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Abstract
Background: In recent years, substantial effort has been applied to de novo regulatory motif
discovery. At this time, more than 150 software tools exist to detect regulatory binding sites given
a set of genomic sequences. As the number of software packages increases, it becomes more
important to identify the tools with the best performance characteristics for specific problem
domains. Identifying the correct tool is difficult because of the great variability in motif detection
software. Consequently, many labs spend considerable effort testing methods to find one that
works well in their problem of interest.

Results: In this work, we propose a method (MTAP) that substantially reduces the effort required
to assess de novo regulatory motif discovery software. MTAP differs from previous attempts at
regulatory motif assessment in that it automates motif discovery tool pipelines (something that
traditionally required many manual steps), automatically constructs orthologous upstream
sequences, and provides automated benchmarks for many popular tools. As a proof of concept, we
have run benchmarks over human, mouse, fly, yeast, E. coli and B. subtilis.

Conclusion: MTAP presents a new approach to the challenging problem of assessing regulatory
motif discovery methods. The most current version of MTAP can be downloaded from http://
biobase.ist.unomaha.edu/

Background
The regulation of gene expression in the cell is controlled
by regulatory proteins and functional RNAs that interact
specifically with binding locations on the DNA. In the
past century, molecular biologists have developed many

innovative techniques to identify sites on the DNA that
are bound and regulated by functional RNA and proteins.
As the number of sequenced organisms increases, tradi-
tional techniques such as gel shift assays in combination
with DNAse foot-printing assays can not keep pace with
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the explosion of available sequences. While accurate, tra-
ditional methods require a great deal of time and exper-
tise. Traditional methods also require that the binding
energy of the protein or RNA is great enough to maintain
contact though the course of the assay. Reductionist
approaches can be problematic when faced with non-spe-
cific binding sites or with sites that require the formation
of a complex with adjacent units in order to function. It is
for these reasons that complementary approaches on the
computer have been developed in recent years to increase
success in discovering and annotating cis-regulatory mod-
ules.

Computational discovery of functional subsequences has
been around for some time. In 1984, Galas, Eggert, and
Waterman proposed a method for finding and character-
izing binding positions for the σ 70 protein in E. coli pro-
moter sequences [1]. In its most basic form, the problem
is identifying sequence signatures, or motifs, that exist in
a set of sequences that share the same property (e.g. pro-
moters bound by protein A), but does not exist in a set of
similar sequences that does not have the same property
(e.g. promoters not bound by protein A). Computational
approaches have the advantage that they can reduce the
guess work and cost associated with pure biochemical
approaches. Consequently, many computational meth-
ods such as Gibbs [2,3], MEME [4], Consensus [5,6], Bio-
Prospector [7], AlignAce [8], Ann-Spec [9], MTAP: The
Motif Tool Assessment Platform.

Glam [10], and Weeder [11,12] have been developed in
recent years. Each of these methods employs different
algorithmic insights and scoring functions. The scoring
function and algorithm parameters impact the representa-
tion and rank of the motifs discovered by the algorithm.
In recent years, it has become clear that each of these com-
putational methods has distinct advantages and that the
best performance is achieved by trying multiple methods
over the same data set. The bioinformatics community is
currently seeking to simplify this situation by providing
approaches that integrate multiple methods into one tool
such as BEST [13] and EMD [14]. Approaches that inte-
grate additional sources of information have also emerged
in recent years. For example, approaches such as PhyME
[15], PhyloGibbs [16], and WeederH [17] integrate
sequences from regulatory regions of related organisms.
Other approaches, such as REDUCE [18], integrate expres-
sion values from gene expression arrays. In addition, the
advent of high density arrays and ChIP-chip technology
has necessitated methods that integrate genome wide
binding data [19].

While there are many advantages in integrating additional
sources of information, the steps required also add addi-
tional complexity and cost. Each step along the integra-

tion pipeline opens a new question: what is the best way
to represent and integrate this new data? One has to won-
der if additional data is always better in practice. It could
be that for some regulatory modules, the additional data
also includes additional noise making it more difficult to
recover the binding sites. To make matters more con-
founding, there currently exist more than 150 methods
with thousands of possible pre- and post-processing steps
and alternative runtime procedures (we have compiled a
list of many popular methods here: http://bio
base.ist.unomaha.edu). It is clear that benchmarking tech-
nology is needed to map cis-regulatory motif discovery
methods to data where the method has the best perform-
ance. In other words, given a method M and a set of co-
regulated genes with regulatory sequences T = {t1, t2,...,
tn}, find a mapping M → T with expected performance
over some threshold. A T that has no method over the
threshold is particularly interesting in that such data can
tell us more about the current limitations of regulatory
motif discovery programs so that we can propose
improvements.

In recent years, researchers have begun to solve this prob-
lem by creating benchmarking datasets. In 2004, Tompa
et al. published the first assessment of 13 regulatory motif
discovery algorithms over Fly, Human, Mouse and Yeast
[20]. This work was seminal in that it provided methods
for comparing regulatory motif detection software and
that it benchmarked a large number of popular tools [13].
In 2007, Sandve et al. improved benchmarking technol-
ogy over the Tompa dataset using a machine learning
approach [21]. While these advances opened the impor-
tant debate on how to benchmark algorithm perform-
ance, it remains to be seen if a selection of so few
regulatory binding sites is large enough to form a repre-
sentative set (The assessment included 8 sites from Saccha-
romyces cerevisiae, 6 sites from Drosophila melanogaster, 12
sites from Mus musculus, and 26 sites from Homo sapiens).
In response, Klepper et al. proposed a larger test set and
used it to evaluate several composite motif discovery tools
[22]. This is an important first step in making benchmark-
ing datasets more comprehensive. To date, the most com-
prehensive test set was over the entire E. coli genome [23]
using known transcription factors found in RegulonDB
[24]. While bacterial transcription regulation is very dif-
ferent than regulation in eukaryotes, the density of the
RegulonDB annotation is greater than for any other
organism and this coverage provides us with unique
benchmarking opportunities. Unfortunately, this assess-
ment only considered 5 tools and neglected to include the
tool most successful in the Tompa Benchmark (i.e.
Weeder). To date, there are no tools that can assess algo-
rithms that incorporate additional sources of data such as
sequences from phylogentically related species.
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Currently, cis-regulatory motif tools are assessed using the
statistics and methods from gene prediction. However, in
silico gene annotation differs from cis-regulatory module
annotation in that in gene prediction there exists an
mRNA library for reference. Unlike regulatory binding
assays, mRNA library sequencing is high throughput and
thus provides a large and diverse benchmarking dataset
for gene prediction tools. Consequently, gene prediction
and cis-regulatory module prediction are very different
problems. We currently have very few completely anno-
tated regulatory modules and therefore motif prediction
tools have very few cases to train. In addition, regulatory
modules are thought to evolve at a much faster rate than
the genes they regulate [25]. If this theory is true, the
diversity of regulatory regions is expected to be far greater
than the coding regions they regulate. This means that the
parameters, data, transcription module representation
and algorithm are all important factors in evaluating
motif detection tools.

In this work, we expand upon our parallel architecture for
regulatory motif prediction [26] and propose a method
for evaluation and discovery of data algorithm mappings.
MTAP is a platform that allows one to vary the way scien-
tists process data and algorithm parameters to fine tune
the representation of a regulatory module in method M.
The goal is to discover the best possible mapping of M →
D. Our platform also integrates phylogentically related
regulatory sequences via computing downstream
orthologs from other species. It is clear that phylogentic
footprinting has great potential, however assessing meth-
ods that incorporate sequence from closely related species

is not practical or accurate without automation (mainly
because of the rapid availability of new organisms: as new
organism sequences become available, benchmarks need
to change to take into account the new information). For
these reasons, there is a place for adaptive and automatic
cis-regulatory motif prediction and benchmarking.

Problem description
A cis-regulatory motif discovery pipeline, Mi, contains a
series of steps to separate transcription factor binding sites
from 'background noise'. Motif discovery pipelines
require collecting the positive example sequences, collect-
ing negative example sequences, collecting relevant sup-
porting data, running a separation filter to rank relevant
sites based on an objective function and finally evaluating
or verifying putative sites within the context of each regu-
latory module. Several factors outside of the pipeline itself
contribute to the potential success of the discovery proc-
ess, mainly: (1) the length of the sequences in the positive
and negative sets, (2) the number of sequences in the pos-
itive and negative sets, (3) the distribution of transcrip-
tion factor binding sites in the positive set, (4) the relative
entropy of the transcription factor binding motif, and (5)
the fraction of null sequences (ones that do not contain a
binding site) in the positive set [20]. It is likely there are
additional unknown variables that impact the accuracy of
an approach. For example, better background sequence
models or sequences from closely related species (phylo-
genetic footprinting) are known to affect performance.
Our approach to finding the variables, parameters, and
algorithms that are best suited to annotating regulatory

The Motif Tool Assessment Platform (MTAP) enables a researcher to automate each of the steps in cis-regulatory motif dis-covery, evaluate tools, and propose changesFigure 1
The Motif Tool Assessment Platform (MTAP) enables a researcher to automate each of the steps in cis-regulatory motif dis-
covery, evaluate tools, and propose changes. MTAP is built as a platform where the data collection methods, motif discovery 
pipelines, and known binding sites are all modular components that can be edited and substituted to look at different aspects of 
the complex problem of cis-regulatory region annotation.
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regions is an adaptive data collection and analysis plat-
form (Figure 1).

Our hypothesis is that a platform that automates each
operation in cis-regulatory motif discovery enables dis-
covery of better methods for cis-regulatory motif predic-
tion. Such a platform enables practitioners and users the
necessary flexibility to change characteristics of the data
and algorithm parameters, and to isolate and understand
known challenge cases. In addition, known methods with
many manual steps can be made more explicit. Presently,
it is difficult to benchmark existing approaches because
they have a great variety of algorithmic parameters that
allow the user to interactively optimize the discovery
process. While this approach is advantageous because it
provides flexibility in the discovery process, it also
presents a challenge in algorithm benchmarking: how to
formalize data collection, parameter fine tuning, and
other intuitive steps taken by the most experienced users
of these methods. From a more practical perspective, one
has to wonder what evidence experienced practitioners
use to determine a set of algorithm refinement steps that
will result in better performance over the new dataset (i.e.
what qualities in the data indicate a usage procedure). Our
hypothesis is that the motif discovery process can be
greatly improved if tool parameters are fine tuned based
on previous performance benchmarks. We present algo-
rithm benchmarking over a set of known and related tran-
scription factor binding sites (TFBS) as a method to
uncover the likely performance on the current dataset.
This approach allows the refinement and modification of
motif prediction pipelines. In particular, such a bench-
marking approach allows for interactive modification of
known TFBS in incomplete datasets, modification of the
procedures used in collecting positive, negative, and phy-
logenatically related sequence samples, modification of
methods for finding TFBS within the samples, and even
modification of the methods used to score motif discov-
ery pipelines.

Our central hypothesis is that by looking at all compo-
nents of data and software along the cis-regulatory motif
discovery process, we can refine our understanding of reg-
ulation and discover pipelines with high accuracy. The
way we look at this complex problem is a result of how we
collect the data, how we build algorithms for discovering
regulatory motifs, the biological and manual processes
and data structures used to create comprehensive annota-
tions of cis-regulatory regions, and the methods we
choose to use in grading these motif discovery tools. We
view each of these components as parts that can and
should be modified as the specifics of the biological prob-
lem at hand become clear. In this paper, we present a open
source prototype for cis-regulatory motif discovery algo-
rithm evaluation.

Implementation
MTAP provides an automated method for ranking regula-
tory motif detection algorithms. The underlying principle
is to create a 'test', T, and an 'answer key', K = {k1, k2,...}.
K is generated by parsing the raw database management
systems (DBMS) of RegulonDB [24], DBTBS [27], PRO-
DORIC [28], RegTransBase [29] and Transfac [30]. The
annotated genome, Gj, is then parsed for each regulatory
binding site annotated in K. Tk is a collection of sequences
corresponding to the surrounding regions of known bind-
ing sites for transcription factor k in Gj. Tk is composed of
l instances of binding positions T1, T2,..., Tl in Gj as anno-
tated by the database. To score a method, Mi, we construct
an automated pipeline via a scripting language (Perl/
Python) that runs the method. Each method has a differ-
ent algorithmic approach and has different requirements
of pre- and post-processing. For each method, we con-
struct background probability models, standardize input
datasets, install program dependencies, and provide con-
version and utility scripts so that each method can be
graded fairly. We consider a fair test to be a test where each
program has access to the same information and must
mark the transcription factor binding positions in a stand-
ard way. This standard marking is then assessed by com-
paring the annotation of regulatory sites provided by the
algorithm with the known annotation in the database.

A schematic overview of our assessment method is pre-
sented in Figure 2. Because databases contain many types
of binding positions (not just for transcription factors but
also for sigma factor binding sites, ncRNA interaction sites
and other binding proteins) these evaluations are an indi-
cation of how well each algorithm can recover the binding
positions for each element in the regulatory network and
not just transcription factor binding positions.

Generating upstream sequences
Varying upstream length allows us to explore the trade off
between detecting long range interactions (large n) and
high prediction accuracy (small n). MTAP contains two
genome substringing methods for generating upstream
sequences as shown in Figure 3. 'Completely-realistic' (cr)
data generation is best suited to problems that convert
gene lists to binding locations (such as a micro-array).
'Semi-realistic' (sr) data generation is best suited to prob-
lems that generate a set of sequences (for example when
we know the regions of proposed binding sites). In most
cases 'sr' constructed data produces a more fair compari-
son between pattern finding methods, but is not realistic
when the tools are applied to a set of co-regulated loci.

Completely-realistic data generation is most often the nat-
ural choice, but is limited because the upstream file may
not contain the motif for long range interactions. Also, the
'cr' method may select a different downstream gene as part
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of the data construction procedure. These two issues are
realistic in the cis-regulatory motif discovery process and
are representative of current problems in cis-regulatory
motif discovery. This method is therefore representative of
current methods used in constructing co-regulated
upstream sequences. Future work could be done to make
automated upstream data generation more sensitive to
these types of issues.

The transformation function t(a, n) applies one of the sub-
string operations (currently 'cr' or 'sr') to the reference

genome Gj to produce Tk. Tk is generated by selecting reg-
ulator k and generating an upstream sequence uk, n for all
instances of k in Gj. Figure 4 provides a diagram of several
of the stages used to construct T = T1, T2,... for all instances
of k in Gj. Despite the fact that Tk is constructed by consid-
ering only TF k, all of the other transcription factors in the
database are marked and scored if they fall within
sequence indices for any sequence in Tk.

Generating orthologous upstreams
After the upstream file, Uk, n, is constructed, MTAP collects
regulatory sequences from closely related genomes Gj+1,
Gj+2,..., by using downstream orthologs. To do this, MTAP
constructs a list of all proteins in each genome Gj+1,
Gj+2,.... Before the upstream is created, MTAP uses as orth-
alog detection method to create an orthalog table, O (our
current ortholog detection methods are best bi-directional
blast hits and RSD [31]). O contains a list of protein prod-
ucts from Gj and Gj+1 and a confidence score Oc corre-
sponding to the confidence in the orthology relationship
as determined by the ortholog detection method. For each
sequence in Uk, we select the nearest downstream gene, gi,

j ∈ Gj. MTAP then looks up any entries for gi, j ∈ O. If Oc >
τ for some constant τ, MTAP appends a region n bp
upstream of gj+1. If multiple entries exist for gi, j, MTAP
appends the region upstream gj+1, i such that Oc is greatest.
MTAP continues this procedure for all genomes Gj, Gj+1,....
This procedure is then repeated to construct T1, T2,.... An
example result is found in Figure 4D.

Several important points should be made about phylo-
gentic foot-printing. First, the existence of a set of regula-
tory binding sites exists in Gj does not imply the existence
of the same set of regulatory binding positions in Gj+1 in
the same positions. In our example in Figure 4, Tk does not
contain a binding position for K2 ∈ Gj+2. It is possible that

An overview of the MTAP running procedureFigure 2
An overview of the MTAP running procedure. A. All known binding positions Gj in collected into upstream regions corre-
sponding to each CDS in Gj. B. A transformation function t(a, n) creates a test for binding protein an bases upstream of each 
CDS (note that the transcription start site is often unknown or not correctly annotated). C. Background probability informa-
tion for the entire genome is collected by comparing the upstream regions from the entire genome (or ∀ k) to the foreground 
regions selected by t(a, n). D. Pipeline p runs each step of the proposed method Mi. E. Mi creates a marking on the sequences 
in B that is evaluated against all marked transcription factor binding positions in B to score the performance of Mi in recovering 
binding sites for transcription factor a. This is then repeated for transcription factors b and c.

Demonstration of two different methods for obtaining the sequence n bases surrounding the known regulatory binding siteFigure 3
Demonstration of two different methods for obtaining the 
sequence n bases surrounding the known regulatory binding 
site. In the figure 'cr' refers to completely realistic generation 
where we find the closest downstream CDS location in the 
genome and extract n bases upstream from that CDS. 'sr' 
refers to extracting n/2 bases upstream and downstream of 
the center of the binding site. We assume that programs 
reverse complement sequences appropriately as needed by 
the method as part of the discovery procedure but provide 
upstream sequences on the positive strand relative to the 
downstream CDS. The known motif 'blackfile' sequence is 
represented by a black line over the binding site k that refers 
to the region that is bound by the transcription factor. The 
red regions in the diagram illustrate the actual binding posi-
tions known for motif k for those nucleotides that interact 
with the regulatory protein.
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our criteria to classify orthologs is too stringent to find an
actual ortholog in Gj+1. Notice that in our example Tl con-
tains no upstream corresponding to g1 in Gj+2. In our
example, this occurred because the homology threshold
criteria excluded g2 from Gj+2. Again, these problems will
exist in any current automated pipeline used for regula-
tory motif detection. Some of these issues can be resolved
within the algorithms themselves: many algorithms incor-
porate the hypothesis that zero or many instances of the
cis-regulatory binding motif exists within the upstream
sequence. However, the prospect is very real that we could
integrate sequences that are related but do not contain
binding sites for transcription factor k. Currently, we have
very little understanding of the relationship between the
evolution of regulatory sequences and coding sequences.
It is quite possible that phylogenetically related sequences
introduce additional 'noise' with very little signal in regu-
latory sequences for genes that do not provide critical
functions. These complex relationships warrant an in-
depth study of regulatory evolution as it relates to coding
sequence evolution – which is the subject of future work.
For now, we wish to use this approach to benchmark sin-
gle genome methods as they compare to multiple genome
based methods. To our knowledge, MTAP is the first
method that allows additional sources of information

(sequence conservation) to be automatically integrated as
part of the evaluation process.

Constructing background sequences
Once Tk has been constructed for all K, we present three
possible background sequence files to motif discovery
pipelines: (1) all upstream sequences of length n in Gj, (2)
all upstream sequences of length n that exist in some Tk,
and (3) a fasta formated sequence of Gj. Programs that
incorporate phylogeny have different background
sequence requirements. Such programs require a back-
ground phylogenetic tree constructed from extracting 16S
rRNA from each genome in the study. Some programs
require pre-processing steps to calculate an HMM or GC
content of the test sequences. Other programs require a
background probability distribution of all upstream
sequences in Gj. We compute each of these requirements
for each pipeline in our pre-processing stage and provide
the files to each pipeline.

Compensating for unknown TFBS
Unknown TFBS that exist in Tk complicate the assessment
process. Tools could predict true sites that are currently
unknown or un-annotated. To exclude unknown sites
from Tk, we construct a Markov chain, MCm, (of depth m).

An overview of the pre-processing steps taken in MTAP: AFigure 4
An overview of the pre-processing steps taken in MTAP: A. The source genome Gj with genes g1, g2, g3 with known binding 
sites k1, k2, k3, k4, k5 (found clockwise around the genome from the origin); K1 and K2 are the known regulatory proteins that 
bind to the transcription factors B. Two additional genomes, Gj+1 and Gj+2, that are phylogentically closely related to Gj. Gj+1 and 
Gj+2 also have binding sites C. The background phylogenetic tree constructed via extracting 16S rRNA D. Two tests T1 and T2 
corresponding to known positions from K1 and K2.
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For each sequence, Si, in Tk, si is sampled with MCm. We
then generate an alternative sequence, S'i, through a ran-
dom walk through the sates in MCm. For all TFBS in K that
overlap si, we insert the true TFBS sequence from si into s'i.
In this way, we use MCm to 'scramble' the upstream
sequences in the test and then re-insert the known motifs
back into the sequences at the same positions found in the
source genome. It is also informative to have instances of
true negative sequences produced via MCm, so we produce
instances of Tk with no inserted TFBS. Orthologous
upstream sequences need not be scrambled if they are not
scored. These synthetic sequences serve to make a ' more
fair' test in those cases where very few of the known motifs
are marked. However, such sequences may not correctly
incorporate the biological process that generates true
sequences. To accommodate this, we also insert TFBS into
a random sequence from the set of all upstream sequences
in Gj.

Constructing motif discovery pipelines
In constructing motif discovery pipelines, our intention is
to include pipelines for as many tools as possible. How-
ever, building parsers, installing scripts, and optimizing a
pre-processing, post-processing, and runtime pipeline for
each of over 150 programs is extremely labor intensive.
Our main obstacle is in finding executables that can run
on a variety of architectures in a Linux cluster. In many
cases, we attempted to contact authors to arrange a port of
their tool to a Linux cluster. Many authors are extremely
helpful and we would like to thank them for the advice
and guidance of how to use and port their tool. However,
we realized that even if we have a stand-alone version of a
method working on our architecture, MTAP users will still
need to install many of the tools directly from the authors
(if we do not have the legal authority to distribute the
tool). Our strategy for including a tool is as follows:

• Include tools that are the most popular.

• Include tools that present different and novel scoring
functions for differentiating background sequences from
transcription factor binding sites.

• Include tools that integrate diverse types of information
from public sources.

• Do not include tools that do not have a downloadable
executable or can not be compiled locally, as such tools
can not easily be run thousands of times for assessment
purposes.

• Do not include tools that do not have support for differ-
ent architectures and operating systems (tools we can not
run on our computers).

• As we can not redistribute tools with strict licensing
agreements or 'abandonware', inclusion of such tools is
left to the user community.

Our platform is provided open-source for practitioners
who would like to develop their own pipelines to inte-
grate their tool into MTAP. This approach has an advan-
tage in that the developer of the tool is also the developer
of the pipeline for evaluating the tool. This could provide
an edge as the tool developer will understand the limita-
tions and usage procedures best. We provide our assess-
ment pipelines within our framework for open access
review and improvement.

In this work, we developed pipelines for AlignACE [8],
Ann-Spec [9], ELPH [32], Gibbs [3], Glam [10], MEME
[33], PhyloGibbs [16], PhyME [15], and Weeder [11,12].
For each of these tools in the Tompa et. al benchmark, we
developed an automated system that was as close to the
spirit of the procedure used by the algorithm practitioners
as practical. For example, our AlignACE pipeline contains
a pre-processing script for calculating GC content of the
upstream file and a postprocessing script to mask low
complexity repeats using RepeatMasker. The pipeline then
parses the raw AlignACE output which results in a ranked
list of predicted transcription factor binding sites sorted
via the AlignACE MAP score. The pipeline accepts the
highest c scoring motifs by MAP score and then deter-
mines confidence by calculating the group specificity
score as provided by CompareACE. A high group specifi-
city score and MAP score indicates a high degree of confi-
dence in the prediction provided by the AlignACE
pipeline. For those tools that are not in the Tompa assess-
ment, we carefully followed the usage guides and refined
our pipelines using MTAP to produce the best results pos-
sible.

For some methods, the code is not available and the
method paper does not make it clear if certain data prep-
aration procedures can be accommodated by the method.
For example, some methods account for upstream
sequences that are reverse complemented while others do
not. Some methods account for zero, one, or many motif
instances on one strand while others do not. Some meth-
ods allow for variable motif widths, while others require
an explicit window (thus we need to write a procedure to
run the algorithm over all reasonable multiple widths and
then rank and combine the results from multiple runs).
We assume that motif discovery pipelines are sufficiently
robust to account for these technical details and we
attempted to make our pipelines robust in this way. How-
ever, in constructing these pipelines in this way, we may
have overlooked some aspects of the algorithmic
approach that would make our pipelines not representa-
tive of the original author intent (i.e. our pipeline may not
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be representative of the best performance possible by
expert manual application of the method). We addressed
this issue in two ways. First, we built pipelines for multi-
ple implementations of similar approaches (e.g. Gibbs
and ELPH). Second, we refined each pipeline based on the
objective function found in the literature and the bench-
marks obtained via MTAP. To guard against over-fitting of
a pipeline to a certain dataset, we did not allow modifica-
tion of the code or implementation of any procedures not
recommended explicitly by the authors. We performed
benchmarks over the Tompa assessment datasets, Regu-
lonDB [24], and DBTBS [27] and selected transcription
factors at random to validate if the proposed change
improved results. As the search space is large, there may
exist a set of pre-processing, post-processing, and runtime
steps that may improve the performance of our current
pipelines. If used in this way, MTAP provides the frame-
work for method developers and method users to formal-
ize and improve motif discovery pipelines.

Pipeline evaluation
Three levels of specificity can be considered when evaluat-
ing the accuracy of Mi: (1) Mi correctly predicts the region
bound by some transcription factor k, (2) Mi correctly pre-
dicts the binding site of k, and (3) Mi correctly predicts the
amino acids in TF that interact with specific nucleotides
within the regulatory region. Mi may also correctly predict
the type and strength of the interactions. Predictions of
Type 1 are analogous to a gel shift assay in that we can
identify a part of the regulatory region bound by a protein.
Predictions of Type 2 are analogous to a DNA foot-print-
ing assay. Predictions of Type 2 are more specific in that
each region of interaction between k and the DNA is iden-
tified. For example, if a transcription factor is a dimer, two
interaction sites are identified by predictions of Type 2
whereas only one interaction site is identified by a predic-
tion of Type 1 (a site that contains both sites in a Type 2
prediction). The third type of prediction is analogous to
determining the crystal structure interaction points of the
transcription factor – DNA complex. While the specificity
and information provided by the third Type of prediction
is far greater than annotations of Type 1 or Type 2, such
data is difficult to obtain and few methods make predic-
tions at this level. We therefore generate two annotation
files: a 'redfile' and a 'blackfile' corresponding to the site
level and region level respectively. To generate an
upstream file, we use the blackfile annotation. To assess
the performance of an algorithm we evaluate the predic-
tions versus the redfile annotation.

The redfile annotation RED = I1, I2,... contains a set of

intervals Ik = (u1, v1), (u2, v2),... that correspond to the start

(uh) and stop (vh) positions in Gj corresponding to bind-

ing locations for transcription factor k. To compare the

redfile annotation to the motif tool predictions, Ui

(upstream sequence i in Tk) is used as a scaffold to place

annotation elements. To annotate the known sites at the

nucleotide level, we mark each base, j, in Ui if uh ≤ j ≤ vh ∀

K. (vh ≤ j ≤ uh ∀ K if Ui is on the opposite strand) The pre-

dicted binding locations, , predicted by Mi are

parsed and translated into a ranked list of predicted bind-

ing sites, each of the form . The ranked

list contains elements TFL1, TFL2,... sorted according to

the confidence that Mi has in the prediction accuracy.

MTAP accepts the top c elements from the rank list for
evaluation and inserts them onto the upstream scaffold.
MTAP then marks each position, j, as a predicted nucleo-
tide if there exists some predicted binding site, B, that
overlaps it. At the nucleotide level, we collect the overlap
statistics shown in Table 1.

The first four core statistics (nTP-nucleotide true positives,
nFN-nucleotide false negatives, nFP-nucleotide false posi-
tives, and nTN-nucleotide true negatives) are collected by
summing the number of each of the occurrences shown in
Table 1 in Tk. The site level statistics (sTP-site true posi-

tives, sFN-site false negatives, and sFP-site false positives)
are the final three core statistics provided by MTAP. A site
level statistic encompasses the idea that a group of adja-
cent nucleotides marked as binding positions for tran-
scription factor k by Mi is representative of a binding site

annotation. A site is annotated as a true positive if 

overlaps Ix ∀ x by more than τ percent of Ix. For example,

consider two overlapping sites, a known site Ix of 12 con-

secutive nucleotides and a predicted site B of 8 consecu-

tive nucleotides. Given τ = .25 If Ix shares 3 nucleotides

with B it is annotated as a sTP. If Ix shares only 2 nucleo-

tides with B it is annotated as a sFP. Once a site, Ix, over-

laps a prediction, it can not be annotated as a sFN. All

Bk u v
u
, ,

B Bk u v
u

k u v
u

1 1 1 1 2 2, , , , ,...,

Bk u v
ui
, ,

Table 1: Nucleotide Level Statistics. ui, j represents the upstream 
regulatory sequence j at position i, RED is the set of annotated 
database positions found in the 'redfile', B represents a binding 
site predicted by method M.

Statistic Definition

nTP If ui, j exists in both RED and B.
nFN If ui, j exists in RED and not in B.
nFP If ui, j exists in B and not in RED.
nTN If ui, j exists in neither RED nor B.
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remaining sites, I1, I2,..., Ix, that do not have an overlap-

ping prediction for tool Mi are annotated as sFN. The site

level statistics are in Table 2.

Tompa et. al set τ to 25%. The logic was that such an over-
lap makes discovery and refinement of the TFBS possible
in the lab. In large scale genome annotations, we find
such a threshold to be too strict. For example, many TFBS
are not annotated specific enough in databases such as
RegulonDB. This results in TFBS that exist in K that can be
large. Such annotations are actually representative of the
region of binding of the transcription factor (a blackfile
annotation) and not the binding sites (a redfile annota-
tion). Because many motif discovery programs have fixed
motif widths (e.g. 8), a threshold of 25\% would not be
sufficient to mark a sTP (e.g. a site of width 60 and a site
prediction of length 8). We could choose to rank site level
motifs based on a percentage of the prediction width
instead of the regulatory motif width, but this would give
an unfair advantage to methods that predict larger sites.
Our current approach is to set τ equal to the maximum
annotated site width in the dataset divided by the mini-
mum expected motif width predicted by our suite of pro-
grams (usually 8) times 25%. Our logic is that a degree of
overlap indicates that computational and biological
refinement of site predictions can still find the site. That
said, manual curation of datasets to ensure binding site
annotations rather than region annotations is necessary.
Standards across regulatory binding site databases to
delineate each of the three levels of biological data would
greatly increase evaluation accuracy of motif discovery
tools. Also, as not all tools provide a mapping for a set of
sites to a putative regulator, these statistics are currently
not reflective of which regulator is annotated by a site
level prediction.

Following Tompa et. al we define the statistics in Figure 5
to perform the assessment.

These statistics enable us to determine the quality of algo-
rithm predictions and therefore infer which tools may be
best suited to discover unknown motifs under similar sit-
uations. MTAP evaluates each of these statistics by com-
paring the predictions found in the program output with
a set of known binding positions of the same type. For
each instance found in the known dataset, a motif predic-
tion tool is run and then parsed. The prediction is com-

pared to the known binding site via the seven key statistics
in Table 1 and Table 2. These statistics will then be used to
assess the overall performance of the algorithm. MTAP
produces an output file for each regulatory binding motif
in K. Users can sum the raw statistics in these files as they
see fit. For this paper, we collect the seven raw perform-
ance statistics for each motif in the assessment and then
sum these values as if the collection of runs was actually
one run.

In some cases, such sums do not graphically represent the
contribution of each element in the set to the total per-
formance score. To address this, we also developed a
graph that iterates over all runs in the test (T1, T2,..., Tk)
The graph produced is a modified receiver operating char-
acteristic (ROC) curve that combines statistics from mul-
tiple runs [34]. We use the following algorithm to produce
our ROC graphs:

for each motif in the dataset:

input xTP, xFP, nFN, nTN, sTP, sFP, sFN

P < -calculate xSP and xSN for this motif

for all motifs in the dataset:

totalSP = sum(xSP)

totalSN = sum(xSN)

sort(P.xSN)

for all ties in P.xSN; sort(P.xSP)

for i in P:

plot(xSN/totalSN, xSP/totalSP)

This produces a curve that travels straight up and then to
the right if all motifs in the dataset are predicted correctly.
The curve will travel straight to the right and then up if
very few of the motifs are predicted correctly. Finally, if the
tool predicts sites correctly as often as it predicts sites
incorrectly, a line along the diagonal of the ROC graph
will be plotted. However, unlike machine learning algo-
rithms where such a graph is often no better than a ran-
dom classification of sites, using this method there is
some value in graphs along the diagonal because we only
allow 3 site predictions to be placed on the scaffold.

Known motif databases
In MTAP, we have implemented interfaces to each of the
following databases: RegulonDB [24], DBTBS [27], PRO-
DORIC [28], RegTransBase [29] and TRANSFAC [30] (via

Table 2: Site Level Statistics.

Statistic Definition

sTP Number of known sites overlapped by predicted sites.
sFN Number of known sites not overlapped by predicted sites.
sFP Number of predicted sites not overlapped by known sites.
Page 9 of 21
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 9):S6 http://www.biomedcentral.com/1471-2105/9/S9/S6
the Tompa Benchmark Set). Each of these databases was
constructed with different goals and none were built
explicitly to evaluate motif prediction tools. Therefore,
some database cleaning is required to make these datasets
more appropriate for algorithm assessment. We provide
two procedures: (1) We require that the known binding
site occur in at least nl locations in Gj (we set this to 3 for
the results below). MTAP will not create upstream files for
TFBS that do not meet this threshold. (2) We provide a
script to analyze multiple sequence alignments and infor-
mation content of a set of known motifs. We do not
require that the TFBS have a consensus sequence as anno-
tated by the database – our logic being that users can elim-
inate sites without a strong consensus from their analysis
by using our information content script and keeping only
those sites that exceed a set threshold.

Duplicate instances of the same upstream file are elimi-
nated to prevent bias before they are processed by the pro-
grams (however the originals are stored for those users
wishing to do further analysis). MTAP does not accept
TFBS that do not contain a start and end position in Gj.
For TFBS that are inconsistent, users can eliminate the
sites and re-score the TFBS. Our primary goal in collecting
data is to provide automated methods that can improve as
the datasets become more comprehensive. At this time,
both PRODORIC [28] and RegTransBase [29] have very
few TFBS with enough binding positions in the same
genome Gj for us to provide a comprehensive benchmark
(the goal of these databases is more focused on tracking
conversation of TFBS across species). Though labor inten-
sive, high annotation density in datasets such as these pro-
vides the greatest insight into evaluating computational
methods that predict transcription factor binding sites.

Results
In this section we will provide illustrative examples of
how our benchmarking technology can be used to evalu-
ate several important parameters in cis-regulatory motif
discovery. To construct a series of tests for evaluation, we
extracted 2247 known transcription factor binding posi-
tions from RegulonDB [24] corresponding to known posi-
tions from Escherichia coli K12, and 680 known motifs
from DBTBS [27] corresponding to positions from Bacillus
subtilis. Then, we extracted 522 positions from Eukaryote
dataset developed by Tompa et al.[20]. Because Regu-
lonDB has the most comprehensive coverage, we used
RegulonDB to assess the impact of including two addi-
tional genomes (E. coli strain W3110, and E. coli strain
UTI89 in addition to E. coli K12). We used our approach
to include regulatory regions from these strains in evalu-
ating PhyME and PhyloGibbs. Our primary goal is to
show how MTAP can be used to evaluate each of the cen-
tral questions in cis-regulatory motif discovery. To illus-
trate the capabilities of MTAP we will use it to evaluate the
impact of four of the key factors for regulatory motif dis-
covery introduced earlier in this paper, mainly: (1) the
length of the sequences in the positive and negative sets,
(2) the number of sequences in the positive and negative
sets, (3) the distribution of transcription factor binding
sites in the positive set, (4) the relative entropy of the tran-
scription factor binding motif. Through these illustrative
examples we intend to show the exploratory power of
MTAP towards discovering M → T mappings.

Benchmark automation
Our first goal was to illustrate that our system of automa-
tion can provide similar results to manual runs. To do
this, we downloaded the benchmark results from the

Statistics for Evaluating Motif Prediction Algorithm ImplementationsFigure 5
Statistics for Evaluating Motif Prediction Algorithm Implementations.
Page 10 of 21
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 9):S6 http://www.biomedcentral.com/1471-2105/9/S9/S6
Tompa assessment and compared these results to results
obtained from our pipelines for AlignACE, Ann-Spec,
Glam, MEME, and Weeder. Results for nSn, nSp, and sSn
for our platform versus the Tompa benchmarks are shown
in Figure 6. Overall, sensitivity over our dataset is higher,
and specificity suffers slightly. There are a few reasons for
this. First, occasionally experts in the Tompa assessment
pick a TFBS that is not the highest scoring motif. We think
they do this because of their experience with known TFBS
in Transfac. Also, MTAP allows the top c (three in this
case) predictions to be scored as suggested as an improve-
ment by Tompa to increase sensitivity. The original assess-
ment only allowed the top prediction to be scored. In
many cases, high specificity is obtained by the tool not
making a prediction.

Consequently, we feel pipelines that increase sensitivity at
a low cost to specificity provide a good trade-off. Overall
performance is similar over this dataset. This provides evi-
dence that our automation pipelines work well relative to
manual runs by experts. However, there are still many
things better understood by the experts and we continue
to refine our pipelines as more information becomes
available.

Automated assessment
We next used MTAP to produce a benchmark over the sites
annotated in RegulonDB. We chose to run MTAP in 'cr'
mode over upstream sequences of 400 bp (shown in Fig-
ure 7). Overall specificity over this dataset is quite high.
This data indicates that tools such as MEME and Weeder
achieve higher sensitivity (at both the site level and
nucleotide level) without substantial losses to specificity
on E. coli TFBS. Summed over all TFBS, nCC ranged from
-0.03 for PhyloGibbs to 0.06 for MEME. ELPH and Ann-
Spec showed the least correlation in this test with a nCC
value of 0.01 each. Overall correlation is extremely weak
for any tool in the test.

Positive predictive value ranged from 0.13 (PhyME) to
0.28 (Glam) at the nucleotide level and 0.1 (PhyME) to
0.35 (Glam) at the site level. The low values for nPPV and
sPPV for PhyME can be attributed to the large number of
sites that PhyME did not predict any binding positions.
This behaviour is most likely explained by the large
amount of sequence conservation found between the
upstream regions in these different strains of E. coli. It is
likely that the multiple sequence alignment step
employed by PhyME did not encounter enough sequence
divergence in this test set to distinguish between regula-
tory binding positions and background sequence conser-
vation. The PhyloGibbs algorithm did not appear to
encounter the same difficulties. However, PhyloGibbs did
not appear to gain a substantial performance gain over
Weeder even though it had regulatory sequences from

related strains and Weeder did not. AlignACE and Ann-
Spec differ from the other programs in that they sacrifice
specificity slightly for increased sensitivity. Over many of
the regulatory regions both AlignACE and Ann-Spec pro-
vided correct predictions somewhere in the list of pre-
dicted sites when other tools did not.

Figure 7 provides additional evidence that implementa-
tion and user parameters are not as important as the algo-
rithm approach and discrimination function. In this
graph, the two programs (ELPH and Gibbs) that use
weight matrices for motif discrimination and gibbs sam-
pling as the algorithmic optimization procedure have
almost identical performance profiles despite the fact that
the parameters provided to each of these tools are quite
different in our pipelines.

In the original Tompa Assessment, Weeder had more dis-
crimination power than other approaches. While still
quite good, Weeder does not appear to have the same
advantages in this test. We feel that this gives further evi-
dence that the organism and type of regulatory mecha-
nism greatly impact the expected performance of a tool.

Number of upstream sequences
As the upstream size increases relative to the size of the
transcription factor binding sites, the background signals
found in the dataset also increase. This makes discrimina-
tion of true transcription factor binding positions more
default as the number of regulatory regions and length of
each region increases. We wanted to explore the relation-
ship over known transcription factor binding sites. To dis-
cover the relationship between |Tl, i| and |Σi Tl, i| we set |Tl,

i| = 400 bp and ran pipelines for AlignACE, AnnSpec, Elph,
Glam, Gibbs, MEME, PhyME, Phylogibbs, and Weeder
(the notation |x| means the sequence length of x). Figure
8 shows nCC versus |Σi Tl, i|. As the number of sequences
increases, we expect the absolute value of nCC for a tool
to increase once the number of co-regulated sequences
containing the same signal surpasses some threshold.
Once the signal is detected and we continue to increase
the number of sequences in the upstream dataset, the
absolute value of nCC should decrease as the 'noise' intro-
duced for each added sequence far exceeds the signals. If
this is the case for the regulatory regions in E. coli K12,
then the data indicates that 3 co-regulated sequences pro-
vides enough signal to be detected by many of the tools
tested in this assessment. While nCC is quite low; the per-
formance over this test set does not indicate that regula-
tory binding sites are more easily detected if we have more
instances of them (as would be suggested by statistical
learning theory; e.g. if we have more recorded instances of
a phrase uttered by more people an HMM can detect the
phrase more easily). It could be that global regulators that
have more binding positions over the genome also have
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more variability in their binding sites. This makes sense if
one considers that each instance of a global regulatory
binding site must have a different binding energy to con-
trol each of the many genes regulated at different rates.
The regulatory binding positions with the most occur-
rences indicate a higher nCC averaged over the motif
detection tools. This could be explained by a superior abil-

ity of the algorithms to recognize transcription factor
binding sites once the number of binding instances is
large relative to the length of Gj.

Figures 9 and 10 show the site level sensitivity and nucleo-
tide specificity for AlignACE, AnnSpec, Elph, Glam,
Gibbs, MEME, PhyME, Phylogibbs, and Weeder with |tk, i|

8 performance statistics for 9 motif prediction pipelines generated by MTAP over RegulonDB 400 bp upstream regulatory sequencesFigure 7
8 performance statistics for 9 motif prediction pipelines generated by MTAP over RegulonDB 400 bp upstream regulatory 
sequences.
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nCC versus total number of base pairs in Tk over RegulonDB 400 bp sequencesFigure 8
nCC versus total number of base pairs in Tk over RegulonDB 400 bp sequences.

Site sensitivity versus the number of sequences in the upstream file for each Tk in RegulonDB with more than 2 unique binding positions in GjFigure 9
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= 400 bp. Overall, specificity of these tools maintains a
consistent level or increases as the number of sequences in
Tk increase. The inverse is true for sensitivity. As the
number of sequences increase, increased instances of reg-
ulatory signal does not lead to increased tool sensitivity.
This data indicates that as the number of regulatory sig-
nals in the foreground increases linearly, the background
'noise' increases quadratically. High specificity is most
likely the result of increased reluctance on the part of tools
to make predictions as the number of sequences increases.
As the number of sequences increases, the number of co-
occuring motif instances also increases. This makes it
more likely that multiple occurrences of motif for a
related transcription factor may occur in the same
upstream set. This motif cross-talk may play a significant
roll in defeating current detection methods.

Length of upstream sequences
To further explore the impact of the size of Tk, we used
MTAP to extract 500 bp and 200 bp upstream regions
from motifs found in RegulonDB and ran pipelines for
each of the tools. Most all of the tools did not show any
significant correlation between size of Tk and prediction
performance (data not shown). We believe that this indi-
cates a problem with these classification algorithms over
the datasets and not to variation in the size of Tk. It could

be that these algorithms only classify certain subclasses of
regulatory binding profiles accurately. Here we present the
results from Weeder to demonstrate the impact of varying
length of the upstream file. For Weeder, there is a slight
impact on performance if the size of Tk is varied. To dem-
onstrate this point, we calculated sensitivity and specifi-
city over the 10 largest and smallest upstream files at 200
bp and 500 bp, respectively (Tables 3 and 4). This data
shows that Weeder nucleotide specificity is not greatly
impaired by the size of the dataset in these tests. However,
we do see a marked decrease in sensitivity both at the
nucleotide and site level given larger datasets. The largest
dataset has an average sSp of 0.41 while the smallest data-
set has a average sSp 0.58 – a substantial difference. While
nSn increases as a trend from smaller to larger tests, the
predicted window size is on average much smaller than
the motif size resulting in many missed predicted nucleo-
tides. Weeder predicts individual transcription factor
binding locations can be detected fairly well up to 33066
bp over this dataset. Increasing the dataset size further pre-
cipitates a steady drop in sensitivity until predictions are
no longer useful.

To further understand the impact of upstream length on
motif detection performance. For each tool we ran MTAP
and generated ROC graphs for lengths 20 bp, 50 bp, 100

Nucleotide specificity versus the number of sequences in the upstream file for each Tk in RegulonDB with more than 2 unique binding positions in GjFigure 10
Nucleotide specificity versus the number of sequences in the upstream file for each Tk in RegulonDB with more than 2 unique 
binding positions in Gj.
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bp, 200 bp, 300 bp, 400 bp, 500 bp, and 800 bp upstream
of the gene for DBTBS and RegulonDB. To understand the
roll of data generation methods, we generated both com-
pletely-realistic ('cr') and semi-realistic ('sr') data. Here we
provide the results for ANN-Spec in Figure 11 which is
illustrative of these results. The most important character-
istic of note is between the performance curves of DBTBS
(Figure 11a and 11b) and RegulonDB (Figure 11c and
11d). Figure 11c and 11d are more smooth than Figures
11a and 11b. This is because the number of sites in the
regulonDB dataset is much greater than the number of
sites annotated in DBTBS.

Commonly, researchers would like to know what motif
discovery program is best suited to a particular organism.
These findings suggest that this question can not be
addressed currently because of the different amounts of
coverage found in each dataset. If the coverage of TFBS
over the genome were greater in DBTBS, the curves in Fig-
ure 11 would show an accurate comparison of the sensi-
tivity-specificity tradeoff in running the Ann-Spec pipeline
on each organism. Figure 11a and 11c refer to semi-realis-
tic data generation (the known binding site is in the mid-
dle of the upstream sequence). As the window size

increases, there is a precipitous drop in Ann-Spec's ability
to correctly recover the site. High nSn and nSp are
expected at 20 bp 'sr' as most any prediction will overlap
the true TFBS. As the window size increases, we expect the
performance to remain the same for tools with high recov-
ery rate, but performance should decrease for tools that
have poor accuracy. Figure 11c shows a performance drop
in nSn and nSp as the length of the upstream sequence
increases.

Ann-Spec does appear to recover many sites regardless of
the upstream length as noted by the close cluster of per-
formance graphs on the right hand side of Figure 11c.
Although similar, 'cr' generated data appears to have
higher recovery rates for short windows. We believe that
these recovery rates are most likely related to the relation-
ship between the location of the signal for the TFBS and
the location of the signal for the σ70 binding site – but
this requires more exploration.

Site distribution
Algorithm practitioners commonly work from the
assumption that TFBS have more information than the
surrounding sequence. If this is so, the total number of

Table 3: Sensitivity and specificity for the 10 largest and smallest 
datasets from a Weeder run over all of RegulonDB at 500 bp.

10 Smallest Motif Datasets
Size nSn nSp sSp

1503 0.35 0.81 0.5
1503 0.12 0.92 0.33
1503 0.26 0.82 0.67
1503 0.24 0.79 0.5
1503 0.34 0.81 0.67
1503 0.23 0.61 0.67
2004 0.32 0.62 0.73
2004 0.14 0.72 0.5
2004 0.31 0.78 0.5
2004 0.19 0.74 0.5

Avg: 0.25 0.76 0.56
10 Largest Motif Datasets

Size nSn nSp sSp

7515 0.1 0.79 0.31
8016 0.4 0.84 0.75
10521 0.34 0.73 0.54
14028 0.25 0.91 0.44
16533 0.18 0.89 0.34
17535 0.15 0.87 0.48
19038 0.11 0.92 0.24
22044 0.1 0.87 0.29
33066 0.13 0.83 0.43
63126 0.09 0.93 0.28

Avg: 0.18 0.86 0.41

Table 4: Sensitivity and specificity for the 10 largest and smallest 
datasets from a Weeder run over all of RegulonDB at 200 bp.

10 Smallest Motif Datasets
Size nSn nSp sSp

603 0.27 0.65 0.5
603 0.4 0.76 1
603 0.06 0.91 0.33
603 0.06 0.79 0.14
603 0.19 0.85 0.5
603 0.18 0.81 0.33
804 0.47 0.66 0.88
804 0.27 0.84 0.57
804 0.08 0.88 1
804 0.25 0.86 0.5

Avg: 0.22 0.80 0.58
10 Largest Motif Datasets

Size nSn nSp sSp

3015 0.3 0.67 0.65
3216 0.47 0.84 0.81
4221 0.43 0.87 0.64
5628 0.31 0.82 0.61
6633 0.24 0.81 0.46
7035 0.28 0.78 0.82
7638 0.25 0.77 0.54
8844 0.42 0.74 0.72
13266 0.15 0.89 0.37
25326 0.16 0.91 0.42

Avg: 0.30 0.81 0.60
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TFBS in Tl (or the site density) should impact the perform-
ance of a tool. One would expect that a low density of sites
would result in higher recovery rates (and vice versa for a
high density of sites). To test this, we computed the total
number of sites in Tl ∀ l as annotated by RED. The site
density for Tl is the number of sites from RED that exist in
Tl over the number of sequences in Tl. We graphed sSn,
nSp and nCC versus density for each of the tools. For all
of the tools, site density did not appear to have any effect
on sSn, nSp and nCC over 400 bp upstream sequences
from RegulonDB. Figure 12 shows no apparent decrease
in nCC as the site density increases. It could be that there
does not exist enough complex regulatory regions in E. coli
to notice an impact on performance. It is likely that we
would see a different result for organisms with more com-
plex regulatory mechanisms, so we can not rule out site
density as a factor in accurate regulatory motif prediction.
These results do indicate that the 'background' signal is far
more complex than originally thought and every program
has difficulty distinguishing the foreground TFBS from
interfering background signals.

Site entropy
If the background signals are simple and the binding sites
are complex because they must be conserved by evolu-
tion, the relative information content of the TFBS should
be greater than the information content found in the
background signal. If this is the case, there should be a
relationship between the information content of the bind-
ing site and prediction accuracy. To test this, we calculated
information content for each site in RegulonDB using
BioPython and plotted it against nSn, nSp, sSn, (not
shown) and nCC (Figure 13). Information content of the
site alone does not appear to be a determinative factor in
how well these programs can recover the site. Perplexed by
this result, we plotted nSn, nSp, sSn, and nCC versus
information content divided by the number of upstream
sequences in Tk (total number of bp in Tk). The result for
sSn is shown in Figure 14.

Figure 14 shows that for some tools, the ratio of informa-
tion content of the TFBS to the number of sequences in
the upstream file can play a roll in sSn. Stronger informa-

ROC curves for Ann-Spec (20 (blue), 50 (green), 100 (red), 200 (cyan), 300 (magenta), 400 (yellow), 500 (black), and 800 (lower red) basepairs upstream of the CDSFigure 11
ROC curves for Ann-Spec (20 (blue), 50 (green), 100 (red), 200 (cyan), 300 (magenta), 400 (yellow), 500 (black), and 800 
(lower red) basepairs upstream of the CDS.
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tion content and less background information implies
better performance for Weeder, MEME and AlignACE. For
the other tools, it is not clear if this relationship is present.

Discussion
The most practical outcome of this work is an ability to
rank motif prediction tools based on a known TFBS data-
set. Tools with favourable performance characteristics can
then be used to discover additional binding sites in closely
related genomes or used in conjunction with experimen-
tal validation to improve the quality and comprehensive-
ness of existing TFBS databases. In RegulonDB, for
example, of the methods tested Weeder, MEME and Alig-
nACE present advantages over the other tools. AlignACE
presents a more diverse list with more false positives
whereas Weeder and MEME present true motif instances
more often than the other tools. Motif prediction tools are
composed of both a motif scoring function and a discrim-
ination algorithm. The scoring function accepts a motif
representation (e.g. a probability weight matrix) and then

calculates the motif prediction candidates based on a dis-
crimination function (e.g. maximum likelihood). Dis-
crimination algorithms present a computational strategy
to approximate the multiple sequence alignment of pre-
dicted binding positions relative to all multiple sequence
alignments found in the background signal. Both Weeder
and AlignACE have original scoring functions that could
explain their utility on RegulonDB. MEME on the other
hand uses expectation maximization as its discrimination
algorithm. It could be that MEME benefits from this strat-
egy over programs utilizing gibbs sampling. On the other
hand, it is also likely that the predictions provided by
these programs happen to be better over RegulonDB by
random chance.

Conclusion
In this paper we have presented a general method, MTAP,
for evaluating cis-regulatory motif discovery tools. MTAP
is novel and completely different from other approaches
in that it allows both algorithm practitioners and users the

Density of the binding sites in Tk versus nCCFigure 12
Density of the binding sites in Tk versus nCC.
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flexibility to dynamically change attributes of data collec-
tion, algorithm parameters, and assessment. Our results
indicate a clear need toward improvements in each of
these areas. In our results, we explored four of the most
commonly attributed factors to prediction accuracy:
upstream file size, length of upstream sequences, TFBS
density, and TFBS information content. The results
obtained by MTAP in this assessment do not point toward
any of these individual factors as playing a critical roll in
finding TFBS. The results do indicate that the ratio of
information content over upstream file size may have an
influence on performance for some tools.

The primary innovation in MTAP is not that we produce
additional tools or additional benchmarks, but it is that
we produce a platform that can be used to improve tools
and the benchmarking process. The results presented in
this paper indicate that the methods used to prepare
upstream data, the algorithm, the parameters, and the
method used in evaluation all play important rolls in how
we look at the cis-regulatory motif discovery problem.

In the past, many authors have dismissed bacterial regula-
tory motif detection as a far simpler problem than eukary-
ote regulatory motif detection (e.g. Xing et. al [35]). While
it is true that the annotated bacteria regulatory modules
do not have the same level of complexity and combinato-
rial control, our results indicate that even for this 'simple'
problem, regulatory motif detection methods have sub-
stantial room for improvement.

Unlike other approaches, MTAP allows for the integration
of regulatory regions from other species through an auto-
mated procedure. It remains to be seen which integration
procedure and what combination of closely related and
distantly related species improves performance for tools
that incorporate regulatory regions from phylogentically
related species. This is the subject of future work. At the
moment, it does not appear that two closely related
strains are enough to improve performance over conven-
tional single sequence approaches. It would be interesting
to extend our current implementation of MTAP and assess
tools that integrate data from expression arrays and ChIP-
chip arrays. Such approaches should lead to an increase in

nCC versus Information Content (IC) for Tl 400 bp from RegulonDBFigure 13
nCC versus Information Content (IC) for Tl 400 bp from RegulonDB.
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performance, but the parameters and procedures for this
are not currently clear.

It is not currently understood what features of the data
make the problem of finding TFBS so difficult. The key
advantage of MTAP is that it allows us to explore these fea-
tures and propose new models that are more accurate and
robust. It is important to understand the performance
characteristics of the models that have been proposed in
the past before we integrate additional information. In
this way, we can understand more completely if the rela-
tionships found by more sophisticated techniques are real
or if they could have occurred by random chance. Further
exploration into motif representation, motif scoring, and
the relationship between binding sites is still necessary if
we are to accurately predict regulatory binding sites on the
computer.
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