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Abstract
Background: Advances in DNA microarray technology portend that molecular signatures from which microarray will
eventually be used in clinical environments and personalized medicine. Derivation of biomarkers is a large step beyond
hypothesis generation and imposes considerably more stringency for accuracy in identifying informative gene subsets to
differentiate phenotypes. The inherent nature of microarray data, with fewer samples and replicates compared to the
large number of genes, requires identifying informative genes prior to classifier construction. However, improving the
ability to identify differentiating genes remains a challenge in bioinformatics.

Results: A new hybrid gene selection approach was investigated and tested with nine publicly available microarray
datasets. The new method identifies a Very Important Pool (VIP) of genes from the broad patterns of gene expression
data. The method uses a bagging sampling principle, where the re-sampled arrays are used to identify the most
informative genes. Frequency of selection is used in a repetitive process to identify the VIP genes. The putative
informative genes are selected using two methods, t-statistic and discriminatory analysis. In the t-statistic, the informative
genes are identified based on p-values. In the discriminatory analysis, disjoint Principal Component Analyses (PCAs) are
conducted for each class of samples, and genes with high discrimination power (DP) are identified. The VIP gene selection
approach was compared with the p-value ranking approach. The genes identified by the VIP method but not by the p-
value ranking approach are also related to the disease investigated. More importantly, these genes are part of the
pathways derived from the common genes shared by both the VIP and p-ranking methods. Moreover, the binary
classifiers built from these genes are statistically equivalent to those built from the top 50 p-value ranked genes in
distinguishing different types of samples.

Conclusion: The VIP gene selection approach could identify additional subsets of informative genes that would not
always be selected by the p-value ranking method. These genes are likely to be additional true positives since they are a
part of pathways identified by the p-value ranking method and expected to be related to the relevant biology. Therefore,
these additional genes derived from the VIP method potentially provide valuable biological insights.
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Background
DNA microarray technology [1,2] has rapidly advanced
due to the intrinsic and unprecedented ability to simulta-
neously measure gene expression on a whole genome
basis. Microarray technology continues to develop and is
widely cited as offering much utility for translational sci-
ence, from improved drug discovery, including target dis-
covery, to improved clinical diagnostics and disease stage
determination, prognostics and treatment selection, and
more. With the prospect of microarray-derived biomark-
ers being applied in clinical applications, the bar is sub-
stantially raised for identification of informative genes
enabling accurate classifiers, and efforts to this end are
prevalent in the literature [3-11]. More specifically, there
is a compelling need to identify a subset of genes from
among the more than 20,000 in the entire genome that
allow robust classifiers to be developed. The difficulty and
challenge is to overcome the intrinsic characteristics of
microarray data that contains a substantially small
number of samples when compared to the number of
genes [12,13]. These characteristics lead to the risk of fit-
ting to noise as genes with high variability unrelated to
phenotype masquerade as informative genes. The truly
differentiating signals derived from small numbers of
experimental replicates are difficult to distinguish in the
sea of noise, leading to the appearance of unstable (i.e.,
non-reproducible) significant gene lists [14-16].

Gene selection is synonymous with feature selection or
variable selection in machine learning, a process exten-
sively used to mitigate the so called "curse of dimension-
ality" [17-20]. Generally, gene selection is done for either
hypothesis testing or hypothesis generation. Selecting a
subset of genes as molecular signatures or biomarkers that
could be used for developing a generalized and accurate
classifier for differentiating phenotypes is a hypothesis
testing process [21], wherein rigorous validation is
needed. On the other hand, identifying a list of putatively
relevant genes related to a phenotype or endpoint of inter-
est for subsequent research is a hypothesis generating
process [22], wherein validation of the genes is much
more relaxed; the genes so identified often shed light on
the fundamental molecular mechanisms and biological
processes under study.

Selecting and validating an "optimal" set of genes for a
molecular signature or biomarker for a robust classifier is
a complicated and time-consuming task. An exhaustive
search encompassing all possible gene subsets to find the
set yielding the smallest error can be an intractable com-
putational task. Worse still, because the number of genes
far outnumber samples, the potential for fitting to ran-
dom noise is high, making stringent testing and valida-
tion essential [23,24].

Most methods to select informative genes for classifica-
tion model development reported in the literature rely on
ranked genes by fold change, correlation coefficient, or p-
value from a t-statistic, Wilcoxon statistic, or analysis of
variance (ANOVA), or some combination of these [22,25-
30]. To a greater or lesser degree, all of these methods
yield an informative gene list varying on the sample size,
which has led doubt on microarray reliability [14-16]. In
theory, true phenotype differentiating genes should be
expected to express consistently with each other regardless
of the sample size. In other words, the list of informative
genes as well as the underlying mechanisms inferred by
these genes should have nothing to do with the sample
size.

In this study, a bagging [31] based new hybrid gene selec-
tion approach was investigated to identify informative
genes. The rationale of the approach is that informative
genes should consistently show significance for different
variations of sample size. Accordingly, many re-sampling
iterations are conducted to generate different variations of
sample size and the frequency of genes exhibiting signifi-
cance throughout the iterations formed the basis for iden-
tification of the informative genes that are considered as a
Very Important Pool (VIP) of genes. In reality, the VIP
genes can be identified using any existing gene selection
approach or their combinations and can be used to derive
molecular signatures to build robust classifiers with good
generalization capability, or to narrow subsequent
research to reveal relevant, fundamental molecular mech-
anisms in biological processes. In this study, t-statistic and
discriminatory analysis are used to evaluate the signifi-
cance of genes. In the t-statistic, the significant genes are
identified based on p-values. In the discriminatory analy-
sis, disjoint Principal Component Analyses (PCAs) are
conducted for each class of samples, and those genes with
high discrimination power (DP) [32] are identified as sig-
nificant genes. The VIP genes are those having high fre-
quency of showing significance in the re-sampling
iterations. The utility of the proposed approach was dem-
onstrated with nine diverse microarray datasets for identi-
fying the informative genes for classifier development and
compared with commonly used p-value ranking gene
selection approaches.

Results
The VIP gene selection approach for microarray based
molecular signatures was applied to the nine publicly
available microarray gene expression datasets described in
Table 1. For the purpose of comparison, the p-value rank-
ing method was also used. For each dataset, an unbiased
sample splitting, gene selection, and validation dataset
prediction process as depicted in Figure 1 was carried out.
Briefly, a dataset is first randomly split into a training set
with two thirds of the samples and a validation set with
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the remaining samples. With validation samples set aside,
gene selection and classifier development are done using
the training samples. Two lists of 50 genes are selected,
one using the proposed VIP gene selection approach and
the other using p-value ranking. The p-value ranking is

based on an unpaired, two-tailed t-statistic with pooled
variance estimate. In order to exam whether the VIP gene
selection approach can identify informative genes or not,
three sets of classifiers were generated, one for the VIP
genes, one for the p-value genes and another for the genes
uniquely identified by the VIP method (called unique
genes hereafter). A Nearest-Centroid[33] classification
method was used to develop classifiers. These classifiers
are applied to predict the validation samples. The predic-
tion performance of classifiers were compared by accura-
cies, specificities, sensitivities, and the Matthew's
correlation coefficients (MCCs). The definitions of these
measures are given in the section titled "materials and
methods". The sample splitting, gene selection, and vali-
dation dataset prediction steps were repeated 50 times for
adequate statistics.

We first compared the classifiers based on the VIP genes
with those from the p-value ranking. As shown in Table 2,
the VIP classifiers exhibited somewhat better performance
compared to the classifiers from the p-value selected
genes. The p-values from t-statistic for accuracy, specifi-
city, sensitivity and MCC between two groups of classifiers
(the VIP classifiers versus the p-value ranking classifiers)
are 0.0027, 0.32, 0.059, and 0.0092, respectively. There-
fore, at the 0.05 confidence level, the improvement of
classifier measured in MCC and accuracy is significant,
but not for specificity and sensitivity. The results indicate
that the VIP genes may convey more, but not less, biolog-
ically relevant information than the p-value selected
genes.

Next, to determine whether the unique genes indeed con-
tribute to the sample differentiation and thus biological
relevance, we compared prediction performance of the
classifiers built from unique genes with those built from
the p-value ranked genes across the nine datasets. The
average number of unique genes for each dataset is also
listed in Table 2. It was shown that the average perform-

The flowchart for the classifier development and validation using three gene sets: (A) Top 50 p-value ranked genes; (B) Top 50 VIP genes; and (C) the unique VIP genesFigure 1
The flowchart for the classifier development and validation 
using three gene sets: (A) Top 50 p-value ranked genes; (B) 
Top 50 VIP genes; and (C) the unique VIP genes. Specifically, 
the data set is first randomly divided into two thirds of sam-
ples for training and the remainder for validation. Next, three 
sets of genes are generated solely based on the training set, 
and are subsequently used to develop Nearest-Centroid clas-
sifiers. Lastly, the classifiers are used to predict the validation 
samples and their respective prediction performance meas-
ured by accuracy (Acc), specificity (Spec), sensitivity (Sens), 
and Matthew's correlation coefficient (MCC) are calculated. 
The process is repeated 50 times and the averaged perform-
ance metrics are reported in Table 2.

Training set (2/3 samples) Data set 

A: Top 50 p-value genes
B: 50 VIP genes 
C:  VIP unique genes 

Validation set 
 (1/3 samples) 

Classifier

Acc, Spec, Sens, 
and MCC

Split samples 

Performance metrics 

Gene selection 

Repeat 50 times 

Validation

Mean Acc, Spec, Sens and 
MCC from 50 runs 

Table 1: Nine microarray datasets used in the study.

Name Cancer type Prediction task Sample size Number
of events

Number
of genes

Reference

Beer Lung adenocarcinoma Survival 86 24 6532 [48]
Bhattacharjee Lung adenocarcinoma 4-year survival 62 31 5403 [49]

Chen Hepatocellular carcinoma Tumors 156 82 3964 [50]
Pomeroy Medulloblastoma Medulloblastoma survival 60 21 7129 [52]

Rosenwald Non-Hodgkin lymphoma Survival 240 138 7399 [53]
Shipp Diffuse large b-cell 

lymphoma (DLBCL)
Cured 58 32 6817 [54]

Singh Prostate cancer Tumors 102 52 12600 [55]
Yeoh Acute lymphocytic 

leukaemia
Relapse-free survival 233 32 12236 [56]

van't Veer Breast cancer 5-year metastasis-free 
survival

97 46 4948 [57]
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ance metrics (accuracy, specificity, sensitivity, and MCC)
for classifiers built from unique genes (number from 14 to
22) are not very different from those built from top 50 p-
value ranked genes for all nine datasets. The difference of
each pair of average performance metrics is respectively
tested across nine datasets with a null hypothesis that the
compared performance metrics (accuracy, specificity, sen-
sitivity, or MCC) is not very different from each other by
using a paired and two-tailed t-statistic. The p-values given
by t-statistic are 0.63, 0.77, 0.95, and 0.81 for accuracy,
specificity, sensitivity, and MCC respectively. Apparently,
the differences of all prediction performance metrics
among classifiers are not significant at the 0.05 confidence
level. This suggests that the unique VIP genes are statisti-
cally equivalent as those identified by p-value ranking in
distinguishing different types of samples. Therefore, these
unique genes could be an additional subset of genes
which are equally as important as those selected with p-
value ranking. The existence of additional subsets of clas-
sifying genes may imply that there exist multiple biologi-
cal processes for studied endpoints or co-factors.

Lastly, to gain more understanding of the VIP genes in
terms of biology related to the investigated dataset, we fur-
ther examined the unique genes as well as the common
genes shared by the p-value method in the van't Veer data-
set using PathArt http://www.jubilantbiosys.com/
ppa.htm through the FDA genomic tool, ArrayTrack http:/
/www.fda.gov/nctr/science/centers/toxicoinformatics/
ArrayTrack/. PathArt is a pathway analysis tool that con-
tains disease related canonical pathways manually created
from the literature. The van't Veer dataset contains 24
unique genes and 26 common genes. Of 24 unique genes,
ten genes were found in PathArt and were listed in Table
3. Most of these ten genes involve biological processes
related to various cancers; for example, IGFBP5 and
MMP9 are directly related to breast cancer. We also exam-

ined the pathways associated with the 26 common genes
and found seven unique genes were involved in seven
pathways identified by the common genes (Table 4).
These results demonstrate that the unique genes not iden-
tified by the p-value ranking could convey additional
important information for biological interpretation.

Discussion
Quantitatively assessing the effectiveness of gene selection
methods can be problematic owing to several limitations
among which selection bias caused by information leak-
age from training phase to validation phase figures prom-
inently [24]. The most severe bias was described by
Ambroise et al. [21] and Simon et al. [34] as occurring
when identifying genes from the entire dataset (i.e., train-
ing set and validation set) and using them in cross-valida-
tion. Wessels et al. [35] and Lai et al. [24] describe a less
severe bias. Typically, the training samples are used to
generate a series of gene subsets, while the performance of
a classifier trained with the training samples and tested
with the validation samples is applied to estimate the
informativeness of each gene subset. The bias derives from
the fact that the validation samples are used to select the
best performing gene subset. Since optimization of the
gene subset is part of the training process, selection of the
best gene subset should be conducted with the training
samples only. This process as shown in Figure 1 has been
carried out in this study to assess the utility of the pro-
posed VIP gene selection method by entirely avoiding bias
due to information leakage from validation dataset in
training phase.

Classification method selection is another important
aspect of developing predictive models from microarray
expression data. Many classifiers are created with one or
more adjustable parameters that affect not only the pre-
diction accuracy but also the complexity of the classifiers

Table 2: Comparison of prediction performance for Nearest-Centroid classifiers built from unique VIP genes, top 50 p-value ranked 
genes, and 50 VIP genes. The classifier performance metrics, including accuracy (Acc), specificity (Spec), Sensitivity (Sens), and 
Matthew's correlation coefficient (MCC) were calculated based on averages of 50 repetitions of sample splitting, gene selection, and 
validation dataset prediction.

Unique VIP genes 50 p-value ranked genes 50 VIP genes

Data set Number
of genes

Acc (%) Spec (%) Sens (%) MCC Acc (%) Spec (%) Sens (%) MCC Acc (%) Spec (%) Sens (%) MCC

Beer 15 64.7 38.3 74.0 0.13 64.7 38.3 74.0 0.12 65.2 35.4 75.6 0.11
Bhattacharjee 17 58.7 57.8 59.6 0.18 58.0 59.2 56.8 0.16 58.6 59.4 57.8 0.18
Chen 14 96.5 99.9 93.6 0.93 95.3 100.0 91.2 0.91 95.8 100.0 92.1 0.92
Pomeroy 20 60.8 54.0 64.2 0.19 60.8 51.7 65.3 0.18 62.4 55.7 65.8 0.22
Rosenwald 18 55.5 58.1 53.6 0.12 56.8 63.2 52.2 0.15 57.4 62.3 53.8 0.16
Shipp 18 51.6 50.8 52.5 0.03 47.9 51.8 43.0 -0.05 49.0 47.4 51.0 -0.02
Singh 15 94.3 98.3 91.7 0.89 98.1 100.0 96.9 0.96 97.8 100.0 96.4 0.96
Yeoh 22 74.6 37.8 80.2 0.15 78.2 31.0 85.4 0.15 80.2 35.0 87.0 0.21
van't Veer 20 64.8 64.8 64.9 0.30 65.2 61.5 68.6 0.31 66.9 66.1 67.6 0.34
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and the computational expense of their use. The proper
adjustment of the tuneable parameters can affect the fair-
ness of comparative predictive performance assessments.
For example, the relatively simple k-Nearest Neighbour
(KNN)[36] classification method has a tuneable k in the
prediction rules. Adjusting k requires some validation
process be carried out. Generally, different validation
strategies such as leave-one-out cross validation, k-Fold
cross-validation, or Monte Carlo validation, will yield dif-
ferent preferred values of k. Other classification
approaches, such as Support Vector Machine (SVM) [37],
Partial Least Squares Discriminant Analysis (PLS-DA)
[38], Random Forest (RF)[22], and Artificial Neural Net-
works (ANN) [39] are considerably more complex by
comparison, causing more work and computational cost.
According to Wessels et al. [35], Michiels et al. [33], and
Lai et al. [24], choosing a classification method with a lim-
ited complexity can help prevent over-training, thus pro-
viding a more robust predictor. In this study, the simple
classification approach Nearest-Centroid was used to
develop and compare classifiers based on unique VIP
genes and top 50 p-value ranked genes. Since the method
lacks a tuneable parameter, risks of overtraining are less-
ened compared to other methods, as are the chances that
differences in prediction accuracy are due to method
rather than selected genes.

Commonly used gene selection approaches in DNA
microarray data analysis, such as p-value ranking or fold
change ranking and others, assume that all genes are sto-
chastic variables that are unrelated to each for purposes of
calculating significance. This assumption is inconsistent
with the actual biological processes where most genes
have some interdependency to and are interlinked with
other genes through complex mechanisms and pathways.
In contrast, the proposed VIP gene selection approach
uses both DPs and p-values to assess the discriminatory
capability of genes in differentiating sample types. DPs are
calculated from two independent PCAs that fuse discrim-
inating information across whole genes. The interdepend-
ence and interlinking effects among genes are embedded
within the DP calculation, enhancing rather than reducing
many aspects of actual biological processes. Furthermore,
the bagging re-sampling technique, which has been used
to analyze microarray data for clustering [40-42] and clas-
sification [43-46], is used here to mitigate the chance
selection of genes. Compared with p-value ranking-type
gene selection approaches, the proposed VIP gene selec-
tion has great potential to select additional informative
genes that can be useful for either biological insights or to
improve the prediction performance of classifiers.

Conclusion
The new hybrid gene selection approach was investigated
for identifying VIP genes from nine diverse gene expres-

sion datasets. The VIP gene selection approach quantifies
discriminatory capability for differentiating sample
classes using both discrimination analysis and p-value
ranking through a bagging sampling process. The classifi-
ers built from those unique VIP genes showed comparable
prediction capability to those built from the top 50 t-sta-
tistic based p-value ranked genes in predicting the types of
unknown samples. Therefore, the VIP gene selection
approach could provide an additional subset of genes
which are of equivalent performance as those selected
with the t-statistic based p-value ranking. The subset of
VIP genes could convey additional biological information
in terms of associated biological pathways and mecha-
nisms during hypothesis generation. Similarly, the VIP
genes could be used to improve molecular fingerprints for
use in clinical biomarkers.

Materials and methods
Microarray datasets and software
Nine publicly available microarray datasets were used to
demonstrate the relative prediction performance of the
proposed VIP gene selection approach. The datasets are
from Alon et al. [47], Beer et al. [48], Bhattacharjee et al.
[49], Chen et al. [50], Gordon et al. [51], Pomeroy et al.
[52], Resenwald et al. [53], Shipp et al. [54], Singh et al.
[55], Yeoh et al. [56], and van't Veer et al. [57], that for
convenience are hereafter respectively referred to as
"Alon", "Beer", "Bhattacharjee", "Chen", "Gordon",
"Pomeroy", "Resenwald", "Shipp", "Singh", "Yeoh", and
"van't Veer"; information for each dataset is given in Table
1.

The VIP gene selection approach was developed using the
programming language Matlab® 7.0, running on a DELL™
Precision 490 workstation equipped with two Intel® Dual
Core Xeon™ 3.0 GHz processors and 2 GB of memory. The
Matlab codes are available upon request.

The biological interpretation of genes was conducted
using PathArt http://www.jubilantbiosys.com/ppa.htm
through the FDA genomic tool, ArrayTrack http://
www.fda.gov/nctr/science/centers/toxicoinformatics/
ArrayTrack/.

Algorithm
The VIP gene selection approach combines discriminatory
powers derived from two independent principal compo-
nent analyses and p values from t-statistic to filter genes
based on a bagging, re-sampling technique. The algorith-
mic process is depicted in Figure 2, where the training
dataset is composed of n1 samples of class 1 and n2 sam-
ples of class 2. Samples of class 1 and class 2 are repre-
sented by the matrices X1 and X2, respectively. The VIP
genes are chosen through the following steps:
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Table 3: Pathways identified for the unique VIP genes and common genes for the van't Veer dataset.

Accession number 
(Symbol)

Full Name Pathway name Category (e.g. disease)

Unique VIP
genes

AF055033 (IGFBP5) Insulin-like growth factor binding 
protein 5

Estrogen signaling pathway Breast cancer

IGF signaling pathway Lung cancer
NM_000599 (IGFBP5) AR mediated pathway; insulin-like 

growth factor-1 signaling pathway
Prostate cancer

Responsive genes Ovarian cancer
NM_000017 (ACADS) Acyl-coenzyme A dehydrogenase, 

C-2 to C-3 short chain
Responsive genes Colon cancer

NM_004994 (MMP9) Matrix metallopeptidase 9 
(gelatinase B, 92 kDa gelatinase, 92 
kDa type IV collagenase)

Heregulin, and CXCL12 signaling 
pathway

Breast cancer

Bombesin, IL10, IL8, TGFbeta, 
and HGF signaling pathway; 
responsive genes

Prostate cancer

Responsive genes; 
thrombospondin signaling 
pathway

Pancreatic cancer

Gastrin, HGF, and IL4 signaling 
pathway; integrin, and UPAR 
mediated pathway

Colon cancer

Responsive genes Chronic myeloid leukemia
EGF signaling pathway; VEGF 
mediated pathway; responsive 
genes

Ovarian cancer

HGF, and IL6 signaling pathway; 
Responsive genes

Lung cancer

NM_001197 (BIK) BCL2-interacting killer (apoptosis-
inducing)

p53 mediated pathway Colon cancer

NM_001809 (CENPA) Centromere protein A Responsive genes Lung cancer
p21 mediated pathway Cell-cycle

NM_002808 (PSMD2) Proteasome (prosome, macropain) 
26S subunit, non-ATPase, 2

Tat signaling pathway Acquired immuno 
deficiency syndrome

NM_004336 (BUB1) BUB1 budding uninhibited by 
benzimidazoles 1 homolog (yeast)

Spindle Checkpoint Pathway Cell-cycle

NM_004626 (WNT11) Wingless-type MMTV integration 
site family, member 11

Cell-cell signaling pathway Others

WNT receptor signaling pathway Others
NM_004887 (CXCL14) Chemokine (C-X-C motif) ligand 

14
Signal transduction pathway Others

Common
genes

AL050227 (PTGER3) Prostaglandin E receptor 3 
(subtype EP3)

Estrogen signaling pathway Breast cancer

PGE2 mediated pathway Lung cancer
NM_006763 (BTG2) BTG family, member 2 Estrogen signaling pathway Breast cancer

Responsive genes Prostate cancer
CEBP alpha mediated pathway Chronic myeloid leukemia
Miscellaneous DNA repair
BTG mediated pathway Cell-cycle

NM_003862 (FGF18) Fibroblast growth factor 18 WNT signaling pathway Colon cancer
NM_006115 (PRAME) Preferentially expressed antigen in 

melanoma
Responsive genes Ovarian cancer

X05610 (COL4A2) Collagen, type IV, alpha 2 Responsive genes Glioblastoma
NM_003981 (PRC1) Protein regulator of cytokinesis 1 p21 mediated pathway Cell-cycle
NM_006027 (EXO1) Exonuclease 1 p21 mediated pathway Cell-cycle
NM_002811 (PSMD7) Proteasome (prosome, macropain) 

26S subunit, non-ATPase, 7
Tat signaling pathway Acquired immuno 

deficiency syndrome
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1. Randomly select 75% of samples from the training
data, X1 and X2, using a bagging, re-sampling strategy. The
selected samples are represented with X1m for class 1 and
X2m for class 2.

2. Rank genes by their p-values and only keep the top 100
genes for next step. P-values are calculated from a two-
tailed and unpaired t-statistic with pooled variance esti-
mate (i.e., equal variances or homoscedastic assumption)
on X1m and X2m. The remaining data are represented by

 and , respectively.

3. Rank genes based on their discrimination powers (DPs)
and the increment the frequencies of the top 50 genes by
one. The calculation of DPs is described in detail in the
next section "calculation of discrimination power".

4. Repeat steps one through three 100 times.

5. Rank genes by frequencies and choose the top 50 genes
as VIP genes.

Calculation of discrimination power

DPs are calculated from two independent principal com-
ponent analyses (PCAs). PCA is performed on each p-

value-filtered data,  and  from step 2. The opti-

mum number of components for each PCA is determined
using Malinowski's factor indicator function (IND) [58]
with eqs. (1) – (3):

X = TP (1)

where X is either  and ; T and P are the score and

loading matrices of the PCA; λi is the ith eigenvalue of the

total g eigenvalues; and n and p are the number of samples
and the number of genes in the matrix X, respectively. The
optimum number (k) of components for the PCA is the
one that yields the minimum IND value. The discrimina-
tion power (DPj) for a gene j can be calculated with eq.

(4):

where , , , and  are the j columns of matri-

ces E11, E12, E22, and E21, respectively. E11 and E12 are the

residue matrices after projecting  into the PCA spaces

of class 1 and class 2, respectively, while E22 and E21 are

the residue matrices after projecting  into the PCA

spaces of class 1 and class 2, respectively. A residue matrix
is calculated with eq. (5).

E = X - XPPT, (5)

where E is one of the four residue matrices E11, E12, E22,
and E21.

Prediction performance
The prediction performance of a Nearest-Centroid classi-
fier in this study is characterized with four metrics: accu-
racy, specificity, sensitivity, and the Matthew's correlation
coefficient (MCC). The metrics can be calculated from the
prediction confusion matrix shown in Table 5 as follows:

X1m
’ X 2m

’

X1m
’ X 2m

’

RE
i

i k

g

p n kk = = +
∑

−

λ
1

( )

(2)

IND
REk

n k
k =

−( )
,

2 (3)

X1m
’ X 2m

’

DP

T T

T Tj
j j j j

j j j j

=
+

+

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e e e e

e e e e

12 12 21 21

11 11 22 22
,, (4)
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21

X1m
’

X 2m
’

Accuracy
TP TN

TP TN FP FN
= +

+ + +
(6)

Specificity
TN

TN FP
=

+
(7)

Table 4: The pathways involved with both unique VIP genes and common genes for the van't Veer dataset

Pathway name Unique gene Common gene Category

Estrogen signaling pathway IGFBP5 (AF055033, NM_000599) BTG2, PTGER3 Breast cancer
p21 mediated pathway BUB1B, CENPA EX01, PRC1 Cell-cycle
CEBPalpha mediated pathway MMP9 BTG2 Chronic myeloid leukemia
WNT signaling pathway WNT11 FGF18 Colon Cancer
Tat signaling pathway PSMD2 PSMD7 Acquired immuno deficiency syndrome
Responsive genes MMP9 BTG2 Prostate cancer
Responsive genes MMP9, IGFBP5 (AF055033, NM_000599) PRAME Ovarian cancer
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The detailed process for identifying a very important pool (VIP) of genesFigure 2
The detailed process for identifying a very important pool (VIP) of genes. X1 and X2 are, respectively, the gene expression pro-
files for class 1 samples and class 2 samples in the training set. X1m and X2m are samples randomly selected from X1 and X2 in 

the mth bagging step.  and  are the genes remaining after filtering genes from X1m and X2m, respectively. Malinowski's 

factor indicator function (IND) is calculated with equations  and INDk = REk/(n - k)2, where λi is the ith 

eigenvalue of the total g eigenvalues; n is the number of samples and p is the number of genes. The optimum number (k) of 
components corresponds to the IND minimum. E11 and E21 are the residue matrices after projecting X1m and X2m into the PCA 
space for class 1, respectively, while E22 and E12 are the residue matrices after projecting X2m and X1m into the PCA space for 
class 2, respectively. The discrimination power (DP) of a gene j is calculated with the equation: 

, where , , , and  are the j columns of residue 

matrices E11, E12, E22, and E21, respectively.

Start

Select 75% of samples (X1m, X2m) from X1 and X2

independently using bagging re-sampling strategy 

Perform principal component analyses (PCAs) on p-
value filtered data, '

1X m  and '
2X m , respectively 

Determine the optimum number of components for each 
PCA according to Malinowski's factor indicator function 

Calculate the residue matrices E11,
E12, E22, E21 based on two PCAs 

Calculate discrimination powers (DPs) for each 
gene based on the four residue matrices 

Training data: X1, X2, m = 1 
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top 50 genes are identified. 

Rank genes by their p-values and keep the 
top 100 genes ( '

1X m and '
2X m ) for next step. 

Rank genes based on their DPs, the frequencies of 
the top 50 genes increase by one 
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where TP, TN, FP, FN are respectively the numbers of true
positive, true negative, false positive, and false negative
predictions in the confusion matrix (Table 5).
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