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accurate approximate p-values of the rank
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Abstract

Background: The rank product method is a powerful statistical technique for identifying differentially expressed
molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of
the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and
gamma approximations have been proposed to determine molecule-level significance. These current approaches
have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail
of the p-value distribution.

Results: We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that
can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds
and the proposed approximation are shown to provide far better accuracy over existing approximate methods in
determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We
illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling
performed in blood.

Conclusions: We provide a method to determine upper bounds and accurate approximate p-values of the rank
product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared
with current approaches and offers the opportunity to explore new application domains with even larger multiple
testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/
pages/726696/rankprodbounds.zip.
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Background
Post-genomic data analysis (transcriptomics, proteomics,
metabolomics) is often concerned with the identification
of differentially expressed molecules (transcripts, proteins,
metabolites) under different experimental conditions (e.g.,
treatment vs. control) using multiple biological replicates. A
simple and widely used non-parametric statistical method,
initially introduced by Breitling et al. [1] for gene expres-
sion microarrays, is to rank the molecules within each
experiment in order of evidence for differential expression
and to calculate the product of the ranks across experi-
ments. This rank product method is based on the common
* Correspondence: t.heskes@science.ru.nl
1Institute for Computing and Information Sciences, Radboud University
Nijmegen, Nijmegen, The Netherlands
Full list of author information is available at the end of the article

© 2014 Heskes et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
biological belief that if a molecule is repeatedly at the top of
the lists ordered by up- or down-regulation fold change in
multiple treatment–control experiments, the molecule is
more likely to be differentially expressed.
The rank product statistic is particularly useful for the

analysis of noisy datasets and a small number of replicates,
as it does not rely on any distributional assumptions
[1-4]. Its main weakness is sensitivity to variations in
molecule-specific variance, namely higher variance of
weakly expressed molecules. This limitation is miti-
gated, in practice, by variance-stabilizing normalization
[5]. The rank product method is used to combine ranked
lists in gene expression profiling and in various other post-
genomic datasets with ranked scores, including proteomics
and metabolomics [6-8]. Such ranking is important because
only a limited number of candidate molecules (transcripts
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or proteins or metabolites) can usually be followed up in a
typical biological downstream analysis for confirmation or
further study. Another advantage of the ranking is the
resulting suppression of the unwanted influence of corre-
lated behaviour between different molecules. In contrast to
traditional marginal tests, such as the t-test, in the rank
product approach correlating molecules ‘compete’ for posi-
tions in the ranked list. In the extreme case of identical
behaviour of all molecules, a t-test would yield the same
(possibly false positive) result for all molecules, whereas in
a rank product test, ties in the ranked list would be broken
randomly, guaranteeing that none of them would be con-
sidered differentially expressed. As a useful side effect of
this feature, the rank product test becomes increasingly
conservative as larger fractions of the set of molecules
studied are differentially expressed: if all molecules are
changing to the same extent, their rank ordering will again
be random.
Having ranked the molecules by their rank product, the

next step is to obtain the p-value associated with each
molecule under the null hypothesis that the molecule is
not differentially expressed in any of the independent
replicate experiments. The crux here is the requirement
to correct for multiple testing inherent in the need to per-
form one test per queried molecule. Methods that use the
entire distribution of p-values to estimate or control the
false discovery rate (FDR) assume and perform well only
when accurate p-values are available [9]. It is therefore
imperative to obtain the most accurate probability esti-
mates in applications that involve a massive number of tests
[10], such as in the analysis of transcriptome profiling data.
For this reason, exact calculation is preferred in computing

p-values for use in subsequent molecule-specific FDR-
adjustment procedures. Eisinga et al. [11] recently provided
a derivation of the exact probability distribution of the
discrete rank product statistic and its true tail probabilities.
An obstacle of exact calculation is that, whereas the p-values
of small rank products can be calculated swiftly, computing
the probabilities of large rank products may consume con-
siderable amounts of time. Although the speed of execution
will depend on computing power, exact p-value calculation
becomes time prohibitive in multiple experiments for rank
product values exceeding 107. Unfortunately, in a typical
large postgenomic molecular profiling study, such rank
products may occur for the bulk of the molecules analysed.
If exact calculation is infeasible, re-sampling-based

inference methods such as permutation testing may be
considered. The permutation re-sampling procedure
involves a trade-off between accuracy and number of
permutations [12]. That is, the number of permutations
needed is always larger than the inverse of the p-value, but
a factor of the order of 100 or so more permutations is
required so that the p-values can be accurately estimated
to several decimal places for performing multiple-testing
adjustment. In practice, the number of permutation sam-
ples may perhaps go up to 1013, but re-sampling then starts
to become unrealistically expensive, meaning that it is hard
to accurately estimate p-values smaller than 10−11. Such
p-values are common in rank product analysis of the
expression values of many molecules in multiple batches.
As an alternative procedure, Koziol [13] suggested to

use the continuous gamma distribution to approximate
the sampling distribution of the discrete rank product
statistic. For large rank products the gamma calculation
performs well, and for extremely large values the gamma
p-values are close to exact. However, Eisinga et al. [11]
have shown that for smaller rank product values, i.e., the
ones biologists are most interested in, the gamma approxi-
mation has a serious bias, overestimating p-values by several
orders of magnitude, and that the error increases as the
p-values become smaller.
There is therefore a range of intermediate rank product

values in postgenomic studies where current approaches,
exact calculation and stochastic and deterministic approx-
imations, all have serious drawbacks in terms of computa-
tion time, accuracy or both. The goal of this paper is to
obtain guaranteed lower and, in particular, upper bounds
for the p-values of any rank product value observed, with
the conservative upper bound protecting against false posi-
tives. The strict bounds may also be exploited to quickly cal-
culate accurate approximate p-values for rank product
analysis of a variety of postgenomic molecular profiling data.

Methods
The rank product approach was originally derived for
paired experiments (two-colour microarrays). However
it can be applied for unpaired data, which are common
in postgenomic molecular profiling, by creating random
pairs of experiments and calculating the average rank
product for several random pairings. Without loss of
generality, we thus consider n molecules profiled in k
paired experiments. In each experiment i, a molecule
receives a random ranking ri, i.e., any number between 1 and
n. We define Gk(ρ)/n

k as the probability that the product of
these random rankings is smaller than rank product ρ:

Gk ρð Þ ¼
Xn
r 1¼1

Xn
r 2¼1

…
Xn
r k¼1

Θ ρ−r1 � r2 �…� rkð Þ;

with the Heaviside step function Θ(x) = 1 iff x ≥ 0 and 0
otherwise. We obviously have Gk(ρ) = 0 for any ρ < 1 and
Gk(ρ) = nk for ρ ≥ nk. Our starting point is the observa-
tion that the distribution of ρ for k experiments relates
to that for k − 1 experiments. Since any rank product ρ
based on k experiments can be written as the product of
a rank r1 in the first experiment times a rank product ρ'
based on k − 1 experiments, we have:
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Gk ρð Þ ¼
Xn
r 1¼1

Gk−1 ρ=r1ð Þ

¼ Gk−1 ρð Þ þ
Xmin ρ;nð Þ

r 1¼2

Gk−1 ρ=r1ð Þ: ð1Þ

Here the upper limit min(ρ,n) explicitly incorporates
that ρ' can never be smaller than 1, so r1 can never be
larger than ρ. In theory, we could use this recursion to
compute Gk(ρ). In practice, this is unfeasible for large ρ, n,
and/or k. The discrete nature of this recursion makes it
difficult, if not impossible, to obtain a generic analytical
solution. However, as we will show below, it is possible to
bound and approximate this sum through integrals that
can be evaluated analytically.
Our line of reasoning is as follows. Since Gk(ρ) is a

cumulative function, it is monotonically increasing in ρ.
Sums over monotonically increasing or decreasing func-
tions can be bounded by integrals. In doing so, we turn
the discrete recursion (1) involving a summation into con-
tinuous recursions involving integrals, one for a lower
bound and another one for an upper bound. Recursions
involving integrals are typically easier to solve than recur-
sions involving summations. The upper limit min(ρ,n) in
the discrete recursion (1) translates to the same upper
limit in the continuous recursion, basically implementing
the fact that a rank product ρ' based on k− 1 experiments
cannot contribute to a rank product ρ based on k experi-
ments if ρ' > ρ. This upper limit is a highly nonlinear func-
tion of ρ, which then also does not allow for an easy solution
of the continuous recursion. By consistently separating the
cases ρ≥ n and ρ'≥ n from ρ < n and ρ'< n, we will see that
the solution of the continuous recursions can be written as a
piecewise function, with recursions for the separate pieces
still in terms of integrals, but now with limits that are linear
rather than nonlinear functions of the rank product ρ.
Perhaps surprisingly, these recursions for the separate

pieces, each corresponding to a different interval for the
rank product ρ, can be solved analytically. That is, these
solutions can be written in terms of basic functions, the
parameters of which follow a simple recursion that can
be implemented in a fast algorithm. So, in the end, we
have managed to turn the complicated recursion (1) on
a function Gk(ρ) into a simple recursion on parameters
that specify piecewise continuous upper and lower
bounds on Gk(ρ). The following sections describe the
steps in mathematical detail.

Integral and piecewise recursion
Since any combination of ranks that contributes to Gk(ρ)
also contributes to Gk(ρ') if ρ' ≥ ρ, we easily see that Gk(ρ)
is monotonically (not necessarily strictly) increasing in ρ
for any k. But then Gk−1(ρ/r1) is monotonically decreasing
in r1. Summations over monotonically decreasing functions
can be bounded by integrals (and vice versa). As the
following theorem indicates, this can be used to derive
upper and lower bounds that obey recursion equations
involving integrals instead of summations.
THEOREM 1. Consider the two functions �Gk ρð Þ and

G� k ρð Þ that satisfy the recursions

�Gk ρð Þ ¼ �Gk−1 ρð Þ þ
Z min ρ;nð Þ

1

�Gk−1 ρ=rð Þdr ð2Þ

and

G� k ρð Þ ¼ G� k−1
max 1; ρ=nð Þð Þ þ

Z min ρ;nð Þ

1
G� k−1 ρ=rð Þdr ;

ð3Þ

and are both initialized at �G0 ρð Þ ¼ G� 0 ρð Þ ¼ G0 ρð Þ ¼ Θ ρ−1ð Þ:
For any k ≥ 0 and ρ ≤ nk we have

G� k ρð Þ≤Gk ρð Þ≤�Gk ρð Þ:

That is, �Gk ρð Þ gives an upper bound on Gk(ρ) and G� k ρð Þ
a lower bound. The proof is detailed in Additional file 1.
For ease of exposition, we introduce the constant Δ

and consider the recursion

~Gk ρð Þ ¼ Δ~Gk−1 ρð Þ þ 1−Δð Þ~Gk−1 max 1; ρ=nð Þð Þ
þ
Z min ρ;nð Þ

1

~Gk−1 ρ=rð Þdr: ð4Þ

Setting Δ to either 0 or 1, we obtain the recursion for
the lower and upper bound, respectively. We will argue
and empirically show that an accurate approximation
(but no guaranteed bound) can be obtained by taking
the geometric mean of the upper and lower bound.
The recursion starts from ~G0 ρð Þ ¼ Θ ρ−1ð Þ: The con-

straint that ~Gk ρð Þ ¼ Gk ρð Þ ¼ 0 for ρ < 1, and the conse-
quence that the upper limit of the integral is a nonlinear
function of ρ, seriously complicates the solution of the
recursion (4). However, we will see that if we write ~Gk ρð Þ
as a piecewise function,

~Gk ρð Þ ¼
~Gk0 ρð Þ ¼ nk
~Gkj ρð Þ

~Gk;kþ1 ρð Þ ¼ 0

if ρ ≥ nk

if nk−j ≤ ρ < nk−jþ1; j ¼ 1…k
if ρ < 1;

8<
:

ð5Þ

the recursion equation for the pieces ~Gkj ρð Þ simplifies
considerably and can in fact be solved.
THEOREM 2. With ~Gk ρð Þ a piecewise function of the

form (5), the pieces ~Gkj ρð Þ satisfy, for 1 ≤ j ≤ k − 1, the
recursion
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~Gkj ρð Þ ¼ Δ~Gk−1;j−1 ρð Þ þ 1−Δð Þ~Gk−1;j ρ=nð Þ

þ
Z ρ=nk−j

1
dr ~Gk−1;j−1 ρ=rð Þ

þ
Z n

ρ=nk−j
~Gk−1;j ρ=rð Þdr;

ð6Þ
and, for j = k,

~Gkk ρð Þ ¼ Δ~Gk−1;k−1 ρð Þ þ 1−Δ

þ
Z ρ

1

~Gk−1;k−1 ρ=rð Þdr: ð7Þ

The proof is given in Additional file 2. The intuition
behind the piecewise construction follows if one tries to
construct the recursion for k =1,2,3, and so on. For k =1,
ρ is always smaller than n, so max(1, ρ/n) =1 and min(ρ,
n) = ρ. For k =2, we can separate the cases ρ ≥ n and ρ <
n, corresponding to the pieces ~G21 and ~G21, respectively.
For k =3, we again separate the cases ρ ≥ n and ρ < n, but
now we also have to check whether ρ/r in the integrand
~G2 ρ=rð Þ is larger than n (i.e., refers to ~G22Þ or smaller
than n (i.e., refers to ~G21Þ: Working this out, one realizes
that three different pieces are needed for ~G3: Induction
on k leads to the piecewise function (5) and the recur-
sions (6) and (7). These recursions now involve integrals,
Figure 1 Visualization of recursion. Visualization of recursion with k, the

that contains the rank product ρ, on the x-axis. Nodes correspond to comb

number of molecules. The arrows show the dependencies between the no

and ~G3;2 ρð Þ. The red path visualizes the calculations required to obtain ~G5;3 ρð
instead of summations, with limits that are either con-
stants or linear in ρ, instead of a nonlinear function of ρ.

Lattice
Figure 1 sketches the dependencies between different
combinations of k and j, where j is the index of the inter-
val [nk−j,nk−j+1] that contains the rank product ρ,
i.e., j = ceiling(k − log ρ/log n).
An actual implementation to compute ~Gkj ρð Þ can be

recursive, e.g., starting at node (k,j) and recursively
computing the parameters that are needed. The alternative
is to pre-calculate which parameters are needed and then
go through these in two for-loops. To compute ~Gkj ρð Þ;
one possibility is then to have an outer loop with j' run-
ning from 0 to j (from left to right on the lattice in
Figure 1), with an inner loop with k' running from j' to
max(k, k − j + j') (from top to bottom). The other option is
to have an outer loop with k' running from 0 to k (from
top to bottom) and j' from max(k' − k + j, 0) to min(k', j)
(from left to right).

Functional form
The recursions (6) and (7), together with the

initialization ~Gk 00 ρð Þ ¼ nk
0
; fully determine ~Gkj ρð Þ for

any ρ (and corresponding j) and k. We could replace
analytical integration by numerical integration. However,
numbers of experiments, on the y-axis, and j, the index of the interval

inations of k and j. The squares are given: ~Gk0 ρð Þ ¼ nk ; with n the

des. For example, to compute ~G4;2 ρð Þ; we first need to compute ~G3;1 ρð Þ
Þ:
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trying a few steps, one soon realizes that the integrations
that are required in each of the steps can be done
analytically and a pattern starts to emerge. It appears
that every solution can be written in the form

~Gkj ρð Þ ¼ εkj þ δkjρþ γT
kjΨ ρ;αkj; n

k−jþβk j
� �

; ð8Þ

with

Ψ ρ; α; λð Þ≡ρ log
ρ

λ

h i� �α
;

and appropriate choices for the parameters α, β, γ, δ,
and ε. Here αkj, βkj, and γkj are vectors of equal length.
We used vector notation such as

γTΨ ρ;α; nk−jþβkj
� � ¼ X

m

γmΨ ρ; αm; n
k−jþβm

� �
;

where the sum runs over all elements of the vectors.
THEOREM 3. The solutions of the recursions (6) and

(7), starting from the initialization ~Gk 00 ¼ nk
0
; can be

written in the form (8). See Additional file 3 for the
proof.

Updates and implementation
Now that we have confirmed that the solution is indeed
of the form (8), what remains is to find the proper up-
dates of the parameters θ ≡ {α, β, γ, δ, ε}. These are given
in the following theorem, the proof of which is given in
Additional file 4.
THEOREM 4. The parameters θ ≡ {α, β, γ, δ, ε} of the

solution ~Gkj ρð Þ obey the update equations, for 1 ≤ j ≤ k − 1,

αkj ¼ 1; 1;αk−1;j−1;αk−1;j;αk−1;j−1 þ 1;αk−1;j þ 1
� �

βkj ¼ 0; 1;βk−1;j−1;βk−1;j; βk−1;j−1; βk−1;j

h i

γkj ¼ δk−1;j−1;−δk−1;j;Δγk−1;j−1;
1−Δ
n γk−1;j;ϕk−1;j−1;−ϕk−1;j

h i
δkj ¼ Δδk−1;j−1 þ 1−Δ

n δk−1;j þ 1
nk−j εk−1;j−1−εk−1;j
� �

−ϕT
k−1;j−1 −βk−1;j−1 log nð Þ

� �∘αk−1;j−1þ1

þ ϕT
k−1;j 1−βk−1;j

� �
log nð Þ

� �∘αk−1;jþ1

εk j ¼ 1−Δð Þ εk−1;j−εk−1;j−1
� �þ nεk−1;j;

ð9Þ

with shorthand

ϕk 0;j0≡γk 0;j0 ∘= αk 0;j0 þ 1
� �

;

and, for j = k,
αkk ¼ 1;αk−1;k−1;αk−1;k−1 þ 1
� �

βkk ¼ 0; βk−1;k−1; βk−1;k−1
h i

γkk ¼ δk−1;k−1;Δγk−1;k−1;ϕk−1;k−1

h i
δkk ¼ Δδk−1;k−1 þ εk−1;k−1
εkk ¼ 1−Δð Þ 1−εk−1;k−1

� �
:

ð10Þ

In the above expressions, division (γ divided by α+1)
and exponentiation (β to the power α+1) are to be inter-
preted element-wise (hence the “∘”) and [1, 1, αk−1,j−1, …]
stands for the concatenation of elements and vectors into
a new (longer) vector. The update equations can be initial-
ized by setting

εk 00 ¼ nk
0
; δk 00 ¼ 0; and αk 0;0 ¼ βk 0;0 ¼ γk 0;0 ¼ 0; ð11Þ

for all 0 ≤ k' ≤ k.
From the updates it can be seen that each αk,j,m ∈ {1, …, k}

and each βk,j,m ∈ {0, 1}. So, at most there will be 2 k unique
combinations of α and β values. In an actual implementa-
tion, with every update we first compute and concatenate
all α’s and β’s and then confine them to unique combina-
tions by adding the γ coefficients that correspond to the
same combination.
To compute ~Gk ρð Þ for the whole range of rank products

ρ at once, we first compute the set of corresponding inter-
vals labelled by j. For all j ∈ j we then need to calculate the
corresponding θkj. We can do this recursively or using
for-loops. When doing this recursively, it is wise to keep
track of the parameters that already have been computed
to prevent repetitive calculations. See Algorithm 1 in the
Additional file 5. When using for-loops, following the
same line of reasoning as suggested by Figure 1, we have
an outer loop with j' running from 0 to max(j) (from left
to right) and an inner loop with k' running from j' to max
(k −min(j) + j', k) (from top to bottom). Alternatively, we
can have an outer loop with k' running from 0 to k (from
top to bottom) and j' from max(k' − k +min(j), 0) to min
(k', max(j)) (from left to right). This latter ordering is taken
in Algorithm 2 in Additional file 5. The solution for each
ρ then follows by computing ~Gkj ρð Þ from (8), with j label-
ling the interval containing ρ. Algorithm 1 is implemented
in R (R Core Team [14]) and the R code is published in
Additional file 6 and is available at http://www.ru.nl/pub-
lish/pages/726696/rankprodbounds.zip.

Exact calculation and gamma approximation
The exact p-values may be obtained by a brute force search
using the discrete recursion (1). An alternative method,
proposed by Eisinga et al. [11], is to use number theory to
obtain a combinatorial exact expression for calculating the
discrete probability distribution of the rank product statis-
tic. The distribution is asymmetric (i.e., positively skewed)
and in determining the p-value, all probabilities need to be

http://www.ru.nl/publish/pages/726696/rankprodbounds.zip
http://www.ru.nl/publish/pages/726696/rankprodbounds.zip
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calculated, from the smallest rank product possible,
with ρ = 1, to the rank product value of interest. This
implies that the exact statistical significance of large
rank products may take unacceptably long amounts
of time to compute [11,15,16].
In [13], Koziol argues that under the null hypothesis for

experiment i the p-values ri/(n + 1) are approximately uni-
formly distributed on the interval [0,1]. As the probability
distribution of the negative log-transformed p-values is
given by the exponential distribution with scale parameter
1, the negative sum of the log-transformed p-values over k
independent experiments has a Gamma(k,1) distribution
(see also Pounds and Cheng [17]). This approach is
equivalent to Fisher’s [18] method of combining p-values
over independent tests. As illustrated below, the as-
sumption that the distribution of the p-values is uni-
form on the continuous interval [0,1], when in fact it
is uniform on the discrete set {1/(n + 1), 2/(n + 1), …,
n/(n + 1)}, leads to substantial deviations from the
right tail of the true distribution.

Results and discussion
Time performance and accuracy
The R program computes the bounds and the geometric
mean p-value approximation at a very fast speed. For
example, it takes approximately 2 milliseconds to calculate
ti
m

e 
(m

s)

Figure 2 Computation time (in milliseconds) for calculating 10000 up
the upper bound p-value of any rank product ρ in the
range 1 to nk, for n = 10000 and k = 4, on a HP desktop
computer using the interpreted R language running under
Windows 7 with an Intel Core i7 CPU at 2.9 GHz. It takes
twice as much time to calculate the geometric mean
p-value approximation. Unlike exact calculation, the algo-
rithm’s computational time is almost unrelated to the
value of rank product ρ.
To examine the effect of the number of experiments k

on the algorithm’s running time, we generated 10000
random draws from the discrete uniform distribution on
[1, nk] and calculated the upper bounded p-value of the
simulated rank products, for n = 10000 and k = 2, …, 50.
Figure 2 plots the computation time (in milliseconds)
for the calculation of 10000 p-values and a third-order
polynomial fitted line.
The figure indicates that computation time is no limit-

ing factor when it comes to approximate p-value calcula-
tion of rank products, even for very demanding problems.
Running time increases polynomially (of maximum order
3) with increasing k. Also, the time needed to do the same
calculation for much larger n is similar to the time figures
shown in the plot, as the algorithm’s computational time
is not only virtually unrelated to rank product ρ, but also
unaffected by n. This implies that the proposed calculation
method should work well with all sample and replicate
k
per bound p-values for n = 10000 and k = 2, …, 50.



Figure 3 (See legend on next page.)
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Figure 3 Bounds and approximations of p-value distribution. (A) Strict bounds and approximations (geometric mean of upper and lower
bound, and gamma) for n = 10000 molecules and k = 4 experiments, on the left-hand side over the whole range of rank products, on the right-hand
side for small rank products only (gamma approximation is outside the figure). It can be seen that, on the log scale, the bounds are very tight. Zooming
in on small rank products, the bounds are on average about a factor 2.5 off (i.e., higher/lower than the exact p-value), yet the geometric mean approximation
is still very close to the exact p-value. (B) Same as (A), but for n = 10000 and k = 20. The curve on the left looks more or less the same but, as is best seen on
the right, the bounds are much further off (almost a factor 1000). (C) Same as (A), but for n= 10 and k= 4. The curve on the left may look worse, but that is
mainly because of the scaling of the y-axis. Relatively speaking, the bounds are still on average about a factor 2.5 off. (D) Same as (A), but for n = 10
and k = 20. With very small n and relatively large k, we get the worst of both worlds.
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sizes typically encountered in postgenomic molecular pro-
filing experiments.
To assess numerical accuracy, the entire p-value distri-

bution was obtained for both large and small values of n
and k (i.e., n = 10,10000 and k = 4,20). Figure 3 displays
the gamma approximation, the upper and lower bounds,
and the geometric mean p-value approximation. The exact
p-values are reported only for small values of ρ (right-
hand panels of Figure 3) and for the entire range of rank
products of the smallest n and k (left-hand panel of
Figure 3C). Exact p-value calculation of the entire distri-
bution is computationally unmanageable (or at least ex-
tremely time consuming) for the other values of n and k.
As can be seen in Figure 3A, the upper and lower bounds
are rather tight. Relatively speaking, i.e., on a logarithmic
scale, they are most tight for large rank products. For small
rank products they are in this case (n = 10000 and k = 4)
at most a factor 3 off, that is higher/lower than the exact
p-value. The approximation obtained by taking the geo-
metric mean of the upper and lower bound is seen to be
very accurate.
Trying different values of n and k, the curves look

extremely similar when we plot them over the entire
range of rank products, that is, for log-transformed
p-values, between − klogn and 0. The range between the
log upper bound and the log lower bound is more or less
independent of n and increases roughly linear with k,
but then so does the range of log p-values. With increas-
ing n, the range of log p-values does increase logarith-
mically with n, where the range between upper and
lower bound remains about constant (see Figure 3C for
n = 10 and k = 4). This makes that curves for large n
look most impressive in the sense of displaying tight
bounds. Results for small n and large k are least impres-
sive (see Figure 3D for n = 10 and k = 20). In any case,
excluding extremely large rank products, the upper bounds
are always orders of magnitude better than the gamma ap-
proximation. The latter assumes a continuous distribution
and this assumption is too strong for the analysis of discrete
rank products.
When trying to find an even better approximation or

bound for Gk(ρ), one option is to use the continuous ap-
proximation scheme to compute ~Gk−1 ρ0ð Þ for all ρ' ≤ ρ
and then apply the discrete recursion (1) to arrive at better
~Gk ρð Þ: Initial attempts revealed that this indeed yields
somewhat tighter bounds (e.g., a factor 1.5 off instead of
2.5) and a more accurate approximation, but not to the
extent that it seems worth the computational effort.
Application
To illustrate our method in a real-world application, gene
expression data on human aging were obtained from Van
den Akker et al. [19], available at http://onlinelibrary.wiley.
com/doi/10.1111/acel.12160/suppinfo [Supplementary
Table S2]. The data set contains the statistical results for
9047 unique genes (expressed in 2539 individuals) from
four different studies. The authors employed rank product
analysis to identify genes consistently up- or down-
regulated with age across the four data sets. Table 1 displays
the top 25 genes having increased expression with age.
We obtained the exact p-values and, ideally, one

should use these values in correcting for multiple testing
as they are the gold standard in the sense that the sam-
pling distribution is known exactly. Only by deciding to
accept or reject the null on the basis of exact p-values
are we guaranteed to be protected from Type-1 errors at
the desired significance level. However, it takes consider-
able amounts of time to calculate the p-value for the
gene listed in the bottom of Table 1 (approximately
120 minutes) and it is (by far) not feasible to obtain the
exact p-values of the largest rank products on a timely
enough basis. The strict upper and lower bounds, how-
ever, perform well in the sense that the limits are narrow
and the bias is tiny. Although the geometric mean
p-value approximation provides no absolute guarantee
to protection from Type-1 errors, the estimates and the
exact probabilities are seen to be very close. The gamma
distribution is seen to produce rather inaccurate approxi-
mate results.
Bonferroni corrections are one approach for controlling

the experiment-wide false positive rate (π) by specifying
what α value should be used for each individual test, taking
α = π/n. For the current study, π = 0.05 gives α = 0.05/
9047 ≈ 5.526 × 10−6. We declare a test (i.e., gene) to be
significant if p ≤ α.

http://onlinelibrary.wiley.com/doi/10.1111/acel.12160/suppinfo
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Table 1 Top-25 age-associated genes with increased expression level (Van den Akker et al. [19])

Symbol GeneID ρ p-value

Exact Gamma Upper bound Geometric mean Lower bound

GPR56 9289 9282 2.645 × 10−10 5.255 × 10−09 3.888 × 10−10 2.709 × 10−10 1.887 × 10−10

HF1 3075 48576 2.074 × 10−09 2.296 × 10−08 2.873 × 10−09 2.117 × 10−09 1.559 × 10−09

SYT11 23208 57600 2.550 × 10−09 2.671 × 10−08 3.510 × 10−09 2.601 × 10−09 1.927 × 10−09

ARP10 164668 179400 9.817 × 10−09 7.297 × 10−08 1.303 × 10−08 1.000 × 10−08 7.680 × 10−09

B3GAT1(CD57) 27087 278460 1.635 × 10−08 1.075 × 10−07 2.142 × 10−08 1.666 × 10−08 1.295 × 10−08

SLC1A7 6512 483780 3.078 × 10−08 1.746 × 10−07 3.970 × 10−08 3.135 × 10−08 2.476 × 10−08

IFNG 3458 1594440 1.171 × 10−07 4.953 × 10−07 1.465 × 10−07 1.192 × 10−07 9.697 × 10−08

DSCR1L1 10231 2004864 1.507 × 10−07 6.046 × 10−07 1.874 × 10−07 1.533 × 10−07 1.254 × 10−07

ARK5 9891 2726880 2.110 × 10−07 7.898 × 10−07 2.605 × 10−07 2.146 × 10−07 1.768 × 10−07

PIG13 81563 3549314 2.809 × 10−07 9.927 × 10−07 3.448 × 10−07 2.857 × 10−07 2.367 × 10−07

SPUVE 11098 3880576 3.093 × 10−07 1.072 × 10−06 3.789 × 10−07 3.146 × 10−07 2.612 × 10−07

PDGFRB 5159 4294368 3.451 × 10−07 1.171 × 10−06 4.217 × 10−07 3.509 × 10−07 2.920 × 10−07

EDG8 53637 5083584 4.137 × 10−07 1.355 × 10−06 5.037 × 10−07 4.207 × 10−07 3.513 × 10−07

MARLIN1 152789 5505984 4.507 × 10−07 1.451 × 10−06 5.477 × 10−07 4.582 × 10−07 3.833 × 10−07

TGFBR3 7049 8081700 6.784 × 10−07 2.021 × 10−06 8.176 × 10−07 6.896 × 10−07 5.815 × 10−07

GZMB 3002 9886240 8.396 × 10−07 2.404 × 10−06 1.008 × 10−06 8.533 × 10−07 7.227 × 10−07

DEFA3 1168 9980528 8.481 × 10−07 2.423 × 10−06 1.018 × 10−06 8.619 × 10−07 7.301 × 10−07

KRT1 3848 11787930 1.010 × 10−06 2.796 × 10−06 1.208 × 10−06 1.027 × 10−06 8.728 × 10−07

CX3CR1 1524 12060288 1.035 × 10−06 2.851 × 10−06 1.237 × 10−06 1.052 × 10−06 8.944 × 10−07

STYK1 55359 14337372 1.241 × 10−06 3.308 × 10−06 1.477 × 10−06 1.260 × 10−06 1.076 × 10−06

ADRB2 154 16272900 1.416 × 10−06 3.687 × 10−06 1.681 × 10−06 1.438 × 10−06 1.231 × 10−06

GAF1 26056 35217600 3.138 × 10−06 7.128 × 10−06 3.667 × 10−06 3.186 × 10−06 2.769 × 10−06

CTSL 1514 38246400 3.414 × 10−06 7.647 × 10−06 3.982 × 10−06 3.465 × 10−06 3.016 × 10−06

GFI1 2672 56960480 5.107 × 10−06 1.072 × 10−05 5.907 × 10−06 5.183 × 10−06 4.547 × 10−06

TTC38 55020 59340600 5.322 × 10−06 1.110 × 10−05 6.150 × 10−06 5.400 × 10−06 4.742 × 10−06

Table 2 Number of genes called significant according to
Bonferroni correction and FDR q-values

Bonferroni
correction

q-value

< 0.001 < 0.01 < 0.05

Up-regulated genes

Exact 25

Gamma 21 14 40 112

Upper bound 23 21 57 122

Geometric mean 25 21 58 129

Lower bound 26 21 59 131

Down-regulated genes

Exact 42

Gamma 30 23 69 140

Upper bound 42 39 74 143

Geometric mean 42 42 74 154

Lower bound 43 43 75 157
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The results for both up- and down-regulated genes are
shown in the left panel of Table 2. Under a strict Bonferroni
correction, we reject the null hypothesis of no differential
expression with associated exact p-value for 25 up- and 42
down-regulated genes. The geometric mean p-value ap-
proximation produces results identical to the exact method.
The asymptotic gamma approximation is too conservative
in that it tends to understate the evidence against the null
hypothesis. While reducing the number of false positives, it
also reduces the number of true discoveries, especially for
down-regulated genes. The Bonferroni method applied to
the gamma p-values declared 30 genes to be significant, in-
stead of 42.
The traditional Bonferroni correction may be too strin-

gent in postgenomic multiple testing, where the number
of molecules profiled in parallel is very large, and falsely
detecting a small number of molecules as differently
expressed will usually not be a serious problem if the
majority of significant molecules are properly selected. A
less stringent method is to estimate the FDR for the entire
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collection of p-values, defined as the expected number of
false positives amongst the molecules selected as signifi-
cantly differentially expressed, described in detail in Storey
[20] and Storey and Tibshirani [9]. We obtained the FDR
adjusted p-values, i.e., q-values, for all approximate p-value
estimates, using Storey’s R program Q-value (with the
bootstrap estimator). The estimated q-value for any par-
ticular test is a function of the p-value for that test and the
distribution of the entire set of p-values. As it utilizes infor-
mation from all the p-values at once, it is impossible to
obtain q-values based on the exact probabilities. The right
panel of Table 2 presents the number of significant calls
for various thresholds by p-value approximation method.
As can be seen, about [(57–40)/57 × 100=] 30% of the
differentially expressed up-regulated genes selected using
the upper bounded p-values at a q-value of 0.01, were not
detected by the overly conservative gamma approach.

Conclusions
In replicated molecular profiling experiments, where large
numbers of molecules are simultaneously tested, accur-
ately estimated p-values are essential for making justified,
reproducible decisions about which molecules to consider
as significantly differentially expressed in the downstream
analysis. We provide a tailor-made solution to calculate
strict bounds and accurate approximate p-values for rank
product analysis of postgenomic molecular profiling data.
The proposed algorithm runs very fast and gives a slightly
conservative upper bound protecting against false positives
and a close approximate estimate of the true p-values.
Over the past decade, the rank product method, devel-

oped originally for the analysis of microarray datasets, has
found widespread use in various settings such as proteo-
mics [6,7], metabolomics [8], RNAi screening [21], meta-
analysis [4,15,22], and classification [23]. However, its
application has been restricted to medium sample and
replicate sizes due to an intensive permutation test used
to calculate significance. The algorithm presented here
can provide an order of magnitude increase in throughput
as compared with permutation testing. It also allows
researchers to explore new application domains with even
larger multiple testing issue, e.g., in large genetics studies
with millions of markers or RNAseq analyses where the
number of studies transcripts is larger than the number of
genes or in applications to image analysis.

Software availability
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