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Abstract

Background: Although Linear Discriminant Analysis (LDA) is commonly used for classification, it may not be directly
applied in genomics studies due to the large p, small n problem in these studies. Different versions of sparse LDA have
been proposed to address this significant challenge. One implicit assumption of various LDA-based methods is that
the covariance matrices are the same across different classes. However, rewiring of genetic networks (therefore
different covariance matrices) across different diseases has been observed in many genomics studies, which suggests
that LDA and its variations may be suboptimal for disease classifications. However, it is not clear whether considering
differing genetic networks across diseases can improve classification in genomics studies.

Results: We propose a sparse version of Quadratic Discriminant Analysis (SQDA) to explicitly consider the differences
of the genetic networks across diseases. Both simulation and real data analysis are performed to compare the
performance of SQDA with six commonly used classification methods.

Conclusions: SQDA provides more accurate classification results than other methods for both simulated and real
data. Our method should prove useful for classification in genomics studies and other research settings, where
covariances differ among classes.

Keywords: Quadratic discriminant analysis, Sparse estimation of covariance matrix, Classification, Genomics

Background
Although Linear Discriminant Analysis (LDA) is com-
monly used for classification, it cannot be directly applied
in the large p, small n setting, where the number of sam-
ples is far less than the number of features [1]. This is due
to the singularity of the sample covariance matrix.
One straightforward solution for the matrix singularity

problem is to use the generalized inverse, e.g. the Moore-
Penrose pseudo-inverse, as mentioned in [2-4] in deriving
the LDA rule. Alternatively, several authors have proposed
modified estimators of the covariance matrix to address
the singularity problem, among which the most com-
mon approach is to shrink the sample covariance matrix
towards a well-behaved matrix. For example, penalized
discriminant analysis was proposed in [5], where the sam-
ple covariance matrix is shrunken towards the identity
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matrix. It has also been proposed to shrink the sample
covariance matrix towards a common diagonal covari-
ance matrix or simply use the diagonal covariance matrix
[6,7]. The relative performance of using sample covari-
ance matrix, common covariance matrix, diagonal sam-
ple covariance matrix, and diagonal common covariance
matrix as an estimator for the covariance matrix in dis-
criminant analysis was studied in [6]. Another version
of the penalized discriminant analysis was proposed in
[8], where the shrunken estimator of covariance matrix
proposed in [5] was combined with the application of
“nearest shrunken centroids” proposed in [9] to estimate
the samplemeans. Amodified linear discriminant analysis
was later proposed in [10], where a well-conditioned esti-
mator for high-dimensional covariance matrix proposed
in [11,12] was used. Other authors have addressed the
singularity problem through the eigenvalue decomposi-
tion by discarding small eigenvalues [3,13]. Most recently,
progress on sparse estimation of covariance matrix and
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precision matrix offers another approach for LDA in the
large p, small n setting where sparsity assumption is
imposed on the covariance matrix or precision matrix.
This class of methods is called Sparse LDA, where there
are different ways of imposing sparsity on the covari-
ance matrix and/or mean difference through different
optimization methods [14-16].
Quadratic discriminant analysis (QDA) is closely related

to LDA, where each class is assumed to have its own
covariance matrix. This is in contrast to LDA where the
covariance matrices for different classes are assumed to
be the same. For many practical problems, the assump-
tion of common covariance matrix across different classes
is inappropriate. For example, in the case of using gene
expression data to distinguish tumor samples from normal
controls, or to distinguish tissue types, many studies have
shown that the correlation patterns among genes do differ
between cancer and normal samples and among tissues.
In fact, such rewiring of genetic networks in patients and
across tissues are common and sometimes offer valuable
information for classifications [17-19]. These observa-
tions suggest that the covariance or precision matri-
ces of different classes are different and QDA may be
more appropriate than LDA for classifications in these
settings.
Although many efforts have been made to improve LDA

in high-dimensional settings, as far as we are aware, rel-
atively little has been done to improve QDA for the large
p, small n problem. This is partly due to the fact that
it is already challenging to estimate the covariance or
precision matrix in the high-dimensional setting when
all the classes are assumed to have the same form for
LDA, it will be more difficult to estimate covariances
in QDA, since more parameters need to be estimated
where each class is allowed to have a different covari-
ance matrix. In this paper, we propose a novel QDA
based classification method that estimates separate sparse
covariance matrices for different classes, called SQDA,
and compare its performance with existing methods,
including diagonal linear discriminant analysis (DLDA),
diagonal quadratic discriminant analysis (DQDA), reg-
ularized discriminant analysis with shrunken centroids
(SCRDA), nearest neighbor (NN) [20], support vector
machine (SVM) [21], and random forests (RF) [22], where
NN, SVM and RF are commonly used in genomics stud-
ies. The authors of [23] proposed a related method
on sparse QDA, in which joint estimation of precision
matrices for different classes is applied to each block
determined by hierarchical clustering based on the corre-
lationmatrices, where block diagonal structure is imposed
on the covariance matrices. However, their method
is computationally more involved in high-dimensional
settings and hence we didn’t include their method in the
comparisons.

Results
Simulations
For our proposed method, the covariance matrices for dif-
ferent classes are assumed to be block-diagonal with each
block having the same size and variable selection by blocks
is performed. For block-diagonal matrices, the block size
has to be determined. For variable selection by blocks, the
blocks with cross validation errors exceeding the smallest
error among all blocks by predefined error margin will be
excluded.
In this section, we study the effects of block size, error

margin, and sample size on our method. We also compare
the performance of our method with other classification
methods under different simulation settings. The detailed
simulations can be found in the Materials and Methods
section.

Simulation settings
In the first simulation setting, Independent Structure
Same Covariance (ISSC), the covariance matrices are the
same and diagonal for all classes. We let the number of
genes be 10,000 and generate 100 training samples con-
sisting of 50 “tumor” and 50 “normal” samples. The gene
expression values in the tumor samples are drawn from
N(μ1,�1) and those in the normal samples are drawn
from N(μ2,�2), where �1 = �2 = I are the identity
matrix.We assume that the first 400 elements inμ1 are 0.5
and the rest are 0 while all elements inμ2 are 0. The testing
dataset has 500 tumor samples and 500 normal samples.
In the second simulation setting, Independent Structure

Different Covariance (ISDC), the set-up is the same as
above except that �1 is changed from the identity matrix
with the first 400 diagonal elements replaced by 1.5.
The third simulation setting, Dependent Structure Same

Covariance (DSSC), puts some dependences on the genes.
More specifically, �1 and �2 have the same blockwise
autoregression correlation structure �

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ρ 0 0 · · · · · · · · ·
0 �−ρ 0 0 · · · ...

0 0 �ρ 0 · · · ...
... 0 0 �−ρ 0

...
...

...
... 0

. . .
...

· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10,000×10,000

(1)

and

�ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρ198 ρ199

ρ 1
. . . · · · ρ198

...
. . . . . . . . .

...

ρ198 · · · . . . . . . ρ

ρ199 ρ198 · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

200×200

(2)



Sun and Zhao BMC Bioinformatics  (2015) 16:48 Page 3 of 9

where ρ = 0.95 and �−ρ has the same structure as �ρ ,
but with -0.95 for ρ.
In the fourth simulation setting, Dependent Structure

Different Covariance (DSDC), �1 and �2 are the
blockwise autoregression correlation structure as in
Equation (1) except that the order of �ρ and �−ρ is
reversed in �2 for the first two blocks.
For each simulation setting, we generate 10 datasets

and the misclassification rates are reported as the aver-
age of the errors on the 10 testing datasets. The standard
deviations of the misclassification rates are also reported
together with the number of features selected for classifi-
cation.

Effects of block size and errormargin
We study the effects of two important parameters, block
size and error margin, on the performance of SQDA.
For the fourth simulation setting DSDC, we compare

the performance of SQDA under different block sizes and
error margins. The block sizes are varied from 100, 150,
200, 250, 300, 350, to 400, and the error margins are varied
from 0.05, 0.10, to 0.15. The averagemisclassification rates
under different combinations of block sizes and errormar-
gins are shown in Figure 1.We can see that when the block
size is 100, the misclassification rates are consistently low
for different error margins. Similarly, the misclassification
rates are low for different block sizes when the error mar-
gin is 0.05. The optimal block size depends on the true
underlying block structure in the data, which is 200 in
simulations. It can be seen that the performance of our
method is satisfactory when the block size is 100. Also,
the optimal error margin depends on the sample size.

Figure 1 The effects of block size and error margin on SQDA. The
effects of two important parameters, block size and error margin, on
SQDA are shown in this figure based on the simulated data.

When the sample size is small, where the cross valida-
tion error itself has large variation, a larger error margin
is preferred to include more predictive features. In con-
trast, when the sample size is large, a smaller error margin
might be better to exclude pure noises. For simplicity,
we use block size 100 and error margin 0.05 for all later
analyses.

Effect of sample size
The performance of any classification depends on sam-
ple size, which may be especially so for our method, since
the number of parameters to be estimated is large and
low sample size may lead to unstable results. To study the
effect of sample size on our method and other methods,
all the parameters are kept the same except that the sam-
ple size is varied among 20, 25, 30, 35, 40, 45 and 50 under
the fourth simulation setting.
The averagemisclassification rates are shown in Figure 2

for all methods. We consider variable selection by blocks
for DLDA2 and DQDA2 the same as in ourmethod except
that the sparse estimation of covariance matrix is replaced
with diagonalized estimator for covariance matrix. By
comparing the performance of SQDA to DLDA2 and
DQDA2, we can see the benefit of sparse estimation of dif-
ferent covariance matrices for different classes in addition
to that from the variable selection by blocks procedure.
It is clear that the performance of all methods is equally
poor when the sample size is small whereas the improve-
ment is largest for our method when the sample size
increases.

Figure 2 The effect of sample size on the seven classification
methods. The effect of sample size on SQDA and six other
classificaiton methods is shown in this figure based on the simulated
data.
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Performance of differentmethods on simulated data
In this part, we compare the performance of different
methods on the simulated data, where we consider sample
size of 50, block size of 100, and error margin of 0.05.
It is clear from Table 1 that our method has the best

or close to the best performance among all the methods
considered across different simulation scenarios.
When the true covariance matrix is diagonal and the

same for different classes (ISSC), DLDA2 performs the
best and is much better than DLDA.
When the true covariance matrix is diagonal and differ-

ent for different classes (ISDC), DQDA2 performs the best
and is much better than DQDA.
Also, comparing the number of predictors selected by

DLDA and DLDA2 or DQDA and DQDA2 suggests vari-
able selection by the blocks method is favorable over
variable selection by cross-validation. The number of pre-
dictors selected by cross-validation is either too small (50
or 100 for simple underlying covariance structure) or too
large (1000+ for complex underlying covariance structure)
while the number of predictors selected by variable selec-
tion by blocks is closer to the true number of predictors,
which is 400 for all scenarios.
When the covariance structure is complex (DSSC and

DSDC), the performance of SQDA is much better than
all the other methods. The relative performance of SQDA
with that of DLDA2 and DQDA2 suggests that the sparse
estimation of different covariance matrix for different
classes can indeed improve sample classification.

Real data
In this section, we compare the performance of dif-
ferent classification methods on the TCGA dataset,
which we downloaded from the UCSC cancer browser
(https://genome-cancer.ucsc.edu), with the level 3
RNAseq data for all cancers log2-transformed and mean
normalized across all cancer cohorts. We consider all

cancer cohorts with at least 40 normal tissue samples,
including Liver Cancer (LC, 191 tumor and 50 normal),
Colon Cancer (CC, 262 tumor and 41 normal), Head and
Neck Cancer (HNC, 497 tumor and 43 normal), Breast
Cancer (BC, 1040 tumor and 112 normal), Lung Adeno-
carcinoma (LUAD, 488 tumor and 58 normal), Prostate
Cancer (PC, 333 tumor and 50 normal), Kidney Clear Cell
Carcinoma(KC, 518 tumor and 72 normal), Lung Squa-
mous Cell Carcinoma (LUSC, 490 tumor and 50 normal)
and Thyroid Cancer (TC, 498 tumor and 59 normal).
For all datasets, 20 tumor samples and 20 normal sam-

ples are randomly selected to be the training data and
the remaining samples are treated as the testing data.
Tuning parameters of all methods are selected using the
training data and then the misclassification rates are
estimated using the testing data. The whole process is
repeated 10 times and the average misclassification rate
and standard deviation for each method are reported
together with the median number of features (i.e. genes)
selected.
For real data analysis, we choose the block size to be 100

and error margin to be 0.05 for all datasets, as suggested
by simulations. The results are shown in Table 2. We can
see that SQDA performs best or is comparable to the best
for all datasets except the PC datasets. Because the sam-
ple size for each class is 20, we increase the error margin
to include more true signals. In fact, the performance of
SQDA can improve when the error margin is 0.1 (results
not shown).

Discussion
In this paper, we have proposed a sparse version of QDA
to take into account differing genetic networks across
different classes in sample classifications. When the pro-
posed method, SQDA, was compared with six commonly
used classification methods on both simulated data and
real data, we found that SQDA has good performance,

Table 1 Comparisons of seven classificationmethods on simulated data

Methods ISSC ISDC DSSC DSDC

DLDA 0.048 (0.015, 50) 0.083 (0.015, 100) 0.228 (0.02, 1025) 0.217 (0.04, 1175)

DQDA 0.049 (0.021, 50) 0.013 (0.007, 50) 0.243 (0.025, 1400) 0.214 (0.032, 825)

NN 0.056 (0.02, 100) 0.424 (0.021, 50) 0.27 (0.034, 575) 0.112 (0.061, 475)

SVM 0.054 (0.029, 50) 0.095 (0.024, 100) 0.127 (0.047, 500) 0.255 (0.05, 1050)

SCRDA 0.019 (0.036, 651) 0.024 (0.012, 2089) 0.217 (0.041, 587) 0.241 (0.069, 317)

RF 0.109 (0.012, NA) 0.038 (0.009, NA) 0.262 (0.018, NA) 0.21 (0.041, NA)

SQDA 0.005 (0.002, 300) 0.001 (0.001, 300) 0.108 (0.042, 200) 0.001 (0.002, 400)

DLDA2 0.002 (0.001, 600) 0.04 (0.005, 500) 0.224 (0.03, 700) 0.217 (0.055, 600)

DQDA2 0.003 (0.001, 500) 0 (0.001, 600) 0.231 (0.033, 600) 0.224 (0.058, 400)

The reported numbers in each table entry in the form of a (b,c)mean: a is the average prediction error, b is the standard deviation, and c is the median number of
predictors selected.

https://genome-cancer.ucsc.edu


Sun and Zhao BMC Bioinformatics  (2015) 16:48 Page 5 of 9

Table 2 Comparisons of seven classificationmethods on TCGA data

Methods LUSC LUAD TC

DLDA 0.013 (0.007, 50) 0.035 (0.027, 50) 0.1 (0.042, 50)

DQDA 0.008 (0.006 ,50) 0.018 (0.019, 50) 0.08 (0.047, 50)

NN 0.014 (0.01, 50) 0.027 (0.016, 50) 0.085 (0.053, 50)

SVM 0.01 (0.007, 50) 0.024 (0.017, 50) 0.088 (0.041, 50)

SCRDA 0.039 (0.031, 128) 0.044 (0.026, 95) 0.122 (0.068, 502)

RF 0.007 (0.002, NA) 0.018 (0.009, NA) 0.08 (0.039, NA)

SQDA 0.003 (0.003, 1900) 0.011 (0.009, 1900) 0.036 (0.021, 2900)

DLDA2 0.017 (0.005, 12100) 0.031 (0.013, 8900) 0.114 (0.038, 2300)

DQDA2 0.008 (0.004 ,10000) 0.023 (0.008, 8300) 0.107 (0.05, 5800)

Methods PC HNC LC

DLDA 0.125 (0.024, 50) 0.034 (0.012, 50) 0.055 (0.017, 50)

DQDA 0.11 (0.022, 50) 0.03 (0.016, 50) 0.045 (0.021, 50)

NN 0.094 (0.029, 50) 0.032 (0.013, 50) 0.051(0.015, 50)

SVM 0.116 (0.031, 150) 0.037 (0.023, 50) 0.04 (0.014, 50)

SCRDA 0.094 (0.037, 1989) 0.039 (0.021, 2200) 0.069 (0.026, 56)

RF 0.11 (0.013, NA) 0.033 (0.013, NA) 0.048 (0.018, NA)

SQDA 0.206 (0.134, 1300) 0.021 (0.015, 2200) 0.04 (0.041, 500)

DLDA2 0.128 (0.026, 3400) 0.033 (0.01, 6600) 0.068 (0.02, 7800)

DQDA2 0.205 (0.066, 3100) 0.049 (0.022, 5900) 0.089 (0.027, 6100)

Methods BC KC CC

DLDA 0.035 (0.017, 50) 0.028 (0.018, 50) 0.006 (0.008, 50)

DQDA 0.018 (0.009, 50) 0.037 (0.03, 50) 0.004 (0.006, 50)

NN 0.021 (0.013, 50) 0.031 (0.019, 50) 0.005 (0.009, 50)

SVM 0.018 (0.012, 50) 0.028 (0.018, 50) 0.004 (0.006, 50)

SCRDA 0.045 (0.019, 452) 0.047 (0.011, 78) 0.023 (0.014, 49)

RF 0.027 (0.013, NA) 0.025 (0.014, NA) 0.011 (0.011, NA)

SQDA 0.021 (0.008, 2800) 0.009 (0.005, 6100) 0.007 (0.008, 5900)

DLDA2 0.036 (0.015, 8000) 0.039 (0.007, 10200) 0.02 (0.014, 11700)

DQDA2 0.069 (0.033, 7400) 0.045 (0.035, 9600) 0.021 (0.014, 10200)

The reported numbers in each table entry in the form of a (b,c)mean: a is the average prediction error, b is the standard deviation, and c is the median number of
predictors selected.

especially when different classes have different covariance
matrices.
In order to alleviate the intensive computation burden,

we have imposed the block-diagonal structure assump-
tion on the covariance matrix. We further assumed that
the block size is the same for all blocks. Although
this assumption seems too simple to characterize the
complex relationships among genes, it does offer a
good compromise between the diagonal covariance
matrix assumption made in previous methods and the
more complex covariance matrix structures that may
require much more data to model. The better per-
formance of this approach has been demonstrated in

both simulations and, more importantly, the TCGA
datasets.
In our comparison of SQDAwith six other classification

methods on simulated and real data, we consider block
size of 100 and error margin of 0.05 based on the sim-
ulation. In practice, the block size and error margin can
be selected using cross-validation. However, due to the
small sample size in real data, tuning too many param-
eters using cross-validation may lead to more variations
in the results. As sample size increases, cross validation-
based or other methods may be used to select block size
and error margin to improve the performance of our
method.
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Instead of determining the blocks based on two sam-
ple t statistics and using the same size for each block, a
data-drivenway of determining the blocksmight be better.
For example, as suggested in [23], hierarchical cluster-
ing based on the correlation matrix summarized across
all classes could be used to determine the blocks, where
the number of clusters (i.e. blocks) is determined using
cross-validation. However, when using cross-validation to
choose the number of clusters, the cluster size (i.e. block
size) could be larger than 1000, which makes it compu-
tationally prohibitive to tune the sparsity parameters in
estimating the covariance matrix for those large blocks.
We have considered binary classification for both simu-

lations and real data analysis. We note that SQDA can be
easily extended to multi-class classification problems.

Conclusions
In summary, we have proposed a sparse version of QDA,
which has better or similar performance than commonly
used classification methods based on both simulated data
and real data. We believe SQDA will prove useful for clas-
sification in genomics studies and other research settings,
where covariances differ among classes. A R package,
SQDA, can be used to perform sparse quadratic dis-
criminant data analysis and is freely available on CRAN
(http://cran.r-project.org).

Methods
In this section, we will first review the existing methods
and then introduce our method.

LDA, QDA, DLDA, and DQDA
Assume we collect data from n samples with each sam-
ple having p features. We further assume that the samples
are drawn from K classes. Let Y denote the class label, i.e.
Yi = kmeans the ith sample belongs to the kth class, where
k = 1, . . . ,K . Let X denote the vector of features, that is Xi
is a p-dimensional vector with each coordinate being the
value for the corresponding feature for ith sample. In LDA
and QDA, the features in each class are assumed to follow
a multivariate Gaussian distribution, that is

Xi|Yi = k ∼ N (μk ,�k) (3)

f (Xi|Yi = k) = 1√
(2π)p|�k |

exp
(
−1
2
(Xi − μk)

′�−1
k (Xi − μk)

)
.

(4)

Thus, we can assign the ith sample to one of K based on
the maximum likelihood rule, that is

Yi = argmax
k=1,...,K

f (Xi|Yi = k) (5)

= argmax
k=1,...,K

log f (Xi|Yi = k). (6)

In LDA, the covariance matrices are assumed to be the
same for all classes, that is �k = �, for k = 1, . . . ,K , and
hence the maximum likelihood rule can be simplified to

Yi = argmin
k=1,...,K

(Xi − μk)
′ �−1 (Xi − μk) (7)

= argmin
k=1,...,K

μ′
k�

−1μk − 2μ′
k�

−1Xi. (8)

In practice, the parameters μk and � are unknown and
need to be estimated. In general, they are estimated by
the sample mean (x̄k) and sample covariance matrix (�̂)
respectively. In the high-dimensional setting where p � n,
the sample covariance matrix (�̂) is singular.
In DLDA, the covariance matrix (�) is estimated by

the diagonal common sample covariance matrix, that is �̂

is diagonal with each diagonal element being the pooled
sample variance of the corresponding predictor.
In DQDA, the covariance matrix for each class (�k) is

estimated by the diagonal sample covariance matrix based
on the samples belonging to class k.

SCRDA
In SCRDA, the covariance matrix is estimated through a
linear combination of sample covariance matrix and the
identity matrix, that is

�̃ = α�̂ + (1 − α)Ip, (9)

where α ∈[0, 1].
Alternatively, shrinkage can be applied to the correla-

tion matrix, that is

R̃ = αR̂ + (1 − α)Ip, (10)

where α ∈[0, 1], R̂ is the sample correlation matrix.
In addition to the shrunken covariance matrix estima-

tor, themeans for each class can also be estimated through
shrinkage based on the “nearest shrunken centroids”,
that is

x̄∗
k = sgn

(
x̄∗
k
) (|x̄∗

k | − �
)
+ , (11)

where x̄∗
k = �̃−1x̄k and x̄k is the sample mean for class k.

In practice, (α,�) need to be tuned based on cross-
validation. If there are several pairs of (α,�) having the
same cross-validation error, we use the “MIN-MIN” rule
mentioned in [8] to choose their parameters. This is
accomplished using the R package rda.

NN (nearest neighbor)
In NN, a new sample with predictor X′ is classified into
one of the K classes based on the class labels of the h
known samples that are closest to the new sample defined

http://cran.r-project.org
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in terms of euclidean distance defined over all the predic-
tors, where h is a pre-defined integer. The class label Y ′
for the new sample is usually inferred by the majority vote
from these h selected samples, that is

Y ′ = argmax
k=1,...,K

∑
i∈S

δ(Yi = k) (12)

where δ() is the indictor function and S is the index set.
In our comparison, h is usually chosen to be 3, a com-

mon practice in genomics data analysis. In our compar-
isons, we used the knn function implemented in R package
class.

SVM
In the binary classification problem, i.e. K = 2, SVM aims
to find a hyperplane that can separate the two classes. If
perfect separating hyperplanes exist, that is the two class
can be separated perfectly, then the maximum-margin
hyperplane is chosen, which maximizes the total distance
of the closest point in each class to the hyperplane. If no
perfect separating hyperplane exists, the hyperplane max-
imizing the margins while keeping the misclassification
rate as low as possible is chosen.
In SVM, the kernel function has to be predefined, which

basically determines the shape of the hyperplanes. Popular
kernel functions include linear kernel function, polyno-
mial kernel function, and Gaussian radial basis function.
When there are more than two classes, a single multi-
class problem is often decomposed into multiple binary
classification problems.
In our comparison, we used SVMwith the linear kernel,

because the sample size is small.We used the svm function
in R package e1071 in our comparisons.

RF
The basic idea of RF is to grow a forest of classification
trees based on the training data and then use the classifi-
cation trees to classify testing data. More specifically, for
a given training dataset, B bootstrapped datasets are used
to build R decision trees where a random subset of predic-
tors are evaluated at each node [24]. The Random Forest,
which consists of B prediction trees, is used for classify-
ing future samples. For a test sample, each prediction tree
will assign it to one of the K classes and the class label of
this sample is then determined by majority vote from the
B decision trees.
We used the R package randomForest in our compar-

isons.

Proposedmethod
In this article, we propose a modified version of QDA
with sparse estimation of the covariance matrix. We call it
SQDA.

In SQDA, we adopted the method introduced in [25]
to obtain a sparse estimator of the covariance matrix.
The sparse estimate for the correlation matrix is first
obtained by the following optimization criterion and then
transformed back to the original scale using the sample
variance, which yields a sparse estimate for the covariance
matrix.

R̃λ = argmin
R�0

||R − R̂||2F/2 − τ log |R| + λ|R−|1 (13)

where || · ||F is the Frobenius norm, | · |1 is the L1 norm,
τ is a fixed small value, λ is a tuning parameter, and R−
means R with diagonal elements set to 0.
However, it is time consuming to estimate the covari-

ance matrix for extremely large p based on Equation 13.
To reduce computational burden, we assume covariance
matrices for all classes have block-diagonal structure to
allow us to estimate the covariance matrices one block
at a time. The idea of using block-diagonal structure to
approximate the inverse of covariance matrix has been
applied in LDA by [26]. However, the inverse of covariance
matrix still has to be estimated in their method, which is
time consuming.
Under the block-diagonal structure assumption for the

covariance matrix, the order of features matters, that is
we need to know which features form a block. In our
algorithm, we sort the genes based on the absolute two
sample t statistics and the blocks are chosen from the
top to the bottom with each block having the same size.
There were a couple of reasons that led us to choose our
approach. First, genes with similar expression level differ-
ences across the classes are grouped together based on
two sample t statistics so that genes with similar infor-
mativeness on classifications are likely to be selected or
excluded together. Second, genes that are highly corre-
lated are likely to have similar absolute values in terms of
two sample t statistics, so if the covariancematrix needs to
be approximated by a block-structured one, then group-
ing genes by t statistics is more likely to result in a better
approximation of the true covariance matrix.
To illustrate the workflow of our proposed method (as

shown in Figure 3), let us consider the example in the
classification of tumor and normal tissues based on gene
expression profiles. First, the two sample t statistics based
on the training data are calculated for each gene. The
genes are then ordered based on the absolute values of
the t statistics. To be computationally more efficient, an
optional step here is to do variable selection by blocks
(see section Variable selection). Secondly, the covariance
matrices are estimated one block at a time with block size
100 from the top to the bottom. Lastly, the final prediction
model is the quadratic discriminant analysis model with
the covariance matrices obtained from all the blocks.
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Figure 3Workflow of SQDA. This figure decribes the general workflow of SQDA based on a toy example of classifications of tumor and normal
samples.

For each block in SQDA, we use the same λ for all the
classes and choose the value of λ through cross-validation.
When several λ values lead to the same cross validation
error, we choose the minimum value for λ. To perform
sparse estimation of the covariance matrix, the R package
PDSCE is used.

Variable selection
We use multiple gene expression data to compare the
performance of different classification methods. For gene
expression datasets, the number of genes is usually on
the scale of thousands while the number of samples is on
the scale of tens. Thus, it may be better to perform gene
pre-screening to improve classification performance. In
this paper, we use the R package limma to rank the genes
based on the empirical Bayes-based t statistics (for binary
classification problem) or the F statistics (for multi-class
classification problem).
For DLDA, DQDA,NN, and SVM, we use five-fold cross

validation based on the training sample to pick the num-
ber of top genes used for prediction ranging from 50 to
2000 with step size 50.
For SCRDA and RF, since they can perform variable

selection and classification simultaneously, no variable
selection step is performed.
For our method, SQDA, we do variable selection by

blocks. We set the sparsity parameter λ to be 0.2 and cal-
culate cross-validation error for each block and then we
choose the blocks with cross validation errors less than
error margin + the smallest cross-validation error, where
error margin can be any number from 0 to 0.5 and usually
0.05, 0.10 and 0.15 are used.

For DLDA and DQDA, we also perform variable selec-
tion by blocks, leading to DLDA2 and DQDA2, that is
to use the same procedure as our method to do variable
selection except that the sparse estimation of covariance
matrix is replaced by diagonalized estimators for covari-
ance matrix.
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