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Abstract

Background: Terminal restriction fragment length polymorphism (T-RFLP) analysis is a common DNA-fingerprinting
technique used for comparisons of complex microbial communities. Although the technique is well established
there is no consensus on how to treat T-RFLP data to achieve the highest possible accuracy and reproducibility. This
study focused on two critical steps in the T-RFLP data treatment: the alignment of the terminal restriction fragments
(T-RFs), which enables comparisons of samples, and the normalization of T-RF profiles, which adjusts for differences
in signal strength, total fluorescence, between samples.

Results: Variations in the estimation of T-RF sizes were observed and these variations were found to affect the
alignment of the T-RFs. A novel method was developed which improved the alignment by adjusting for systematic
shifts in the T-RF size estimations between the T-RF profiles. Differences in total fluorescence were shown to be
caused by differences in sample concentration and by the gel loading. Five normalization methods were evaluated
and the total fluorescence normalization procedure based on peak height data was found to increase the similarity
between replicate profiles the most. A high peak detection threshold, alignment correction, normalization and the
use of consensus profiles instead of single profiles increased the similarity of replicate T-RF profiles, i.e. lead to an
increased reproducibility. The impact of different treatment methods on the outcome of subsequent analyses of
T-RFLP data was evaluated using a dataset from a longitudinal study of the bacterial community in an activated
sludge wastewater treatment plant. Whether the alignment was corrected or not and if and how the T-RF profiles
were normalized had a substantial impact on ordination analyses, assessments of bacterial dynamics and analyses
of correlations with environmental parameters.

Conclusions: A novel method for the evaluation and correction of the alignment of T-RF profiles was shown to
reduce the uncertainty and ambiguity in alignments of T-RF profiles. Large differences in the outcome of assessments of
bacterial community structure and dynamics were observed between different alignment and normalization methods.
The results of this study can therefore be of value when considering what methods to use in the analysis of T-RFLP data.
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Background
Knowledge about microbial communities and the factors
governing microbial community composition is fundamen-
tal for our understanding of ecology, but also for biotech-
nological applications such as wastewater treatment [1].
Since isolation and cultivation is usually only successful for
a fraction of the bacterial species present in an environ-
mental sample (e.g. [2]), DNA-based methods are routinely
used to describe microbial communities. DNA fingerprint-
ing, gene sequencing, and in recent years, next-generation
sequencing technologies enables descriptions of microbial
communities at different resolution, where the latter
provides an unprecedented level of detail. Although fin-
gerprinting methods, such as terminal restriction fragment
polymorphism (T-RFLP) (e.g. [3]), are trumped by next-
generation sequencing technologies when it comes to
describing the depth of microbial communities, numer-
ous studies comparing the two methods have shown that
the same conclusions can be drawn from both approaches,
both with regard to community structure [4-7] and dynam-
ics [8-10] of the community. It can also be argued that the
advantage of traditional fingerprinting techniques is the
ability to analyze a high number of samples at a low cost
[11], thus ensuring proper replication and statistical power.
In conclusion, despite the continuously decreasing cost
and the popularity of next-generation sequencing, fin-
gerprinting techniques such as T-RFLP are still relevant
and an important tool for studies of microbial communities.
In a T-RFLP analysis, the gene of interest, typically the

16S rRNA gene, is amplified by PCR where one or both
of the primers are labeled with a fluorescent marker. The
gene is then digested by a restriction enzyme and the
restriction fragments are separated by polyacrylamide
or capillary gel electrophoresis. The terminal restriction
fragments (T-RFs) are detected by an automated DNA
sequencer and the lengths of the T-RFs are estimated.
The resulting T-RFLP fingerprint of a community is a
set of T-RFs, referred to as a T-RF profile. The length
of a T-RF depends on the position of the restriction en-
zyme recognition sites and different T-RF lengths there-
fore represent different gene sequences.
Differences in microbial community composition be-

tween samples are assessed by comparing the presence and
relative abundances of T-RFs in the T-RF profiles. To be
able to accurately interpret differences in T-RF profiles as
differences in community composition it is important to
know the variability of the method and how effective differ-
ent analysis methods are in reducing variations and main-
taining reproducibility. An important part of the analysis is
to distinguish true T-RFs from false T-RFs derived from
noise peaks or artifacts. One way to do this is by the appli-
cation of a peak detection threshold (PDT), either when
the peaks are detected and T-RF sizes are estimated, or
afterwards, on the already generated data. In the literature,
the range of applied PDTs varies from low (25) [12],
accepting most detected T-RFs, to high (200) [13], only
considering peaks with a high fluorescence intensity. This
range may be due to differences in the obtained fluores-
cence intensity of the peaks and background noise levels
between different analytical platforms. In this study T-RFLP
analyses were carried out using the 3730 DNA Analyzer
(Applied Biosystems) with a typical baseline noise level be-
tween 20 and 30 fluorescence units. Here we evaluate the
effect of applying an intermediate (50) or high (100) PDT
on the characteristics of the T-RF profiles and on the subse-
quent comparisons of T-RF profiles. Other important steps
in the analysis of T-RFLP data which affects the reproduci-
bility is the alignment of T-RFs and the normalization
of T-RF profiles, both of which we evaluate here.
Alignment of T-RFs is the process by which it is deter-

mined which T-RFs that are the same in two or more sam-
ples. This may seem straightforward but due to the large
variation in the estimated sizes of the T-RFs it can be both
time-consuming and difficult to do in an accurate way, in
particular when analyzing large datasets with high number
of T-RFs. Various approaches to the alignment of T-RFs
have been presented in the literature (e.g. [12,14,15]) and
tools for automatic alignment has been made available
(e.g. [14-16]). However, although these methods are sound
and can be rationally argued for, in our experience there
are still problems with the alignment that remain unsolved,
mainly due to the variation in estimated T-RF sizes. In this
study we present a novel approach to evaluate and correct
the alignment, which adjusts for differences in the esti-
mated sizes of the T-RFs.
Standardization, or normalization, is important to remove

differences between T-RF profiles due to differences in the
amount of DNA that has been loaded on the gel. As for
T-RF alignment, several methods for normalization have
been presented (e.g. [12,15,17-19]). The normalization pro-
cedures, as well as the subsequent comparison of T-RF
profiles, can be based on either peak height or peak area
data. The use of peak areas can be motivated by the obser-
vation that peak width increases and peak height decreases
with increasing migration time through the gel [20]. Be-
cause of this, long fragments will result in broad and low
peaks and will be underestimated if the relative abundances
of T-RFs are based on peak heights. However, if peak areas
are used, alterations in the relative abundances of the
T-RFs may be produced by overlapping peaks. An evalu-
ation also showed that the use of peak heights more accur-
ately described the relative abundances of T-RFs derived
from samples with defined amounts of different templates
[21]. To evaluate how the definition of total fluorescence
affects the outcome, in this study we use both peak height
and peak area, both in the comparisons of different
normalization procedures and in the comparisons of T-RF
profiles.
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Some normalization methods have previously been
evaluated. Osborne et al. [19] compared three different
normalization methods: the constant percentage threshold
procedure [18], the total fluorescence normalization pro-
cedure [12] and the variable percentage threshold proced-
ure [19]. However, all three methods were based on peak
area data and only three pairs of replicate samples were
used to evaluate how well the normalization methods per-
formed. Moreover, it was not evaluated for how large vari-
ations in the amount of loaded DNA the normalization
methods were effective. In this study we evaluate two
different normalization procedures (the total fluorescence
normalization procedure [12] and the fixed percentage
threshold procedure [22]) and variants thereof and assess
how large differences in initial total fluorescence that can
be adjusted for. Comparisons are also made with a third
method, the noise filtering method by Abdo et al. [15].
The aims of this study are to improve available auto-

matic alignment procedures, to evaluate the efficiency of
different normalization methods and to evaluate the effect
of combinations of PDT and alignment and normalization
strategies on reproducibility. Furthermore, the impact of
the alignment and normalization methods on the results
of comparative analyses of T-RF profiles is also evaluated.
Do the method choices make a great difference in the gen-
eral interpretations of the results, or do the methods only
change the results at a finer, perhaps negligible, level?
The evaluations are done using four different datasets.

A dilution series with DNA concentrations from 17% to
100% is used to investigate the relation between total fluor-
escence and sample concentration, the effect of using single
or consensus profiles and to evaluate the range of efficiency
of a normalization procedure. A set of 51 samples loaded
twice is used to evaluate the variations in T-RF size estima-
tions and the efficiency of different normalization methods.
A set of T-RF profiles derived from DNA-extraction
replicates and PCR replicates is used to evaluate the effi-
ciency of different combinations of peak detection thresh-
old, alignment correction, and normalization methods.
Finally, a dataset from a longitudinal study of the bacterial
community in an activated sludge wastewater treatment
plant (WWTP) is used to evaluate the impact of different
treatment combinations on subsequent comparative ana-
lyses of the T-RF profiles.

Results and discussion
Estimation of T-RF sizes
The estimation of T-RF sizes based on the migration time
through the gel depends on the length, the nucleotide
composition and the secondary structure of the T-RFs
[23,24]. Estimated T-RF lengths have been reported to
be between one and eight bases longer or shorter than
the true lengths [23,24]. Here we show that there is also
a run-to-run variation in the estimation of the T-RF sizes.
A set of 51 samples was loaded twice on the capillary gel
and the resulting T-RF profiles from the two loadings were
compared. The differences in the estimated T-RF sizes be-
tween loading duplicates varied between 0 and 0.97 bases.
The same variation range was observed for T-RFs of all
sizes. The average difference was 0.21 ± 0.19 bases and for
90% of the T-RFs the size difference between the runs was
lower than 0.5. Thus, in most cases, the size variation is
very low and will not affect the alignment and subsequent
analyses. However, in the cases where the size difference is
above 0.5, the alignment may be affected.

Alignment of T-RFs
Before a comparison of two T-RF profiles can be made they
need to be aligned, by comparing the sizes of the T-RFs
present in the profiles. This process of comparing T-RFs is
often referred to as T-RF binning, by placing T-RFs of simi-
lar sizes in alignment bins. The easiest way to bin the T-RFs
would perhaps be to convert the T-RF sizes, which are
given with various decimals, to integers and then place all
T-RFs of the same size in the same bins. However, two
T-RFs of size 134.4 and 134.6 bases would then be added
to different bins instead of the same. To enable a more ac-
curate and faster alignment more complex automatic
binning procedures are used where T-RFs are binned
together if the distance between them is smaller than a
pre-defined value (e.g. [14,15]).
In this study, the moving average procedure described

by Smith et al. [14] was used. For a small number of sam-
ples the automatic binning generally works well. However,
for a large number of samples, with a high number of
T-RFs that are close in size, binning can be problematic
due to the variation in size estimations and the resulting
alignment needs to be checked before further analysis. In
the T-RFLP data analysis work flow used in this study the
alignment is evaluated by classifying the alignment bins as
ambiguous or correct. Alignment bins are classified as am-
biguous if any of the T-RFs in the bin are within the given
alignment range (for example 1 base) of a T-RF in another
alignment bin. For alignments of only two profiles, as in
the comparison of loading duplicates above, ambiguous
alignment bins can be easily corrected, by binning the
T-RFs that are most similar in size (Additional file 1:
Table S1). For the alignment of more than two profiles
the same approach does not work (Additional file 1:
Table S2).
For replicate profiles, as in the examples of Additional

file 1: Tables S1 and S2, ambiguous alignment bins can
be easily corrected, since ideally, the same T-RFs should
be present in all profiles. However, when the T-RF profiles
are derived from different samples and the purpose of the
analysis is to detect and quantify similarities or differences
in community composition, the alignment of the T-RFs
is harder to correct. To illustrate the alignment problems
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that can arise, 38 T-RF profiles generated from activated
sludge samples were analyzed and automatically aligned
using the moving average procedure as described by Smith
et al [14]. Due to the large variation in size estimation and
the high number of T-RFs with little size difference, 40 of
59 alignment bins were classified as ambiguous. Figure 1
(panel A) shows an example of alignment bins classified as
ambiguous.

Systematic shift correction
The differences in the size estimations of the T-RFs are
often systematic, i.e. all T-RFs in one profile are estimated
as a little longer than the T-RFs in another profile. For ex-
ample, for the 38 activated sludge samples there are 703
possible pair-wise comparisons of T-RF profiles. Of these,
373 comparisons, slightly more than half, showed a sys-
tematic shift in the size estimations. By adjusting the T-RF
sizes and correcting for the systematic shift the alignment
can be improved. Figure 2 illustrates the concept of sys-
tematic shift correction.
In Figure 1 (panel B) it can be seen how the adjustment

for systematic shifts reduces the variation in T-RF sizes
between samples and allows for a better binning. Before
the adjustment it is uncertain if there should be one or
two alignment bins, and if two, where the T-RFs should
be binned. The systematic shift correction removes this
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Figure 1 Example of ambiguous alignment bins and correction using
alignment bins generated by the automatic binning procedure. Panel A show
systematic shifts in the estimation of T-RF sizes.
uncertainty. Note that, as stated above, there is not a
systematic shift in the size estimations for all pair-wise
comparisons so the systematic shift correction is not
valid for all T-RF profiles. However, in the given example
in Figure 1, the profiles with the shortest T-RFs all display
a systematic shift towards the profiles with the longest
T-RFs. It should also be noted that even though correc-
tions for systematic shifts do help in resolving many am-
biguous alignment bins, it does not always succeed.
In the time series dataset there were 59 alignment bins

in the original alignment. 33 of these, more than half, were
determined to be ambiguous after initial inspection. By
using the systematic shift correction as an aid to objectively
resolve the alignment, the total number of bins was re-
duced to 54, with only 17 remaining ambiguous.

Total fluorescence and number of observed T-RFs
There was a large variation in total fluorescence and in
the number of observed T-RFs between the 38 activated
sludge samples in the time series dataset. The total num-
ber of T-RFs was clearly related to the total fluorescence: a
high total fluorescence corresponds to a high number of
T-RFs (Figure 3). However, division of the T-RFs into two
groups, T-RFs with a relative abundance above and below
1%, showed that a high total fluorescence only increase
the number of T-RFs of low relative abundance. The same
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the systematic shift procedure. The different symbols represent the
s the original alignment and Panel B the alignment after correction for
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Fredriksson et al. BMC Bioinformatics 2014, 15:360 Page 5 of 18
http://www.biomedcentral.com/1471-2105/15/360
pattern was observed independent if the total fluorescence
was defined as the sum of peak heights or peak areas. The
relation between total fluorescence and number of T-RFs
has been observed previously by for example Sait et al.
[18]. However, in their data the threshold where an increase
in total fluorescence no longer correlated with an increased
number of T-RFs was 5%, and not 1% as for the data pre-
sented here.
The analysis of a series of dilutions of the same sample

showed that the total fluorescence was related to the DNA
concentration in the sample (Figure 4). Osborn et al. [25]
also investigated the relation between total fluorescence
and sample DNA concentration with the same results.
The experiment was repeated here to provide data that
could be used to evaluate how the differences in total
fluorescence affect comparisons of the T-RF profiles
and the efficiency of the normalization methods.
Analysis of the loading duplicates dataset showed that

differences in total fluorescence is not only dependent on
concentration differences but also on the loading itself.
The average difference in total fluorescence (sum of peak
heights) between two duplicates, as a percentage of the
highest total fluorescence, was 17 ± 7% and the maximum
difference was 33%.
As the number of T-RFs in a profile depends on the total

fluorescence of the profile, differences in total fluorescence
can affect comparisons of T-RF profiles. The profiles in the
dilution series were compared with the profiles of the un-
diluted sample using Jaccard and Bray-Curtis similarities.
For concentrations between 17% and 67% the similarity in-
creased with increasing concentration (Figure 5). However,
the profiles of the sample with concentration 83% showed
lower similarities than the profiles of the 50% sample, due
to the absence of several low abundance T-RFs.
In the loading duplicates dataset, the similarities de-

creased with increasing differences in total fluorescence
when a PDT of 50 was applied (Figure 6). The relatively
low similarities were due to a high number of T-RFs not
observed in both loadings. Generally, both profiles had
T-RFs not present in the other, not only the profile with
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the highest total fluorescence. Most T-RFs that were only
observed in one duplicate were of low relative abundance,
on average 0.9% ± 1.8%. As a result, the Bray-Curtis simi-
larities, which are calculated using the relative abundances
of the T-RFs, were higher than the Jaccard similarities,
which put equal weight on all T-RFs (Figure 6). The same
pattern was seen when the analysis was based on peak
heights as when it was based on peak areas.
Applying a higher PDT removes the T-RFs with a low

relative abundance. With a PDT of 100, the average pro-
portion of T-RFs only observed in one of the loading
duplicates was reduced from 29 ± 8% to 16 ± 9% of all
T-RFs in a loading duplicate pair. The similarities were
also increased for 47 of the 51 profile pairs and the de-
crease in similarities for greater differences in total fluor-
escence was less marked (Figure 6). The same results were
obtained independent if the analysis was based on peak
heights or peak areas. Blackwood et al. [26] investigated
the effect of different PDTs on subsequent ordination ana-
lyses. However, contrary to the results presented here, they
found that increasing the PDT from 50 to 100 or 200
decreased the similarity between replicates.
It is noteworthy that in the analysis using a PDT of 50,

one unique T-RF had a relative abundance of 43%. How-
ever, that T-RF was not observed in any of the loadings
of two other PCR replicates of the same sample, and was
therefore most likely an artifact.
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Normalization
Five normalization procedures, three based on the total
fluorescence normalization procedure [12] (TFN-heights,
TFN-areas and TFN-areas-LT) and two using a fixed
percentage threshold procedure [22] (FPT-heights and
FPT-areas), were evaluated using the loading duplicates
dataset. The profiles were normalized pairwise and the
profile pairs were then compared. The normalization pro-
cedures differed in the number of T-RFs they removed and
in the resulting Jaccard and Bray-Curtis similarities be-
tween the duplicates (Table 1). Before treatment the num-
ber of T-RFs increased with increasing total fluorescence.
This pattern was still seen after treatment with TFN-areas
and TFN-areas-LT, but not with TFN-heights, FPT-heights
or FPT-areas (Additional file 2: Figure S1). The TFN-areas
procedures removed hardly any T-RFs and did not improve
the Jaccard similarities. However, the Bray-Curtis simi-
larities were significantly increased. The TFN-heights treat-
ment reduced the number of T-RFs the most but also
increased both the Jaccard and Bray-Curtis similarities
the most. Both of the FPT treatments reduced the number
of T-RFs but for FPT-areas there was no significant differ-
ence in similarities compared to the untreated dataset.
FPT-heights only improved the Bray-Curtis similarities.
Although removing more than half of the T-RFs, the
TFN-heights treatment appear to be the best as it was
the only treatment that increased the similarity between
Table 1 Number of T-RFs and Jaccard and Bray-Curtis similari
and normalization

Treatment NT-heights NT-areas TFN-heights TFN

No of T-RFs 43 ± 15 43 ± 15 18 ± 8* 42 ±

Jaccard 71 ± 8% 71 ± 8% 84 ± 11%* 71 ±

Bray-Curtis 89 ± 6% 87 ± 6% 96 ± 4%** 93 ±

All values are average values ± the standard deviation. The number of T-RFs is the
averages similarities of all 51 duplicate pairs. The T-RF profiles were analyzed with
section. *denotes a significant difference from NT-heights. **denotes a significant
the duplicates, both when equal weight was given to all
T-RFs (Jaccard similarities) and when relative abundances
were taken into account (Bray-Curtis similarities).
With an applied PDT of 100 there was no significant

difference between normalization treatments for number
of T-RFs, Jaccard or Bray-Curtis similarity (Table 2), as
many of the T-RFs not present in both profiles had already
been removed. However, although the similarities of the
entire dataset after treatment were not significantly differ-
ent from the untreated dataset, some of the procedures did
increase the similarity for many of the profiles (Table 3).
The TFN-heights procedure increased the similarities more
than the other treatments (Figure 7).
With a PDT of 100, T-RFs of low relative abundance are

removed from the analysis from the start. These T-RFs
may well be true T-RFs and could, although of low relative
abundance, be of importance in the detection of differ-
ences between samples. However, with a PDT of 50 there
is a higher risk of including false T-RFs and artifacts. An
example is the occasional observation of false T-RFs
produced by so called spectral pull-up. Although the frag-
ments of the size standard and the sample are labeled with
different fluorophores, a false signal can be detected in the
frequency of the sample fluorophore when there is a very
strong signal from the fragments of the size standard.
However, the false T-RFs produced by spectral pull-up
are of low peak heights and are removed when a PDT
ties of the loading duplicates dataset after a PDT of 50

-areas TFN-areas-LT FPT 1% -heights FPT 1% -areas

15 42 ± 15 21 ± 7* 22 ± 7*

8% 71 ± 8% 78 ± 14%* 74 ± 13%

3%* 87 ± 6% 91 ± 8% 88 ± 7%

average for all 102 profiles. The Jaccard and Bray-Curtis similarities are the
a PDT of 50. Descriptions of the treatments can be found in the Methods
difference from all other treatments.



Table 2 Number of T-RFs and Jaccard and Bray-Curtis similarities of the loading duplicates dataset after a PDT of 100
and normalization

Treatment NT-heights NT-areas TFN-heights TFN-areas TFN-areas-LT FPT 1% -heights FPT 1% -areas

No of T-RFs 17 ± 9 17 ± 9 16 ± 9* 17 ± 9 16 ± 9 14 ± 6 14 ± 6

Jaccard 84 ± 9% 84 ± 9% 89 ± 11%* 84 ± 9% 87 ± 11% 85 ± 10%* 86 ± 10%

Bray-Curtis 93 ± 7% 92 ± 6% 94 ± 7%* 92 ± 6%* 93 ± 6% 93 ± 7%* 92 ± 6%

All values are average values ± the standard deviation. The number of T-RFs is the average for all 102 profiles. The Jaccard and Bray-Curtis similarities are the
averages similarities of all 51 duplicate pairs. The T-RF profiles were analyzed with a PDT of 100. Descriptions of the treatments can be found in the Methods
section. There was no significant difference between the treatments. All numbers except marked with *were significantly different from the same treatment in
the PDT 50 analysis.
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of 100 is applied (Additional file 2: Figure S2). The PDTs
used in the literature varies from low (e.g. 25 [12]) to high
(e.g. 100 [25]), presumably depending on the wish to ei-
ther preserve as many of the true T-RFs as possible or to
ensure removal of false T-RFs produced by noise peaks.
Based on the evaluation of the normalization treatments

using the loading duplicates dataset, PDT 100 and the
TFN-heights normalization procedure seem to be the
best analysis combination. The TFN-heights normalization
seem to be the best procedure because it made a higher
number of duplicate profiles more similar compared to the
other treatments (Table 3, Figure 7). A PDT of 100 seems
better than a PDT of 50 because it reduces the risk of in-
cluding false T-RFs in the analysis. In addition, the final
number of T-RFs after normalization was not significantly
different between the analyses using a PDT of 50 or
100 (Table 4). In other words, although applying a high
PDT initially results in a loss of data, after normalization
the final number of T-RFs may be the same as if a lower
PDT had been applied.
Although applying a high PDT and normalization in-

creased the similarities, it should be noted that the resulting
Jaccard and Bray-Curtis similarity after treatment is in most
cases lower than 100%. This means that the treatment can-
not correct completely for the differences observed in re-
peated loadings of the same sample.
To evaluate how sensitive the normalization procedure

is to increasing differences in total fluorescence between
samples, the dilution series was analyzed, using the two
loading duplicates for each dilution to create consensus
profiles. A PDT of 100 was applied and both replicates and
consensus profiles were normalized using the TFN-heights
procedure. No corrections of the alignments were neces-
sary. The differences in total fluorescence ranged from 4%
to 62% (before treatment, total fluorescence as sum of peak
heights, difference as percentage of the undiluted sample).
Very high similarities were observed between the undiluted
Table 3 Count of number of duplicate pairs with increased or

Treatment TFN-heights T

Increased similarity (Jaccard/Bray-Curtis) 29/30 1

Decreased similarity (Jaccard/Bray-Curtis) 8/7 0

The T-RF profiles were analyzed with a PDT of 100. The treatments are described in
sample and all other concentrations (Figure 8). The Bray-
Curtis similarities with the non-diluted sample were for all
but one dilution higher than 98% and the Jaccard similar-
ities were all but one 100%. The profile with lower similar-
ities, dilution 3:6, had a T-RF not present in any other
profile.
In the DNA-extraction and PCR replicate dataset the

differences in total fluorescence ranged from 10% to 48%
(before treatment, total fluorescence as sum of peak heights,
difference as percentage of the profile with the highest total
fluorescence). A PDT of 100 was applied and both rep-
licates and consensus profiles were normalized using the
TFN-heights procedure. The alignment of the consensus
profiles was corrected using the systematic shift correction
procedure. After treatment the resulting Jaccard and Bray-
Curtis similarities with the profile with the highest total
fluorescence were 92% as the lowest. The similarities
did not decrease with increasing difference in total fluores-
cence (Figure 8). The differences between the profiles were
due to the presence or absence of two T-RFs of low relative
abundance and due to differences in the relative abundance
of T-RFs present in all profiles (Figure 8).
In the loading duplicate dataset the differences in total

fluorescence ranged from 3% to 36% (before treatment,
total fluorescence as sum of peak heights, difference as per-
centage of the profile with the highest total fluorescence).
A PDT of 100 was applied and the duplicates were nor-
malized using the TFN-heights procedure. The resulting
Jaccard similarities were between 60% and 100% and Bray-
Curtis similarities ranged from 53% to 99%. For profile
pairs with higher differences in total fluorescence there
were greater increases in similarity after treatment com-
pared to the similarity between non-normalized profiles
than for profile pairs with little difference in total fluores-
cence. However, there was no apparent relation between
the final similarity and the initial difference in total fluor-
escence (Additional file 2: Figure S3).
decreased similarity after normalization

FN-areas TFN-areas-LT FPT-heights FPT-areas

/1 25/26 12/13 19/20

/0 10/9 9/8 8/7

the Methods section.
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Figure 7 Change in similarity of loading duplicates after
normalization. The loading duplicate dataset was normalized using
five different procedures (described in the Methods section). The Jaccard
and Bray-Curtis similarities after normalization were compared to
the similarities before normalization. Sum of all positive (black columns)
and negative (gray columns) changes in similarity after normalization
are shown. The T-RF profiles were analyzed with a PDT of 100.
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The efficiency of the normalization procedure does
not seem to be directly affected by how large the differ-
ence in total fluorescence is, at least not up to 62% dif-
ferences. However, the similarities are not always
increased up to 100%, which should be taken into ac-
count in comparisons of community composition.

Consensus profiles
The observation of differences between loading dupli-
cates before and after normalization, whether artifacts or
due to differences in the amount of loaded DNA, high-
lights the need to use consensus profiles of either load-
ing, enzyme digestion or PCR duplicates instead of
relying on single profiles for comparisons of different
Table 4 Example of remaining number of T-RFs and total
fluorescence after treatment

Average no
of T-RFs

Average total
fluorescence

After PDT 50* 26 ± 9 14693 ± 5486

After PDT 100* 16 ± 5 11018 ± 4517

After normalization** 11 ± 2 5339 ± 18

After alignment*** 8 ± 2 3828 ± 438

Average values ± the standard deviation of the number of T-RFs and total
fluorescence (sum of peak heights) of the T-RF profiles of 38 activated sludge
samples after data treatment. *Replicate profiles were normalized and consensus
profiles were generated from two replicate profiles only considering T-RFs present
in both. **After normalization of consensus profiles. Both replicate and consensus
profiles were normalized using the total fluorescence normalization procedure
based on peak heights. ***All T-RFs that could not be unambiguously aligned
were removed.
samples. As suggested by Dunbar et al. [12] consensus
profiles can be created from replicate profiles by only in-
cluding T-RFs that are observed in all replicates, and
using the average values for sizes, peak heights and peak
areas.
The dilution series dataset was used to evaluate the dif-

ference between comparisons of samples using single pro-
files or consensus profiles of loading duplicates (Additional
file 1: Table S3). When consensus profiles were used both
Jaccard and Bray-Curtis similarities were slightly higher
than then when single profiles were used.

Data processing strategies
To further evaluate the effect of combinations of PDT,
alignment correction and different normalization proce-
dures on the comparisons of T-RF profiles, a dataset was
created from two DNA-extraction replicate samples,
resulting in seven T-RF profile pairs. The dataset was
analyzed in 20 different ways, including 3 using the
normalization and alignment schemes provided in the
T-REX software [16] and 1 using the normalization pro-
cedure by Abdo et al. [15] (included in T-REX) combined
with the alignment procedure presented in this study.
The seven consensus profiles were then compared using
Jaccard and Bray-Curtis similarities (Additional file 1:
Table S4). As a comparison, the six T-RF profiles that were
used to create the dataset were also analyzed as single
profiles, without generating consensus profiles.
The highest similarities were obtained by applying a high

peak detection threshold, correcting the alignment and
normalizing both duplicate profiles and all consensus pro-
files using the TFN-heights procedure (Additional file 1:
Table S4). Note that the lowest similarities using this treat-
ment was 92%, meaning that as in the analysis of loading
duplicates, the treatment cannot always correct for all dif-
ferences introduced by the sample processing.
Both the normalization strategies and the T-RF align-

ment procedure presented here can be said to be conser-
vative in the sense that only data with a high level of
certainty is used. In the normalization procedure, T-RFs
are removed from the profiles with a high total fluores-
cence to avoid differences between profiles caused by
differences in the amount of loaded DNA. In the align-
ment procedure presented here alignment bins that re-
main classified as ambiguous even after correction for
systematic shifts are removed from any further analysis.
The reason for doing this is to avoid introducing similar-
ities or differences between T-RF profiles based on erro-
neous alignment binning. The result is that a lot of
information in the original data is sacrificed in order to
retain a high reliability and accuracy in the comparisons
of the T-RF profiles. Table 4 shows an example of how
many T-RFs and how much of the total fluorescence
that are lost in the different data treatment steps.
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Figure 8 Similarity versus difference in total fluorescence. Panel A: Analysis of the dilution series dataset. White columns – sample concentration.
Gray Columns – average total fluorescence (sum of peak heights) of loading duplicate profiles before treatment as percentage of the average total
fluorescence of the undiluted sample loading duplicates. Circles – Jaccard similarity with dilution 1:1. Squares – Bray-Curtis similarity with dilution 1:1.
Panel B: Analysis of the DNA-extraction and PCR replicates dataset. Columns – total fluorescence (sum of peak heights) of consensus profiles
before normalization as percentage of the highest total fluorescence in the dataset. Circles – Jaccard similarity with sample “Extr. 1 PCR 1&2”.
Squares – Bray-Curtis similarity with sample “Extr. 1 PCR 1&2”.
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Community dynamics analysis
The time series dataset of 38 activated sludge samples
was analyzed in nine different ways to evaluate the effect
of different data treatments on the outcome of analyses
of the dynamics of the community. The resulting T-RF
profiles were then analyzed using Jaccard and Bray-Curtis
similarities to assess the stability (Figures 9 and 10) and
the rate of change (Additional file 2: Figures S4 and S5) of
the bacterial community.
When the stability of the community was assessed by

Bray-Curtis similarities there was little difference between
most treatments (Figure 9). The treatments that differed
were the treatments that did not include correction of the
alignment: the no alignment correction, no normalization
treatment and the three T-REX treatments. The T-REX
treatment that used the simple round-up/down approach
to alignment differed the most from the others and sug-
gested that there were much bigger differences (lower
Bray-Curtis similarity values) between samples than any
of the other treatments. Notably, alignment of T-RF pro-
files using the round-up/down approach has been used in
studies evaluating other aspects of T-RFLP data analysis
e.g. ([13,19,27]). As argued by others (e.g. [12]), the results
presented here show that the round-up/down approach is
not preferable. The other treatments without alignment
correction differed the most for a number of samples in
the middle of the time series. The difference is due to the
erroneous alignment of several T-RFs present in the sam-
ples from that period. That the other treatments did not
differ very much can be attributed to the abundance distri-
bution of the T-RFs. For all samples the T-RF profile is
dominated by a few T-RFs with a relatively high abun-
dance. Since the Bray-Curtis coefficient gives more weight
to abundant T-RFs the removal of low abundant T-RFs
by the different normalization methods or by applying a
higher PDT does not affect the outcome that much. How-
ever, when the stability is assessed using Jaccard similar-
ities, which give equal weight to all T-RFs, no treatment
results in the same pattern as another (Figure 10).
The rate of change, i.e. how much the community com-

position changes between each sample, was evaluated the
same way as the community stability, using Bray-Curtis
(Additional file 2: Figure S4) and Jaccard (Additional file 2:
Figure S5) similarities. Likewise, in the assessment using
Bray-Curtis similarities (Additional file 2: Figure S4), all
treatments except the ones without alignment correction
showed similar patterns, and when Jaccard similarities
(Additional file 2: Figure S5) were used all treatments re-
sulted in different patterns.

Ordination analysis
Different treatments of the T-RF profiles will result in dif-
ferent clustering of samples. Figure 11 shows the NMDS
ordination of untreated T-RF profiles and profiles that were
treated with alignment correction and normalization of
both replicates and consensus profiles. In both ordina-
tions the samples cluster in groups corresponding to the
time of sample collection. One group, samples from sum-
mer 2003, is spread out and overlaps the other groups in
the ordination of untreated data while it clusters more
tight and is separated from the other groups in the ordin-
ation based on alignment corrected and normalized data.
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Figure 9 Community stability: Bray-Curtis similarity between all profiles and the profile of the first sample in the time series. The data
was treated in nine different ways before calculation of Bray-Curtis similarities (BC). Panel A: PDT50 TFN-A, B: PDT50 TFN-H, C: PDT 50 NoNorm,
D: PDT50 NoNorm, NoAlCorr, E: PDT100 TFN-H, F: PDT100 TFN-H RepNorm, G: TRex-A, H: TRex-H, I: TRex-H Round-up. The treatments are described in
Additional file 1: Table S5.
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The treatment procedures that include alignment cor-
rection all resulted in NMDS ordinations with similar
clustering when Bray-Curtis similarities were used. When
the ordination was based on Jaccard similarities small dif-
ferences could be observed between all treatments.

Correlation analysis with environmental parameters
The correction of ambiguous alignment bins and the re-
moval of T-RFs by normalization change the dynamic pat-
tern of T-RFs in the final alignment bins. Therefore, the
type of treatment affects the results of combined analyses
of T-RFLP data and environmental parameters. A simple
analysis to detect T-RFs that are possibly affected by or
might have an effect on environmental parameters is a
correlation analysis using T-RF abundance data and envir-
onmental parameter data. Table 5 shows the parameters
that correlated significantly with four T-RFs after three
different treatments. Different conclusions regarding the
possible importance of the T-RFs for sludge characteristics
would have been drawn from the three different treatments.
For example, with treatment A (PDT 50, no alignment cor-
rection, no normalization) and C (PDT 100, alignment cor-
rection, TFN-heights normalization of both replicates and
consensus profiles) the T-RF of size 168 bases showed a sta-
tistically significant correlation with the effluent suspended
solids, whereas with treatment B (PDT 50, alignment cor-
rection, TFN-areas normalization of consensus profiles) it
did not. Likewise, the T-RF of size 304 bases showed a
statistically significant correlation with the shear sensitivity
after treatment A and B but not after treatment C. Which
T-RFs, i.e. which groups of bacteria, that would be deter-
mined to have a possible role in for example sludge
settling properties or floc stability would thus depend on
how the data was treated.
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Figure 10 Community stability: Jaccard similarity between all profiles and the profile of the first sample in the time series. The data
was treated in nine different ways before calculation of Jaccard similarities (Jaccard). Panel A: PDT50 TFN-A, B: PDT50 TFN-H, C: PDT 50 NoNorm,
D: PDT50 NoNorm, NoAlCorr, E: PDT100 TFN-H, F: PDT100 TFN-H RepNorm, G: TRex-A, H: TRex-H, I: TRex-H Round-up. The treatments are described in
Additional file 1: Table S5.
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Conclusions
We acknowledge that some of the conclusions presented
here may be specific for the particular system that we used,
since the variations in T-RF abundances and sizes are related
to the DNA loading and T-RF detection system. However,
the discussions regarding alignment and normalization ap-
proaches are still relevant, independent of the system used.
We conclude that comparisons of single T-RF profiles

from different samples are not reliable, due to variability
in detection of low-abundant T-RFs and detection of false
T-RFs. Reproducibility can be increased by adapting a high
detection threshold and by the combination of two pro-
files in a consensus profile before comparisons between
samples. Normalization of T-RF profiles, both duplicates
and consensus profiles, to adjust for the variation in the
amount of DNA loaded on the gel, was also shown to
contribute to the reproducibility. Of the different nor-
malization methods that were evaluated, all commonly
used, the TFN-heights method was the most efficient.
Although the arguments for using peak areas as the
basis of the analysis of T-RFs are valid, the evaluation
presented here show that peak heights are preferred.
There can be a large variation in the estimation of

T-RF sizes between samples, which affects the alignment
of T-RFs and subsequent comparisons of samples. In align-
ments of T-RFs from a large number of samples, current
automated alignment methods are not entirely reliable, as
alignment errors may remain. An additional step, adjusting
for systematic shifts in T-RF size estimations between T-RF
profiles, was presented here and shown to improve the
alignment of T-RFs.
We show that T-RFLP data analysis method choices can

determine the conclusions drawn from analyses comparing
the community composition between samples, correlation
analyses with environmental parameters and analyses of
community dynamics patterns. Generally, when T-RFLP is
used, at least one of these three analyses is the main tool
to answer the proposed research question. This study
shows that a conservative approach to normalization
and alignment, although resulting in a loss of information,
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ensures that the results of the T-RFLP analysis are repro-
ducible and reliable.

Methods
Sample collection and DNA extraction
Samples were collected at the end of the aerated basins
at the Rya WWTP, a WWTP treating both industrial and
municipal wastewater [28]. Permission to enter the Rya
Table 5 Correlations between T-RF abundances and WWTP pr

T-RF size Treatment COD P F/M I

167 A +

167 B

167 C

168 A + +

168 B +

168 C + +

303 A

303 B +

303 C +

304 A

304 B -

304 C -

Only correlations significant at the 95% level are shown. + indicate positive correlat
correction, no normalization. Treatment B: PDT 50, Alignment correction using the s
the TFN-areas procedure. Treatment C: PDT 100, Alignment correction using the system
profiles using the TFN-heights procedure. In all treatments consensus profiles were gen
parameters: COD - Total COD going into the activated sludge tanks (mg/l), P - Total ph
microorganisms ratio (g/kg*s), I - Inorganic fraction of the activated sludge (%), H - Hum
Fe - Total iron dosage, EtOH - Ethanol dosage, PD - Polymer dosage, S - Shear sensitivi
(mg/gMLSS), ESS - Effluent suspended solids (mg/l).
WWTP and to collect activated sludge samples was granted
by Gryaab AB (owner and operator of the WWTP). 50 mL
of sample were centrifuged at 4000xg for 3 minutes and the
resulting pellet was stored at -20°C within 1.5 h from
collection. DNA was extracted using the Power Soil DNA
Extraction Kit (MoBio Laboratories). The frozen sludge
pellets were thawed, 15 mL sterile water were added and
the samples were homogenized by 6 min of mixing in a
ocess parameters

H T Fe EtOH PD S SC ESS

+ -

+ + +

+ - - + +

+ - + +

+ +

+ +

+

- +

-

ion and – a negative correlation. Treatment A: PDT 50, No alignment
ystematic shift correction procedure, normalization of consensus profiles using
atic shift correction procedure, normalization of both replicate and consensus
erated from two replicate profiles only considering T-RFs present in both. Process
osphorus concentration in primary settled wastewater (mg/l), F/M - Food to
ic substances in the activated sludge (mg/gMLSS), T - Water temperature,

ty of activated sludge flocs, SC - Carbohydrate content in the activated sludge
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BagMixer 100 MiniMix (Interscience). Water was removed
by centrifugation (4000xg for 3 minutes) and DNA was ex-
tracted from 0.25 g of homogenized sludge pellet according
to the manufacturer’s instructions.

PCR for T-RFLP
16S rRNA genes were amplified using HotStarTaqPlus
PCR kit (Qiagen) according to the manufacturer’s instruc-
tions. The Bacteria-specific primer pair 63F (CAGGCC
TAACACATGCAAGTC) [29] and M1387R (GGGCGG
WGTGTACAAGRC) [30] were used. The forward primer
63F was labeled at the 5’- end with the fluorescent dye 6 –
carboxyfluorescein. PCR reactions were carried out in the
provided PCR buffer with 0.5 U HotStarTaqPlus, 200 μM
dNTP mix, 0.1 μM of each primer and 2-5 ng DNA. The
cycle profiles had an initial 5 min at 95°C for Taq polymer-
ase activation followed by 35 cycles of denaturation at
94°C for 1 min, annealing at 60°C for 30 s and elongation
at 72°C for 1 min. The reactions were ended with a final
elongation step at 72°C for 7 min.

T-RFLP
The PCR products were purified using the Agencourt
AMPure system (Beckman Coulter) and digested with 10
units of restriction enzyme HhaI or RsaI (New England
Biolabs) in the manufacturer’s provided buffers 4 or 1,
respectively. Digestion was carried out at 37°C for at least
16 hours and the restriction digests were purified using
the Agencourt AMPure system. For each reaction, 2 μl
purified restriction fragments were added to 6.7 μl form-
amide and 0.3 μl of the size standard LIZ1200 (Applied
Biosystems). The fragments were analyzed by capillary gel
electrophoresis (3730 DNA Analyzer, Applied Biosystems)
using a 20s injection time, a 2.0 kV injection voltage and a
9 kV run voltage. The software GeneMapper (Applied
Biosystems) was used to quantify the electropherogram
data and to generate the T-RF profiles.

T-RFLP data analysis
The analysis of the T-RFLP data was carried out using a
collection of Visual Basic macros for Microsoft Excel
(available at http://sourceforge.net/projects/toolsfortrflp).
For comparison, a small number of analyses were also done
using the software T-REX [16]. Brief descriptions of the
different analysis steps are provided here.

Preparation of data
As a first step in the analysis the analysis range and the
peak detection threshold (the lowest acceptable peak
height) were defined. In all analyses the peak detection
threshold was set to either 50 or 100 fluorescent units
and the analysis range was set to 50-1020 bases. The size
standard included reference fragments up to 1200 bases.
However, proper peaks could not be obtained from the
largest fragments and the T-RF sizes could therefore
only be estimated up to 1020 bases.

Normalization of replicate samples
Normalization of replicates was done in five different ways,
three of which were based on the total fluorescence
normalization (TFN) procedure described by Dunbar
et al. [12]. The TFN procedure normalizes the profiles so
that all profiles get the same total fluorescence, which is
defined as either the sum of all peak heights or all peak
areas in a profile. The peak heights (or areas) in a profile
with a total fluorescence TF which is higher than the low-
est total fluorescence in the dataset, TFmin, are re-
calculated by multiplication with the factor TFmin/TF.
All T-RFs with a peak height (or area) that is below a
defined threshold after the multiplication are removed
and the total fluorescence, TF, of the profile is re-
calculated. The new TF is compared with TFmin again
and the process is repeated until TF is equal to TFmin. If
the new TF is repeatedly higher than and lower than
TFmin, due to the inclusion or exclusion of a T-RF close
to the threshold, the profile is calculated taking the aver-
age of the two states. In the procedure TFN-heights, the
total fluorescence is defined as the sum of peak heights
and the minimum allowed peak height is the defined peak
detection threshold. In the procedure TFN-areas, the total
fluorescence is defined as the sum of peak areas and the
minimum allowed peak area is the minimum observed
peak area in the whole dataset. In the procedure TFN-
areas-LT (local threshold), the total fluorescence is defined
as the sum of peak areas and the minimum allowed peak
area is the minimum observed peak area among the repli-
cates that are normalized. This procedure is equivalent to
the normalization procedure described by Kaplan et al. [17].
The two remaining procedures, FPT-heights and FPT-

areas, use an approach where all T-RFs with a relative
abundance below a fixed percentage threshold (FPT) are
removed. The relative abundance of a T-RF is the peak
height (or area) divided by the total fluorescence, i.e. the
sum of all peak heights (or areas) in that profile. The FPT
approach has previously been described and applied by
Li et al. using peak areas [22].

Alignment of replicate samples
Automatic alignment
The replicate profiles were aligned using the moving aver-
age procedure described by Smith et al. [14]. The shortest
T-RF of all profiles is identified and placed in an alignment
bin. All other T-RFs that are at most Y bases longer than
the first T-RF are also included in the alignment bin. The
average length of all T-RFs within the alignment bin is
then calculated and any additional T-RFs that are at most
Z bases longer than the average length of the bin are also
included. If a T-RF is added a new average length is

http://sourceforge.net/projects/toolsfortrflp
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calculated and a new search is done to see if more
T-RFs are now within the distance Z from the new average
and thus should be added. If no additional T-RFs are
added a new alignment bin is created and the process starts
over with the remaining T-RFs, identifying the shortest
T-RF of all profiles that is not already in an alignment
bin. A T-RF profile is only allowed to have one T-RF in
each alignment bin. In all analyses the parameters Y and Z
were set to 1 and 0.5, respectively.

Detection and correction of alignment errors
The resulting alignment is not always accurate. If one
replicate has a T-RF with a size in between two T-RFs, that
both are within the alignment range, in the other replicates,
the shortest T-RFs will always be aligned together, even if
the longest T-RFs are more similar in size. This happens
because the alignment process works from shorter T-RFs
to longer T-RFs, without checking if alternative ways of
binning the T-RFs are more accurate. For duplicates this is
resolved by binning the T-RFs that are most similar in size.

Generation of consensus profiles
Consensus profiles were generated by combining the data
from several replicates. This can be done by calculating
the average size, height and areas of the fragments present
in either all or a given number of the PCR replicates. In all
analyses in this study, consensus profiles were generated
from two profiles by only considering T-RFs that were
present in both.

Normalization of consensus profiles
Consensus profiles were normalized using the procedure
TFN-areas, TFN-heights, FPT-areas and FPT-heights de-
scribed above for the normalization of replicate profiles.

Alignment of consensus profiles
Automatic alignment
The consensus profiles were aligned as described for the
alignment of replicate profiles. The alignment bins were
classified as correct or ambiguous. An alignment bin was
classifed as ambiguous if any of the T-RFs in the bin were
within the given alignment range of a T-RF in another
alignment bin.

Detection and correction of systematic differences in size
estimation
There are always variations in the size estimation of the
T-RFs, even between subsequent loadings of the same sam-
ple, and this variation can be the reason why an alignment
bin is ambiguous. If the differences in T-RF sizes between
two profiles are due to a systematic shift, i.e. if all T-RFs in
one of the profiles are shorter than all T-RFs in the other,
the T-RF sizes can be recalculated to adjust for the system-
atic shift and the variation can be reduced. Figure 6 shows
a conceptual description of how the procedure works. To
correct the T-RF sizes, a T-RF present in all profiles, in an
alignment bin classified as correct, is used as a reference
and the size of that T-RF is set to the same value in all
profiles. All other T-RF sizes are then assigned new
values, based on the difference in size compared to the
original length of the reference T-RF. The sum of the
standard deviations for all unambiguously binned T-RFs
are then compared for all possible reference T-RFs, and
the reference T-RF that results in the lowest sum of stand-
ard deviations is chosen. The profiles are re-aligned as de-
scribed above and the new alignment can be compared
with the original alignment and used as an aid in correct-
ing ambiguous alignment bins.

Generation of relative abundance data
The relative abundance of a T-RF was calculated as the
peak height (or area) divided by the sum of all peak heights
(or areas) of the T-RF profile.

Calculation of association coefficients
Using the relative abundance data two common associ-
ation coefficients were calculated: the Bray-Curtis distance,
which takes the relative abundance of the T-RFs in consid-
eration, and the Jaccard similarity coefficient, which
put equal weight on all T-RFs, regardless of their rela-
tive abundance (both are described in [31]).

Datasets
Four datasets were analyzed:

1. Loading duplicates dataset: 51 purified restriction
digests were mixed with formamide and size
standard. The fragments were analyzed by capillary
gel electrophoresis twice.

2. Dilution series dataset: One purified restriction
digest was diluted to 17%, 33%, 50%, 67%, 83% and
100% before addition of formamide and size
standard.

3. DNA-extraction and PCR replicates dataset: DNA
was extracted from an activated sludge sample in
two separate reactions. Four PCR reactions were
analyzed for each DNA extraction replicate. Two of
the PCR replicates for one of the DNA extraction
replicates resulted in T-RF profiles with very low
total fluorescence and was therefore discarded from
the analysis. The four T-RF profiles from the same
DNA sample were combined pair-wise in the six
possible ways and together with the two T-RF profiles
from the other DNA extraction resulted in seven
profile pairs.

4. Time series dataset: DNA was extracted from 38
activated sludge samples and 2 PCR replicates were
generated and analyzed for each sample.
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Table 6 shows a schematic overview of the four
datasets.

Dataset analyses
Evaluation of differences in size estimation
The loading duplicates dataset was analyzed using a PDT
of 50 and aligned as described above. For each duplicate
pair the sizes of the T-RFs present in both duplicates were
compared.

Examples of alignment of T-RFs and systematic shift
correction
The time series dataset was analyzed using a PDT of 50.
The resulting profiles were analyzed to show how the
number of observed T-RFs depends on the total fluor-
escence of the T-RF profile. PCR replicates were aligned
as described above. Consensus profiles were generated
only considering T-RFs present in both PCR replicates.
The consensus profiles were aligned and systematic shift
correction was applied as described above.

Evaluation of differences in size estimation
The loading duplicates dataset was analyzed using a PDT
of 50 and aligned as described above. For each duplicate
pair the sizes of the T-RFs present in both duplicates were
compared.

Examples of alignment of T-RFs and systematic shift
correction
The time series dataset was analyzed using a PDT of 50.
The resulting profiles were analyzed to show how the num-
ber of observed T-RFs depends on the total fluorescence of
the T-RF profile. PCR replicates were aligned and consen-
sus profiles were generated as described above. The con-
sensus profiles were aligned and systematic shift correction
was applied as described above.
Table 6 Overview of the generation of the analyzed datasets

Loading duplicates Dilution series

Sludge samples

DNA-extraction

PCR

Restriction digests The restriction digest from
reaction was diluted to 6
concentrations.

Gel loading 51 restriction digests were
loaded 2 times each

6 restriction digests were
2 times each

T-RF profiles 102 profiles 12 profiles

Analyzed pairs 51 pairs 6 pairs
Evaluation of the relation between total fluorescence, DNA
concentration and gel loading
The dilution series dataset was analyzed using a PDT of
50 and the total fluorescence was calculated both as the
sum of peak heights and peak areas. The loading duplicates
dataset was analyzed using a PDT of 50 and the total fluor-
escence was calculated as the sum of peak heights.
Examples of how differences in total fluorescence affects
the comparisons of T-RF profiles
The dilution series dataset was analyzed using a PDT of
50. All profiles were aligned together as described above.
Relative abundances of T-RFs and Bray-Curtis similarities
were calculated based on peak heights. Jaccard similarities
were calculated. The loading duplicates dataset was ana-
lyzed using either a PDT of 50 or 100. The duplicate pro-
files were aligned as described above. Relative abundances
of T-RFs and Jaccard and Bray-Curtis similarities were cal-
culated based on either peak heights or peak areas.
Evaluation of normalization procedures
The loading duplicates dataset was analyzed using either a
PDT of 50 or 100. The duplicate profiles were normalized
using the five different procedures described above: TFN-
heights, TFN-areas, TFN-areas-LT, FPT-heights and FPT-
areas. After normalization, the duplicate profiles were
aligned as described above. Relative abundances of T-RFs
and Jaccard and Bray-Curtis similarities were calculated
based on either peak heights or peak areas, depending on
which of the two the normalization procedure was based
on. The statistical significance of the differences between
the treatments was calculated using a Kruskal-Wallis test
followed by Mann-Whitney pairwise comparisons with
Bonferroni corrected P-values. For both tests a signifi-
cance level of 0.05 was used.
DNA-extr. and PCR replicates Time series

38 samples

DNA was extracted 2 times from 1
sludge sample

1 DNA-extraction for
each sludge sample

4 and 2 PCR reactions from the 2
DNA-extraction replicates

2 PCR reactions for
each DNA-extraction

1 PCR
different

1 restriction digest per PCR reaction 1 restriction digest
per PCR reaction

loaded 1 loading per restriction digest 1 loading per
restriction digest

2 + 4 profiles 76 profiles

1 + 6 pairs (all possible recombinations
of the 4 replicates from the same DNA
extraction)

38 pairs
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Evaluation of the effect of using single profiles or consensus
profiles
The dilution series dataset was analyzed using a PDT of
either 50 or 100. The first (Run 1) and second (Run 2) gel
loadings were either analyzed separately or together, using
the loading duplicates to generate consensus profiles.
Alignment of the T-RF profiles was carried out as de-
scribed above. The total fluorescence was calculated as
the sum of peak heights and the TFN-heights procedure
was used for normalization of both single profiles, loading
duplicate profiles, and consensus profiles.
Evaluation of combinations of PDT, alignment correction
and normalization
The DNA-extraction and PCR replicates dataset was ana-
lyzed in 18 different ways (described in Additional file 1:
Table S5). Four of the analyses used the T-REX software
[16], with the following settings: Noise filtering was per-
formed using the procedure described by Abdo et al. [15]
for all samples based on either peak heights or peak areas.
The standard deviation multiplier was set to 1. The T-RFs
were aligned either by using the T-align method [14] with
a clustering threshold of 1, allowing at most one peak per
plot in each T-RF, or by rounding every peak size up or
down to the nearest integer. After alignment a data matrix
was constructed using the average peak height or area data
of the replicates. The relative abundance of each T-RF was
then calculated as the peak height (or area) of the T-RF
divided by the sum of all peak heights (or areas) in the
T-RF profile.
Evaluation of normalization efficiency
The dilution series was analyzed using a PDT of 100,
and using the two loading duplicates for each dilution to
create consensus profiles. Both loading duplicates and con-
sensus profiles were aligned as described above. Both load-
ing duplicates and consensus profiles were normalized
using the TFN-heights procedure. Relative abundances
of T-RFs and Jaccard and Bray-Curtis similarities were
calculated based on peak heights. The DNA-extraction
and PCR replicate dataset was analyzed using a PDT of
100. Both replicates and consensus profiles were normal-
ized using the TFN-heights procedure. Both replicates and
consensus profiles were aligned as described above. The
alignment of the consensus profiles was further corrected
using the systematic shift correction procedure. Relative
abundances of T-RFs and Jaccard and Bray-Curtis similar-
ities were calculated based on peak heights. The loading
duplicate dataset was analyzed using a PDT of 50. The
duplicates were normalized using the TFN-heights pro-
cedure. Relative abundances of T-RFs and Jaccard and
Bray-Curtis similarities were calculated based on peak
heights.
Evaluation of the impact of different treatment methods on
bacterial dynamics
The time series dataset was analyzed in nine different
ways: PDT50 TFN-A, PDT50 TFN-H, PDT50 NoNorm,
PDT50 NoNorm NoAlCorr, PDT100 TFN-H, PDT100
TFN-H RepNorm, TRex-A, TRex-H and TRex-H Round-up.
The treatments are described in Additional file 1: Table S5.
Bray-Curtis and Jaccard similarities between all T-RF profiles
were calculated.

Evaluation of the impact of different treatment methods on
the outcome of an ordination analysis
The time series dataset, analyzed as in the evaluation of
the impact of different treatment methods on bacterial
dynamics, was used. Non-metric multi-dimensional scaling
analysis (MDS) of Bray-Curtis and Jaccard distance matri-
ces was carried out using the software Primer 6 (Primer-E).
The Jaccard distance was calculated as (1 – Jaccard similar-
ity). The analysis was performed using 100 repetitions,
Kruskal stress formula number 1 and a minimum stress
of 0.01.

Evaluation of the impact of different treatment methods on
the outcome of a correlation analysis
The time series dataset, analyzed as in the evaluation of
the impact of different treatment methods on bacterial dy-
namics, was used. The Pearson’s product momentum correl-
ation coefficient was used to estimate the linear correlation
between relative abundances of T-RFs, process parameters
and sludge properties. To determine the statistical signifi-
cance of the correlation a t-test was carried out using a
significance level of 0.05.

Availability of supporting data
All supporting data, T-RF profiles for the four datasets
used in the analyses, are provided in Additional file 3.

Additional files

Additional file 1: Table S1. Examples of automatic and corrected
alignment of T-RFs in two samples. Table S2. An example of automatic
and corrected alignment of T-RFs in four samples. Table S3. Number of
T-RFs and Jaccard and Bray-Curtis similarities for single and consensus
profiles in the dilution series dataset. Table S4. Number of T-RFs and
Jaccard and Bray-Curtis similarities of the DNA-extraction and PCR replicates
dataset after different treatments. Table S5. Overview of the analysis
combinations applied to the DNA-extraction and PCR replicates dataset.

Additional file 2: Figure S1. Number of T-RFs versus total fluorescence.
Figure S2. Example of removal of false peaks by increasing the PDT.
Figure S3. Similarity versus difference in total fluorescence. Figure S4.
Rate of change: Bray-Curtis similarity between subsequent T-RF profiles.
Figure S5. Rate of change: Jaccard similarity between subsequent T-RF
profiles.
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