (H2H) transmission. To investigate the evolution-
ary timeline for the emergence of H2H characteristic vari-
ants, a subset alignment (named HPre1970) was
constructed, comprising all human sequences sampled
before 1970. This alignment was processed by the AVANA
tool, which extracted the signatures of each sequence
against the H2H characteristic variant pattern, and
arranged these signatures in chronological order. The
same analysis was carried out for other sequence subsets,
notably the set of all H5N1 sequences isolated in humans
(H5N1H).
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