
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
Clustering ionic flow blockade toggles with a Mixture of HMMs
Alexander Churbanov*1 and Stephen Winters-Hilt1,2

Address: 1The Research Institute for Children, 200 Henry Clay Ave., New Orleans, LA 70118, USA and 2Department of Computer Science,
University of New Orleans, New Orleans, LA, 70148, USA

Email: Alexander Churbanov* - atchourb@cs.uno.edu; Stephen Winters-Hilt - winters@cs.uno.edu

* Corresponding author

Abstract
Background: Ionic current blockade signal processing, for use in nanopore detection, offers a promising new
way to analyze single molecule properties with potential implications for DNA sequencing. The α-Hemolysin
transmembrane channel interacts with a translocating molecule in a nontrivial way, frequently evidenced by a
complex ionic flow blockade pattern with readily distinguishable modes of toggling. Effective processing of such
signals requires developing machine learning methods capable of learning the various blockade modes for
classification and knowledge discovery purposes. Here we propose a method aimed to improve our stochastic
analysis capabilities to better understand the discriminatory capabilities of the observed the nanopore channel
interactions with analyte.

Results: We tailored our memory-sparse distributed implementation of a Mixture of Hidden Markov Models
(MHMMs) to the problem of channel current blockade clustering and associated analyte classification. By using
probabilistic fully connected HMM profiles as mixture components we were able to cluster the various 9 base-
pair hairpin channel blockades. We obtained very high Maximum a Posteriori (MAP) classification with a mixture
of 12 different channel blockade profiles, each with 4 levels, a configuration that can be computed with sufficient
speed for real-time experimental feedback. MAP classification performance depends on several factors such as
the number of mixture components, the number of levels in each profile, and the duration of a channel blockade
event. We distribute Baum-Welch Expectation Maximization (EM) algorithms running on our model in two ways.
A distributed implementation of the MHMM data processing accelerates data clustering efforts. The second,
simultanteous, strategy uses an EM checkpointing algorithm to lower the memory use and efficiently distribute
the bulk of EM processing in processing large data sequences (such as for the progressive sums used in the HMM
parameter estimates).

Conclusion: The proposed distributed MHMM method has many appealing properties, such as precise
classification of analyte in real-time scenarios, and the ability to incorporate new domain knowledge into a flexible,
easily distributable, architecture. The distributed HMM provides a feature extraction that is equivalent to that of
the sequential HMM with a speedup factor approximately equal to the number of independent CPUs operating
on the data. The MHMM topology learns clusters existing within data samples via distributed HMM EM learning.
A Java implementation of the MHMM algorithm is available at http://logos.cs.uno.edu/~achurban.

from Fifth Annual MCBIOS Conference. Systems Biology: Bridging the Omics
Oklahoma City, OK, USA. 23–24 February 2008

Published: 12 August 2008

BMC Bioinformatics 2008, 9(Suppl 9):S13 doi:10.1186/1471-2105-9-S9-S13

<supplement> <title> <p>Proceedings of the Fifth Annual MCBIOS Conference. Systems Biology: Bridging the Omics</p> </title> <editor>Jonathan D Wren (Senior Editor), Yuriy Gusev, Dawn Wilkins, Susan Bridges, Stephen Winters-Hilt and James Fuscoe</editor> <note>Proceedings</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S9/S13

© 2008 Churbanov and Winters-Hilt; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S9/S13
http://creativecommons.org/licenses/by/2.0
http://logos.cs.uno.edu/~achurban
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
Background
The bacterium Staphylococcus aureus secretes α-hemolysin
monomers that bind to the outer membrane of suscepti-
ble cells. Seven monomers can oligomerize to form a very
stable water-filled transmembrane channel [1]. The chan-
nel can cause death to the target cell by rapidly discharg-
ing vital molecules (such as ATP) and disturbing the
membrane potential.

Suspended in lipid bilayer, as shown in Figure 1, the α-
hemolysin channel can be used as a sensor (nanopore-
detector) when large molecules interact with the channel
environment under an applied potential (where the open
channel has 120 picoAmperes of ion flow under normal
conditions). When a 9 bp DNA hairpin enters the pore,
the loop is caught at the vestibule mouth, leaving the stem
terminus perched to readily bind to the amino acid resi-
dues near the limiting aperture, resulting in a consistent
toggle for thousands of milliseconds as shown in Figure 2.

Many approaches to characterizing of nucleic acid analyte
– channel interactions use 2-D scatter plot analysis [2,3].
A recently proposed method of discriminating translocat-
ing RNA polynucleotide orientation [4] uses a combina-
tion of six sigmoid phenomenological functional forms to
approximate possible blockades. A hybrid method of
automated analyte classification was used in [5,6] that
discriminates among 8GC, 9GC, 9CG, 9TA and 9AT mol-
ecules by first obtaining features extracted with Expecta-

tion Maximization (EM) learning on a single 50-state fully
connected Hidden Markov Model (HMM). They then
construct a feature vector based on the HMM parameters
and pass that to a Support Vector Machine (SVM) for clas-
sification (with the binary decision tree shown in Figure
3). Although the process shown in Fig. 3 is scalable, and
has high classification accuracy, it can also involve high
data rejection rates (good for performing solution assays).
This motivates effort to have a less scalable, but lower
data-rejection rate (such as what is needed during
genomic sequencing). Later study of the data examined in
[5,6], with PCA reduction on states followed by a simple,
uninformed, AdaBoost classification (not SVM, see [7]),
led to similar improvement on zero-rejection accuracy,
and thus similar improvements (reductions) on the data-
rejection needed for high-accuracy classification [7]. That
approach, however, didn't begin with the stronger (but
non-scalable in class-number) feature extraction method
described here. This is the first test of what is expected to
be a highly accurate feature extraction method (better
than those employed previously), where the critical limi-
tation in general use, however, is in its scalability in
number of classes to discriminate.

In an interview [In Focus, January 2002], one of the pio-
neers in the development of nanopore technology, Dr.
Mark Akeson, states that getting a machine to learn base
pair or nucleotide signatures and report the results auto-
matically will be a key feature of a nanopore sequencing

α-hemolysin nanopore with captured hairpinFigure 1
α-hemolysin nanopore with captured hairpin.
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
instrument. Here we propose a new method of unsuper-
vised learning of ionic flow blockades with Mixture of
Hidden Markov Models (MHMM) profiles that has a
number of attractive attributes, at the expense of restrict-
ing learning to a smaller state space. For genome sequenc-
ing, the problem reduces to identifying the classes {A, C,
G, T}, i.e., there are only four classes to discriminate.
Thus, for some important problems the non-scaling con-
straint is not an issue and this approach may offer the best
performance.

The Maximum a Posteriori (MAP) molecular classification
with our model opens the possibility for making distrib-
uted decisions in real time. The EM algorithms running on
our model are computationally expensive procedures,
thus, an important method in this work involves compu-
tational speed-up efforts via distributed processing imple-
mentations.

Results
We have learned blockade signal clusters for five different
types of molecules: two such profile mixtures, learned in
50 iterations, are shown in Figure 4. The classification
accuracy is shown in Figure 5, where we used 10-fold resa-
mpling of 500 labeled toggle sample subsets from our test
set [see Section Methods] (the 10-fold resampling is
needed to perform majority-vote classification stabiliza-
tion). The resampling offers a similar stabilization on clas-
sifications, and at similar computational expense, to what

is done via data-rejection in [5,6]. Accuracy here is defined
as

where True Positives (TP), True Negatives (TN), False Pos-
itives (FP) and False Negatives (FN) are among the classi-
fied data samples. We have systematically investigated
how the model complexity affects accuracy as shown in
Figure 6, where average accuracy does not improve for the
model of more than 12 components and more than 4
blockade levels, although some individual molecules take
advantage of increased model complexity as their classifi-
cation becomes more accurate. We have also investigated
the blockade signal duration needed for proper classifica-
tion, as shown in Figure 7, and for the data-sets examined
found that samples with more that 100 ms duration yield
little in either average classification accuracy or classifica-
tion time. We tried using ionic flow blockade samples of
200 ms in the MHMM training, for example, with no
apparent improvement to classification accuracy over the
100 ms duration samples. This behavior was not observed
with the non-MAP, large-state (but scalable), approach
used in [5,6], where greater observation times led to
improved classification (although there is agreement that
there was diminishing returns on learning sets for signal
durations greater then 100 ms, and, especially, if greater
than 500 ms).

Accuracy
TP TN

TP FP TN FN
= +

+ + +
, (1)

Upper Level Toggler (ULT) with profile exampleFigure 2
Upper Level Toggler (ULT) with profile example.

0 0.05 0.1
30

35

40

45

50

55

60

65

70

75

80

B
lo

ck
ad

e
si

gn
al

 (
pA

)

MoG approximation

178 178.2 178.4 178.6 178.8 179 179.2 179.4 179.6 179.8 180
30

35

40

45

50

55

60

65

70

75

80

Time (ms)

Nanopore blockade signal

(a) Profile fitting with Mixture of Gaussians.

N (38.8, 1.7)
N (59.9, 1.8)

0.012

0.038

N (55, 6.13)

0.884

0.995

0.021 N (52.3, 1.2)

0.033
0.005

0.07

0.979 0.962

(b) ULT profile example.
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
The accuracy of consecutive same-analyte toggle samples
classification is shown in Figure 8(b), where we reach
100% performance within 14 classifications, except for
the 9GC molecule, which underperformed when com-
pared with [5,6]. The difficulty with 9GC classification
accuracy convergence could be explained by substantial
confusion with 9AT toggles, which reaches ~17% at first
classification round and reluctantly reduces to ~3% after
21 classification rounds.

The accuracy improvement is consistent with the accuracy
of the previously reported classification process [6] as
shown in Figure 8(a) (except for the 9GC molecule). The
failure to discern 9GC from 9AT in the approach
described here, and not in prior efforts [5,6], may simply
be the result of better blockade-level resolution 'fine-struc-
ture' with the prior model.

The better resolution between 9GC and 9AT channel
blockades obtained with the 50-state single HMM (used in
[5,6]) may simply be due to the fixed 1pA resolution (the
state quantization bin-size) providing a critical resolving
capability between very similar blockade signals. If true, a
hybrid solution may be to directly incorporate fine-struc-
ture into the 4-state multiple HMM processing model that
is used here, by adding fine-structure states at 1pA dis-
tances on either side of the 4 states identified by EM.
Efforts along these lines are ongoing (see Discussion).

The MHMM analysis framework first has been imple-
mented in a concurrent fashion on a quad-core Sun Ultra
40 M2 machine with speedup factor 3.66 as compared to
a conventional implementation, and then distributed to
the five machines of the same type with Java RMI with
additional speedup of 4.02, which translates to the total
speedup of 3.66 × 4.02 = 14.71.

Existing classification process with HMM feature extraction followed by SVM binary tree decisionFigure 3
Existing classification process with HMM feature extraction followed by SVM binary tree decision.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 50 100 150
HMM Feature Vectors

P
ro

ba
bi

lit
y

Emission Variance Level TransitionsLevel Occupation

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 50 100 150
HMM Feature Vectors

P
ro

ba
bi

lit
y

Emission Variance Level TransitionsLevel Occupation

Signal acquisition,
scaling and pre-filtering

50 states HMM, 7 EM
cycles, feature extraction

Binary SVM classification
with weak candidates

rejection

…
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13

Page 5 of 12
(page number not for citation purposes)

Toggle clusters for 9GC and 9CG moleculesFigure 4
Toggle clusters for 9GC and 9CG molecules. The mixture proportions correspond to the frequency of a certain toggle mode.
Sixteen possible transitions corresponding to profile shown in Figure 7 (a) are shown as chessboard, the darker the area of a
cell the more probable a transition. Emissions corresponding to each of the four hidden HMM states are shown below the
transitions matrix. MAP classified 100 ms toggle sample from the learning set corresponding to a certain profile is also shown.

Transition probabilities

Mixing proportion: 0.018722

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.030008

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.61111

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.033232

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.00099992

20

30

40

50

60

70

C
u
rr

e
n
t
(p

A
)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.049356

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

(a) Toggle clusters of 9CG molecule (only 6 of the most interesting components out of 15 are shown).

Transition probabilities

Mixing proportion: 0.018722

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.030008

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.61111

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.033232

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.00099992

20

30

40

50

60

70

C
u
rr

e
n
t
(p

A
)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

Transition probabilities

Mixing proportion: 0.049356

20

30

40

50

60

70

C
u

rr
e

n
t

(p
A

)

State emissions

0 0.02 0.04 0.06 0.08 0.1

Time (ms)

Nanopore blockade signal

(b) Toggle clusters of 9GC molecule (only 6 of the most interesting components out of 15 are shown).

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
Methods
In our approach we used unsupervised distributed learn-
ing of nanopore ionic flow blockade toggles with an
MHMM. MHMMs have a long record of successful imple-
mentations that started in speech recognition [8] and later
were used for clustering protein families [9], sequences
[10] and in the search for splicing enhancers [11]. We use
the HMM profile shown in Figures 2 and 9(a) to model
the channel blockade process using MHMM components
as shown in Figure 9(b). Justification for using such pro-
files is provided in [12], where we have found the dura-

tion of ionic flow blockade levels to be distributed with a
simple geometric distribution. The noise at a fixed-level
blockade level is typically found to be Gaussian, consist-
ent with the overall thermal and shot noise background
for the transient-binding fixed-flow-geometry environ-
ments formed by channel and blockading elements.

MAP classification accuracy with 10-fold resampling on a split-sample data (with 4 levels and 15 components)Figure 5
MAP classification accuracy with 10-fold resampling on a
split-sample data (with 4 levels and 15 components).

100 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Classification accuracy

Molecule type

A
cc

ur
ac

y

 8GC
9GC
9CG
9TA
9AT
Average

Increasing model complexity affects accuracyFigure 6
Increasing model complexity affects accuracy.

4 8 12 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of mixture components

A
cc

ur
ac

y

Classification accuracy vs number of mixture components (100 ms)

8GC
9GC
9CG
9TA
9AT
Average

(a) Accuracy of molecular classification depends on num-

ber of mixture components (with 4 levels in a component).

3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of levels

A
cc

ur
ac

y

Classification accuracy vs number of levels (100 ms)

8GC
9GC
9CG
9TA
9AT
Average

(b) Accuracy of molecular classification depends on num-

ber of levels per component (with 15 components).

Accuracy of molecular classification depends on sample dura-tionFigure 7
Accuracy of molecular classification depends on sample dura-
tion.

510 20 40 80 120 160 200
0.4

0.5

0.6

0.7

0.8

0.9

1

Sample duration (ms)

A
cc

ur
ac

y

Classification accuracy vs sample duration

8GC
9GC
9CG
9TA
9AT
Average
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
The ionic flow blockade records were obtained from the
previous studies [6]. Two axon binary files (each contain-
ing 500 blockade samples of 300 ms) have been used to
learn the probabilistic profiles for each hairpin molecule.
The first 100 ms of each channel blockade is the basis of
the first test set. Four other axon binary files, with uninter-
rupted recordings (non-sweep data), for each hairpin
molecule and recorded on the same day, are then used for
testing. The test set was formed by equiprobable sampling

of 500 labeled blockade samples from the pool of test
files.

Another test set was constructed from the above data files
to measure accuracy of consecutive same-analyte toggle
sample classification. In this instance we take all the avail-
able blockade signal coming from the test files of a certain
molecule (not just the first 100 ms) and use multiple sam-
ple draws from the same signal blockade (i.e., consecutive

Proposed and existing process classification accuracyFigure 8
Proposed and existing process classification accuracy.

(a) Existing process classification accuracy (image credit

[6]).

1 3 5 7 9 11 13 15 17 19 21
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Single molecule classification attempts

A
cc

ur
ac

y

Multiple classifications accuracy

8GC
9GC
9CG
9TA
9AT

(b) Multiple attempts classification performance of the

proposed framework (with 4 levels and 15 components).

HMM profile and mixture of profilesFigure 9
HMM profile and mixture of profiles.

N (μ4, σ
2
4)

N (μ2, σ
2
2)

N (μ1, σ
2
1)

N (μ3, σ
2
3)

(a) HMM profile example.

N (μ2, σ
2

2
)

N (μ1, σ
2

1
)N (μ4, σ

2

4
)

N (μ3, σ
2

3
)

α1

N (μ2, σ
2

2
)

N (μ1, σ
2

1
)N (μ4, σ

2

4
)

N (μ3, σ
2

3
)

αM

· · ·

︸ ︷︷ ︸

(b) Mixture of HMM profiles.
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
100 ms segments). With the 100 ms signal samples drawn
from the same blockade event, we perform MAP scoring
followed by majority vote (with random resolution of
ties). (Note: the data rejection employed in [6] could be
made roughly equivalent to the signal resampling
approach described here by simply collecting consecutive
100 ms samples, as done here, and having classification
on a given blockade once the signal isn't rejected, the only
difference with the classification post-processing being
that in this effort majority vote is employed instead.)
Accuracy is calculated as the number of correct classifica-
tions matching the known molecule type to the total
number of classification events. As in [6], the ionic flow in
each record has been normalized to the open channel cur-
rent 120 pA prior to learning and testing.

For our distributed MHMM system implementation we
have used cluster of five workstations Sun Ultra 40 M2,
each equipped with two AMD Dual-Core Opteron proces-
sors (2220SE 2.8 GHz), connected through gigabit Ether-
net switch.

HMM definition and EM learning
The following parameters describe the conventional
HMM implementation according to [13]:

• A set of states S = {S1,..., SN} with qt being the state vis-
ited at time t,

• A set of PDFs B = {b1(o),..., bN(o)}, describing the emis-
sion probabilities bj(ot) = p(ot|qt = Sj) for 1 ≤ j ≤ N, where
ot is the observation at time-point t from the sequence of
observations O = {o1,..., oT},

• The state-transition probability matrix A = {ai,j} for 1 ≤
i, j ≤ N, where ai, j = p(qt+1 = Sj|qt = Si),

• The initial state distribution vector ∏ = {π1,..., πN}.

A set of parameters λ = (∏, A, B) completely specifies an
HMM. Here we describe the HMM parameter update rules

for the EM learning algorithm rigorously derived in [14].
When training the HMM using the Baum-Welch algo-
rithm (an Expectation Maximization procedure), first we
need to find the expected probabilities of being at a cer-
tain state at a certain time-point using the forward-back-
ward procedure as shown in Table 1.

Let us define ξt(i, j) as the probability of being in state i at
time t, and state j at time t + 1, given the model and the
observation sequence

and γt(i) as the probability of being in state i at time t,
given the observation sequence and the model

The HMM maximization step using these probabilities is
shown in Table 2.

EM learning of HMM mixture

The objective of mixture learning is to maximize the like-

lihood function , i.e. we

wish to find the locally optimal set of parameters

 by using the Expectation Maximiza-

tion (EM) iterative procedure and the set of data points
.

The Expectation step in the mixture fitting algorithm is
done by computing the responsibility matrix of the com-
ponents given the data points:

ξ λ
α β

λt t i t ji j p q S q S O
t i ai jb j ot t j

p O
(,) (, | ,)

() , () ()

(|
= = = = + +

+1
1 1
))

,

(2)

γ λ α β
α β

ξt t i t

j

N

i p q S O t i t i

t i t ii
N

i j() (| ,)
() ()

() ()
(,).= = =

=∑
=

=
∑

1 1

(3)

p p oi
N

i(|) (|) (|)  ΘΘ ΘΘ ΘΘ= ==Π 1

ΘΘ ΘΘ∗ = argmax (|)



Table 1: Forward and backward procedures.

Forward procedure Backward procedure

αt(i) ≡ p(o1,..., ot|qt = Si, λ) βt(i) ≡ p(ot+1,..., oT|qt = Si, λ)
• Initially α1(i) = πibi(o1) for 1 ≤ i ≤ N, • Initially βT(i) = 1 for 1 ≤ i ≤ N,

• for t = 2, 3,..., T and 1 ≤ j ≤ N, • for t = T - 1,...,1 and 1 ≤ i ≤ N,

• Finally is the sequence likehood. • Finally .

α αt t i ji

N
j tj i a b o() () (),= ⎡

⎣⎢
⎤
⎦⎥−=∑ 11

β α βt i j j t tj

N
i b o j() () (),= + +=∑ 1 11

p O iTi

N
(|) ()λ α= =∑ 1

p O b o ii ii

N
(|) () ()λ π β= =∑ 1 11
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
We use Bayes' rule to find the posterior probability
(responsibility) of a mixture component with parameters
λm and emission sequence Ok:

The Expectation step is followed by the maximization step
where we re-estimate parameters.

• Mixture proportions

• Initial probabilities

where is an estimate of initial probabilities for the

component m given sequence Ok,

• Transitions

where is an estimate of transition probabilities for the

component m given sequence Ok,

• Emissions

where is an estimate of emission parameters for the

component m given sequence Ok.

Distributed EM implementation
As discussed in [15], the computational gain of a parallel
implementation can greatly depend on model topology.
In the speech recognition community researchers are able
to use a highly parallel HMM architectures for phoneme
and dictionary word recognition. Typically, when a large
number of Processing Elements (PEs) is used, the utiliza-
tion of each element drops due to communication over-
heads. Therefore, the communication overhead in any
parallel architecture must be strictly managed, ideally
reduced to a constellation of PEs with shared memory
[15]. In recent work [16] we describe the performance of
the following HMM EM algorithms (where we studied the
last on the list):

• Conventional EM due to Leonard E. Baum and Lloyd R.
[17] takes O(T N) memory and O(2T N Qmax + T (Q + E))
time, where T is the length of the observed sequence, N is
the number of HMM states, Qmax is the maximum HMM
node out-degree, E is the number of free emission param-
eters, Q is the number of free transition parameters.

• Checkpointing EM [18-20] takes O(N) memory and
O(3T N Qmax + T (Q + E)) time,

• Linear memory EM [16,21] takes only O(N(Q + E D))
memory and O(T NQmax(Q + E D)) time.

Similar improvements are also described for the HMM
Viterbi implementation in linear memory [16]. In actual
usage with the comparatively small durations generally
examined, the checkpointing algorithm was found to be
the most memory efficient.

Distributed checkpointing algorithm for learning from
large data samples
The distributed checkpointing EM algorithm is shown in
Figure 10. Here are the steps in our distributed check-
pointing algorithm implementation:

1. Client machine splits data sequence O into subse-

quences O1,..., Ot,..., each of size and distributes

them across the servers along with λ,

2. Find Forward and Backward checkpoints in
sequential manner at the corresponding servers where
emission matrices for Ot were calculated and stored,

3. Reconstruct dynamic programming tables of size N
at the servers according to locally stored checkpoints to

make local parameter estimate ,

p O p O

p O p O

p O p

M

M

M

(| ,) (| ,)

(| ,) (| ,)

(| ,) (|

λ λ
λ λ
λ λ

1 1 1

1 2 2

1 3

ΘΘ ΘΘ
ΘΘ ΘΘ
ΘΘ OO

p O p OK M K

M

3

1

,)

(| ,) (| ,)

ΘΘ

ΘΘ ΘΘλ λ
 mixture components

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

K data points

p O mp Ok m

jp Ok jj
Mm k(| ,)

(|)

(|)
.λ α λ

α λ
λλ =

=∑ 1
(4)

ˆ (| ,),α λm m k

k

K

K
p O=

=
∑1

1

λλ (5)

ˆ
ˆ (| ,)

(| ,)
,Π

Π
m

m
k p m Okk

K

p m Okk
K

= =∑

=∑

λ

λ

λλ

λλ
1

1

(6)

Π̂m
k

ˆ
ˆ (| ,)

(| ,)
,A

Am
k p m Oki

K

p m Okk
Km = =∑

=∑

λ

λ

λλ

λλ
1

1

(7)

Âm
k

ˆ
ˆ (| ,)

(| ,)
,B

Bm
k p m Okk

K

p m Okk
Km = =∑

=∑

λ

λ

λλ

λλ
1

1

(8)

B̂m
k

T

O T T

T

T

ˆ (ˆ , ˆ , ˆ)λt t t tA B= Π
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
4. After calculating local parameter estimate, communi-

cate back to the client machine and calculate

,

5. Redistribute newly found among the server
machines for another EM round.

Distributed MHMM parameter estimate
An MHMM can easily split the responsibilities calculation
between several cluster nodes with minimum communi-
cation overhead in the following way:

1. For each parameter λ1,..., λm,..., λM and sequence O1,...,
Ok,..., OK calculate likelihood p(Ok| λm) on the server
nodes and communicate them back to the client,

2. Client finds responsibilities for each mixture compo-
nent and a sequence according to formula (4),

3. Estimated mixture proportions are

found on a client node according to (5),

4. The server nodes find estimates for parameter λm

and sequence Ok and send them back to the client,

5. On the client node these newly computed parameters
are weighted according to responsibilities (6), (7), (8),

6. Newly found HMM parameters are disbursed

back to the server nodes for the next round of EM training.

Discussion and conclusion
There are several advantages in our approach:

• Classification is highly accurate with no data dropped
from consideration,

• Model parameters may have intuitive physical interpre-
tation (but not in this study),

• The MHMM implementation is distributed, such that:

- Learning can take a larger number of samples (for
improved accuracy),

- Enables real-time analyte classification, currently takes
only 0.411 sec to classify 100 ms sample,

- Checkpointing algorithm keeps the memory profile low
both on server and client sides without compromising the
running time [16].

The need for using a mixture model beyond a simple
HMM comes from the observation that generally no more
than half of hairpin blockades come from the same mode
of hairpin molecule interacting with nanopore (the
modes correspond to principal components in the chan-
nel blockade stationary statistics profile). Other mode
contributions require different probabilistic profiles for
classification which naturally leads to a mixture analysis
problem. The method shown in Figure 3 doesn't intro-
duce such modes at the HMM-processing stage, relying
instead on the strengths of the SVM classifier directly.

Increasing EM-learning model complexity beyond 4 levels
and 12 mixture components increases the log-likelihood
of fully trained model, but does not lead to better predic-
tion accuracy as shown in Figure 6. The likelihood
increase is caused by the model overfitting the data. Over-
fitting with HMM-profile models, however, isn't found to
be as detrimental to the generalization performance as
with other learning methods – the main penalty is that the
learning and classification times increase dramatically, as
we need to estimate progressively increasing number of
parameters.

Since we did not computationally exhaust all the possible
parameter settings (number of components, number of
levels and sample duration), we provide a rationale for
the parameter choice we believe is optimal. With prelimi-
nary experiments learning on 9CG toggle samples with
MHMM of 15 toggle clusters we have consistently
exhausted the number of components, many of them con-

λ̂t

ˆ (ˆ , ˆ , ˆ)λ = Π A B

λ̂

ˆ ,..., ˆ , ...,α α α1 m M

λ̂m
k

ˆ ,..., ˆλ λ1 M

Table 2: Maximization step in HMM learning.

Initial probability estimate Transition probability estimate Emission parameters estimate

 = γ1(i), for 1 ≤ i ≤ N. , for 1 ≤ i, j ≤ N.

Gaussian emission ,

, for 1 ≤ j ≤ N.

π̂ i ˆ ,
(,)

()
ai j

t i jt
T

t it
T= =
−∑

=
−∑

ξ

γ
1
1

1
1

ˆ ()
()

()
b oj

ot t jt
T

t jt
T→ = =∑

=∑
μ

γ

γ
1

1

ˆ ()
(ˆ) ()

()
b oj

ot j t jt
T

t jt
T→ =

−=∑

=∑
σ

μ γ

γ
2

2
1

1

Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13

Page 11 of 12
(page number not for citation purposes)

Distributed Checkpointing algorithmFigure 10
Distributed Checkpointing algorithm.

Client

β

λ̂ = (Π̂, Â, B̂)

.

Server 1 Server 2 Server N

α

λ̂√
Tλ̂1 λ̂2

O, λ

. . .

. . .

. . .

. . .

O (N−1)T
N

+1...T
, λO T

N
+1... 2T

N

, λO1... T

N

, λ

BMC Bioinformatics 2008, 9(Suppl 9):S13 http://www.biomedcentral.com/1471-2105/9/S9/S13
verging to the same simple blockade as shown in figure
4(a) at the top right. This observation prompted us to use
no more than 12 components in the channel blockade
signal-mode mixture model.

The number of four blockade levels corresponds to the
physical model of DNA hairpin interacting with nanopore
[5]. From the physical perspective the hairpin molecule
can undergo different modes of capture blockade, such as
Intermediate Level (IL), Upper Level (UL), Lover Level
(LL) conductance states and spikes (S) [6]. When a 9 bp
DNA hairpin initially enters the pore, the loop is perched
in the vestibule mouth and the stem terminus binds to
amino acid residues near the limiting aperture. This
results in the IL conductance level. When the terminal
basepair desorbs from the pore wall, the stem and loop
may realign, resulting in a substantial current increase to
UL. Interconversion between the IL and UL states may
occur numerous times with UL possibly switching to the
LL state. This LL state corresponds to binding of the stem
terminus to amino acids near the limiting aperture but in
a different manner from IL. From the LL bound state, the
duplex terminus may fray, resulting in extension and cap-
ture of one strand in the pore constriction resulting into
short term S state. The allowed transition events between
the levels IL ⇔ UL ⇔ LL ⇔ S to happen at any time during
the analysis procedure. The spikes model, as described in
[16], could possibly be used to increase prediction accu-
racy. However, with the scenario discussed in this manu-
script use of such additions did not lead to higher
performance since the primary blockade modes shown in
Figures 4(a) and 4(b) are void of spikes.

A demo program implementing distributed MHMM anal-
ysis framework is available free of charge on our web site
http://logos.cs.uno.edu/~achurban.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AC conceptualized the project, implemented and tested
the MHMM EM algorithm for nanopore ionic flow analy-
sis. SWH helped with writing the manuscript and pro-
vided many valuable suggestions directing the study. All
authors read and approved the final manuscript.

Acknowledgements
This research was partly funded from an NIH K-22 award (K22LM008794),
an NIH R-21 award (R21GM073617), and an NIH program grant sub-con-
tract (R01HG003703).

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 9, 2008: Proceedings of the Fifth Annual MCBIOS Conference. Sys-
tems Biology: Bridging the Omics. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/9?issue=S9

References
1. Gouaux J, Braha O, Hobaugh M, Song L, Cheley S, Shustak C, Bayley

H: Subunit stoichiometry of staphylococcal α-hemolysin in
crystals and on membranes: a heptameric transmembrane
pore. PNAS 1994, 91:12828-12831.

2. Akeson M, Branton D, Kasianowicz J, Brandin E, Deamer D: Micro-
second time-scale discrimination among polycytidylic acid,
polyadenylic acid, and polyuridylic acid as homopolymers or
as segments within single RNA molecules. Biophysical Journal
1999, 77(6):3227-3233.

3. Butler T, Gundlach J, Trolly M: Ionic current blockades from
DNA and RNA molecules in the α-hemolysin nanopore. Bio-
physical Journal 2007, 93(9):3229-3240.

4. Butler T, Gundlach J, Troll M: Determination of RNA orientation
during translocation through a biological nanopore. Biophysi-
cal Journal 2006, 90:190-199.

5. Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D,
Akeson M: Rapid discrimination among individual DNA hair-
pin molecules at single-nucleotide resolution using an ion
channel. Nature Biotechnology 2001, 19:248-252.

6. Winters-Hilt S, Vercoutere W, DeGuzman V, Deamer D, Akeson M,
Haussler D: Highly accurate classification of Watson-Crick
basepairs on termini of single DNA molecules. Biophysical Jour-
nal 2003, 84:967-976.

7. Iqbal R, Landry M, Winters-Hilt S: DNA molecule classification
using feature primitives. BMC Bioinformatics 2006, 7(Suppl
2):S15.

8. Juang B, Rabiner L: A probabilistic distance measure for hidden
Markov models. AT&T technical journal 1985, 64(2):391-408.

9. Krogh A, Brown M, Mian I, Sjölander K, Haussler D: Hidden
Markov models in computational biology: applications to
protein modelling. Tech Rep UCSC-CRL-93-32, UCSC 1993.

10. Smyth P: Clustering sequences with hidden Markov models. In
Advances in Neural Information Processing Systems Volume 9. Edited by:
Mozer M, Jordan M, Petsche T. The MIT Press; 1997:648.

11. Churbanov A, Rogozin I, Deogun J, Ali H: Method of predicting
splice sites based on signal interactions. Biology Direct 2006,
1(10):.

12. Churbanov A, Baribault C, Winters-Hilt S: Duration learning for
analysis of nanopore ionic current blockades. BMC Bioinformat-
ics 2007, 8(Suppl 7):S14.

13. Rabiner L: A tutorial on hidden Markov models and selected
applications in speach recognition. Proceedings of IEEE 1989,
77:257-286.

14. Bilmes J: A gentle tutorial of the EM algorithm and its applica-
tion to parameter estimation for Gaussian mixture and hid-
den Markov models. In Tech Rep TR-97-021 International Computer
Science Institute; 1998.

15. Mitchell C, Helzerman R, Jamieson L, Harper M: A parallel imple-
mentation of a hidden Markov model with duration mode-
ling for speech recognition. Digital Signal Processing, A Review
Journal 1995, 5:298-306 [http://citeseer.ist.psu.edu/
mitchell95parallel.html].

16. Churbanov A, Winters-Hilt S: Implementing EM and Viterbi
algorithms for hidden Markov model in linear memory. BMC
Bioinformatics 2008, 9:224.

17. Baum L, Petrie T, Soules G, Weiss N: A maximization technique
occurring in the statistical analysis of probabilistic functions
of Markov chains. Ann Math Statist 1970, 41:164-171.

18. Grice J, Hughey R, Speck D: Reduced space sequence alignment.
CABIOS 1997, 13:45-53.

19. Tarnas C, Hughey R: Reduced space hidden Markov model
training. Bioinformatics 1998, 14(5):401-406.

20. Wheeler R, Hughey R: Optimizing reduced-space sequence
analysis. Bioinformatics 2000, 16(12):1082-1090.

21. Miklós I, Meyer I: A linear memory algorithm for Baum-Welch
training. BMC Bioinformatics 2005, 6:231.
Page 12 of 12
(page number not for citation purposes)

http://logos.cs.uno.edu/~achurban
http://www.biomedcentral.com/1471-2105/9?issue=S9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7809129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7809129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7809129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10585944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10585944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10585944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17675346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16214857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16214857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16584568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16584568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047713
http://citeseer.ist.psu.edu/mitchell95parallel.html
http://citeseer.ist.psu.edu/mitchell95parallel.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18447951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18447951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9088708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171529

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Methods
	HMM definition and EM learning
	EM learning of HMM mixture
	Distributed EM implementation
	Distributed checkpointing algorithm for learning from large data samples
	Distributed MHMM parameter estimate

	Discussion and conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

