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Abstract

Background: Invasive monitoring of brain activity by means of intracerebral electrodes is widely practiced to
improve pre-surgical seizure onset zone localization in patients with medically refractory seizures.
Stereo-Electroencephalography (SEEG) is mainly used to localize the epileptogenic zone and a precise knowledge of
the location of the electrodes is expected to facilitate the recordings interpretation and the planning of resective
surgery. However, the localization of intracerebral electrodes on post-implant acquisitions is usually time-consuming
(i.e., manual segmentation), it requires advanced 3D visualization tools, and it needs the supervision of trained medical
doctors in order to minimize the errors. In this paper we propose an automated segmentation algorithm specifically
designed to segment SEEG contacts from a thresholded post-implant Cone-Beam CT volume (0.4 mm, 0.4 mm, 0.8
mm). The algorithm relies on the planned position of target and entry points for each electrode as a first estimation of
electrode axis. We implemented the proposed algorithm into DEETO, an open source C++ prototype based on ITK
library.

Results: We tested our implementation on a cohort of 28 subjects in total. The experimental analysis, carried out over
a subset of 12 subjects (35 multilead electrodes; 200 contacts) manually segmented by experts, show that the
algorithm: (i) is faster than manual segmentation (i.e., less than 1s/subject versus a few hours) (ii) is reliable, with an
error of 0.5 mm ± 0.06 mm, and (iii) it accurately maps SEEG implants to their anatomical regions improving the
interpretability of electrophysiological traces for both clinical and research studies. Moreover, using the 28-subject
cohort we show here that the algorithm is also robust (error < 0.005 mm) against deep-brain displacements (< 12 mm)
of the implanted electrode shaft from those planned before surgery.

Conclusions: Our method represents, to the best of our knowledge, the first automatic algorithm for the
segmentation of SEEG electrodes. The method can be used to accurately identify the neuroanatomical loci of SEEG
electrode contacts by a non-expert in a fast and reliable manner.
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Background
Invasive monitoring of brain activity with intracra-
nial ElectroEncephaloGraphy (iEEG) is widely practiced
to improve diagnosis of several neurological diseases.
In recent years, iEEG analyses have been also widely
adopted in several research studies [1] mainly aimed at
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characterizing neuronal correlates of language [2], motor
[3,4] as well as cognitive tasks [5]. Epilepsy is themain field
of interest of diagnostic iEEG.
The American Academy of Neurology recommended

that “patients with disabling complex partial (focal)
seizures, with or without secondarily generalized seizures,
who have failed appropriate trials of first-line antiepilep-
tic drugs should be considered for referral to an epilepsy
surgery center” [6]. The key point of successful epilepsy
surgery is the correct identification of the Epileptogenic
Zone (EZ), definable as “the site of the beginning and of
the primary organization of the epileptic seizures” [7]. In
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25% to 50% of subjects, the EZ is identified by means
of iEEG recording [8-12]. The largely adopted Electro-
CorticoGraphy (ECoG) is performed implanting subdural
grids or strips of disk-shaped electrodes laying on the
brain surface. Such electrodes do not allow direct record-
ing from the depth of the sulci or from the white matter,
and also the sampling of the mesial and inferior aspects of
the hemispheres is challenging. Another common invasive
approach is to implant a small number of depth electrodes
(DE), mainly aimed at lateralizing temporal lobe seizures.
The limited number of such DE does not provide a suf-
ficient sampling of brain structures for the complex tri-
dimensional definition of the EZ [13]. A definitely higher
number of thinner and less traumatic intracerebral elec-
trodes is used for performing StereoElectroEncephaloG-
raphy (SEEG), a methodology developed by Talairach
and Bancaud at Hôpital Sainte Anne, Paris [14]. “Stereo-
EEG with intracerebral depth electrodes is increas-
ingly used to define the epileptogenic zone in complex
cases, with a lower rate of complications than subdural
grids” [15].
An accurate localization of the electrode contacts rela-

tive to cortical and sub-cortical structures allows mapping
the local field potentials (LFP) to the brain improving
the interpretability of the pathological networks. During
clinical practice, the assessment of implant accuracy is
commonly performed by visual inspection of Magnetic
Resonance Imaging (MRI) and Computed Tomography
(CT) scans, or intraoperative photography [16] in SEEG
and ECoG, respectively.
In post-operative MR images, the electrode artifacts

obscure both the exact position of each recording contact
and its proximal anatomy. These artifacts result in dis-
torted cortical sheets and contacts larger than expected
indirectly compromising the contact localization. CT
images allow for a more precise contact visualization in
the volume since are less affected by metal artifacts. CT
scans, however, have a poor soft-tissue contrast, which
blurs the anatomical boundaries of cerebral structures.
Thus, pre-operative MRI and a post-implant CT data are
usually fused to guide neurosurgeons in the assessment of
contact position and in the identification of neighbouring
brain structures [17].
Electrode shafts remain straight in the cortical tissue

only rarely and essential never fully lay on radiologi-
cal planes (i.e., axial, coronal, and sagittal) (Figure 1(a)).
Despite the large amount of time needed to localize sev-
eral tens to thousands points in a single volumetric image,
the navigation of brain volumes along non-conventional
planes strongly affects the chance to accurately discern
between brain structures even for trained and expert
medical doctors. Thus, image fusion of pre- and post-
implant imaging datasets, despite being a useful tool, fails
to help the clinical practices by not sensibly reducing

the amount of manual work to neurophysiologists and
neurosurgeons [18].
Moreover, due to the intrinsic aim of the methods

(i.e., investigation of limited brain volume), usually SEEG
electrodes have narrow and even convergent trajecto-
ries (Figure 1(b)) which sensibly limit the applicability of
classical region growing approaches and of more simple
threshold-based approaches.
Recently, research groups proposed several techniques

for the localization of iEEG electrodes. Most of the
approaches aim to simplify the manual extraction of con-
tact coordinates by fusing opportunely thresholded post-
implant datasets on pre-implant MRIs [19-21].
Other approaches take advantage of geometrical con-

straints (i.e., contact/electrode geometry) and seed point
initialization that works on iEEG [22], subdural [23]
or Deep Brain Stimulation (DBS) [24] electrodes. Even
though Dykstra and colleagues approach [22] deal with
deep brain electrodes, the extraction of contact coordi-
nates is performed by visual inspection of single subject
post-implant CT scans. Thus their method of implant
mapping to subject space is limited to a small number of
subjects at the same time due to the time requested for
the visual extraction. Subdural electrodes are arranged in
grid/strips which do not penetrate sulci and remain con-
fined to the cortical surface. Taken together this aspects,
automated or semi-automated segmentation methods in
ECoG implants cannot be directly applied to DE. Not
to mention that brain shifts in ECoG are much more
significant than in SEEG case which require then a post-
processing steps to account for that. The more similar
scenario in terms of electrode geometry (i.e., linear shafts,
cylindrical multi lead-electrode, converging trajectories)
is DBS used in treatment Parkinson’ Disease. Here, the
limited number of contacts (i.e., 4 channels/electrode)
and electrodes (i.e., at most one per hemisphere in case
of non-lateralized disease) make the task of automatic
segmentation of contacts within patients reference space
easier to be solved. The proposed approach by Hebb et al.
[24], takes advantage of the Hounsfield scale to discrim-
inate between contact and tissue voxels in order to get
rid of the manual selection of threshold. This approach
cannot be used in our specific case for two reasons. The
former is that Hounsfield scale is not reliable for Cone
BeamCT scans [25]. The latter is that the larger number of
electrodes/channels might result in crossing trajectories,
making the task to automatically assessing at each contact
the correct label unreliable.
Thus, none of these approaches is suitable for fully auto-

matic localization of SEEG electrode contacts in their
commonly complex implantation arrangements. In this
paper we present a novel algorithm specifically designed
to automatically segment SEEG contacts from a thresh-
olded post-implant Cone-Beam Computed Tomography
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Figure 1 Examples of a CT scan of a (tipical) SEEG implant, characterized by a high number of electrodes (targetting deep brain structures
from the cortical surfaces). (a) Gray-scale surface models representing an example of image resulting from a CT scan opportunely thresholded to
separate between contact and brain tissue. (b) SEEG implants aim to characterize the EZ thus it is quite common that several electrodes have
narrow trajectories pointing at the same region from different sides. The artifact around each contact that blurs the exact geometry of the cylinder
results in electrodes that apparently touch each other or (c) even apparently seem to be sequential traversing the whole brain.

(CBCT) volume (anisotropic voxel: 0.4 mm, 0.4 mm,
0.8 mm). The accuracy and reliability of the proposed
algorithm are evaluated analyzing data from 28 subjects
corresponding to 439 electrodes and 5937 contacts.

Results and discussion
In the present study, we used MRI and CT data from 28
patients undergoing pre surgical evaluation for resective
surgery aimed at treating drug-resistant epilepsy. Each
dataset is composed of one thresholded, skull-stripped,
post-implant CT volume previously coregistered to the
surgical reference space (i.e., MRI); and a fiducial file
where planned entry (i.e., on the cortical surface) and
target (i.e., deepinside the brain) points are listed for
each electrode. These data are mandatory to correctly
associate electrode and contact labels to the relative elec-
trophysiologic signals and as initial estimate of electrode
axes.
Briefly, the algorithm searches for the best candidate of

each contact traveling from entry to target points along
the estimated electrode axis in order to localize the first

contact located on the tip of each electrode. The above
process is replicated in the opposed direction, target-entry
along the same axis, to finely compute contact centroids.
Our method, implemented in a C++ prototype called

DEETO, successfully reconstructed all the SEEG elec-
trodes in our cohort from post-CT imaging in about 1s
per patient. Moreover, by coregistering post-implant CT
data to pre-implant MRI scans, we were able to accu-
rately map each channel position to its relative anatomical
region (Figure 2(a)), which can be easily derived from pial
surface mesh with Freesurfer suite (http://freesurfer.net/).
Thus, the proposed method will help the interpreta-
tion of the acquired local field potentials by directly
and accurately linking the acquired signals to their
neural sources which itself improve the localization
process.
Furthermore, the DEETO software outputs the esti-

mated position a text file containing for each contact
its label and its coordinates in RAS space within single
subject CT/MRI reference space. The current implemen-
tation also provides either a single mesh file for each

http://freesurfer.net/
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Figure 2 Results of the DEETO algorithm on complex scenarios. (a) The figure shows the accuracy of the reconstructed implant. The
complexity of SEEG implants is well represented in the figure where it can be easily seen the high number of electrodes used, their direction, and
their proximity to each others. Moreover, we superimposed pial surfaces (green - left and red - right) extracted from the MRI previously coregistered
to CT space. Original electrode surface models extracted from patient CT (shaded gray) are overlayed by segmented contacts (red cylinder) with
their real dimensions (i.e., each cylinder is 2 mm long, 0.8 mm diameter and inter-contact distance is 1.5 mm). (b) The proposed implementation is
robust to target point displacements. Target displacements (left plot) up to 12 mm from planned site result in an average error of 0.005 mm (blue
line). The number of False Positive (FP; central plot) and False Negative (FN; right plot) divided by the total number of real contacts increase with
target point displacements but remained below 10% for distances up to 13 mm. Shaded area in all plots indicate the interval between the 95th and
the 5th percentiles extracted from 28 subjects and 5 samples for each distance (see methods for details).

electrode or a single mesh file for the whole implant as
VTK polydata file. These data represent the contacts with
their real geometry ( refer to methods for details) and the
coordinates, in both text and vtk files, are relative to CT
original geometrical space.

Error against manually segmented points
We tested the error of the implemented algorithm against
manually localized contacts. A pool of trained neurosur-
geons have manually segmented 3 to 4 multilead elec-
trodes from subgroup of 12 subjects (total subjects 28),
503 contacts overall (total contacts 5937). The manual
segmentation process took 1h per subject resulting in
a total of approximately 28 hours of two skilled neuro-
surgeons while the implemented tool required only 0.8s
per subject to perform the same task. All the true con-
tacts have been successfully identified with a localization
error of 0.5 mm ± 0.06 mm (mean ± s.d.). We do not
see the need for a manual post-processing correction
for errors of this magnitude - both because the error is
so small and because it is unclear whether the error is
actually attributable to the algorithm or to the manually
segmented points. In clinical use, this error is irrelevant
because the resected region is much larger, in the scale of
several centimeters, than the localization uncertainty of
any single contact.

Robustness to target-point displacements
The proposed algorithm depends on the target-entry axis
to initialize the search space.
The information already available at trajectory planning

stage can be used as reliable entry point estimate, since
its position is generally more accurate (i.e., screw attached
to the skull) than it is for target points. In fact, planned
target points can sensibly deviate from planned positions,
with displacements of several millimeters up to tens of
millimeters [13].
We created 40 new fiducial list files for each of the 28

subjects with 8 target point displacements ranging from
1 to 15 mm and 5 points each. Each new target point
has been chosen randomly on the target-point-centered
circle of fixed radius (i.e., 1 to 15 mm) laying on the
perpendicular plane to the target-entry axis.
We quantified the error as a function of target point dis-

placements, as well as the false positive (FP) and false neg-
ative (FN) rates. These last were quantified as the number
of FP and FN out of the total number of channels for each
subjects. We reported in Figure 2(b) the average across
subjects along as 95% and 5% confidence bounds. We
report that the error of the algorithm is above 0.005 mm
for displacements up to 12 mm, and less than 0.02 mm for
displacements up to 15 mm. Moreover, the FN and FP are
less than 10% and 7% for target displacements of 15 mm
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(Figure 2(b)). These are mostly due to the fact that initial
entry and target points are used as initial estimation of
real electrode axis, whose direction erroneously falls in the
background causing the algorithm to stop. A more com-
plex initial estimation process could be used to sensibly
reduce the FN and FP rate.
It has to be noted that, the above reported algorithm

performances have been computed using information that
were available at trajectory planning stage where target
end entry points could actually be different from their
final positions. The inclusion of information on post-
implant localization of entry and target points would
strongly increase the algorithm accuracy.
Moreover, with the current results on algorithm robust-

ness we believe that even in presence of missing contact
the amount of time saved would sensibly benefit the clin-
ical routines. It further have to be noted that FN and FP
rates are computed considering that all electrode posi-
tions have been displaced of that amount. This case is
unrealistic but serves our purpose to show the robustness
of our approach. In normal cases, at most one electrode
undergoes such large deviation from planned trajectory.
Thus, we feel that the number of missed contacts in a
more realistic case would indeed not cause problems to
the subsequent analysis.

Algorithm reliability to specific domain problems
In implantation of multiple SEEG electrode shafts, con-
tacts belonging to different electrodes can be so close that
they seem to touch each other. These effects required
particular attention and specific designs in order to be
overcome. In general, the vast majority of SEEG electrodes
fulfill the generic assumptions that (a) the axis of an elec-
trode cannot be a curve; (b) two electrodes cannot cross
each other, and (c) each electrode must have a unique axis.
However, the presented method even in presence of

curved electrodes correctly reconstructs the electrode
axis and each contact (Figure 3) by redefining at each step
the electrode axis which more closely resemble the real
geometry.
During the implantation of multiple electrode shafts, it

is common that several electrodes have crossing and/or
nearby trajectories. This effect combined with metal arti-
fact results on “merging contacts” that become a single
mass of voxels. Our SEEG customization correctly handles
these situations by iteratively refine the centroid compu-
tation in the presence of displacements between adjacent
contacts that result on angles greater than 10 degrees
(Figure 3(b)).
While only in rare cases, a patient can been implanted

in both hemispheres. Therefore, it indeed might occur
that electrodes coming from the opposite sides seem to
lay on the same axis. Moreover, in these cases the two
tips affected by metal artifacts are so narrow that the

ensemble of all the contacts seem to belong to the same
long electrode traversing the whole brain volume. Thus,
difficulties arise trying to automatically discern between
the two electrode tails.
In our cohort, we did not find any electrode shaft

implanted in one hemisphere to have contacts in the
other hemisphere. Thus, we fixed the mid-planes divid-
ing the two hemisphere as end-point of each iteration.
Under this assumption, our algorithm performs correctly
even in presence of several electrodes with the same axis
(Figure 3(c)).

Conclusions
The manual neuroanatomical localization of SEEG con-
tacts is a challenging, tedious and error-prone task that
consumes several hours of working time of highly trained
clinicians. At present, there are no robust tools or tech-
niques to support clinicians in this task.
We presented here an automated segmentation algo-

rithm specifically designed to localize SEEG contacts from
a thresholded post-implant Cone-Beam CT volume. The
proposed method reliably identifies SEEG contacts and
co-localizes them with MRI-derived volume and surface
segmentations of cerebral structures with sub-millimeter
accuracy, which opens new avenues for exploiting the
anatomical accuracy of SEEG in both clinical use and neu-
roscience research. The presented method is robust to
electrode deviations up to 15 mm from the pre-surgically
planned trajectory. Finally, the method is automatized so
that non-experts such as students or technicians can easily
and reliably carry out the segmentation task.
The proposed method hence at a greatly decreased

human resources cost yields significantly improved neu-
roanatomical localization accuracy for SEEG electrode
contacts.

Method
This section is organized as follow: (i) we first give some
basic notations that will be used; (ii) then we present the
algorithm for the automatic contact segmentation, along
with a detailed description of SEEG-specific design, and
finally (iii) we present DEETO, i.e., the prototype that
implement the algorithm. The study was approved by
the ethical committee of Niguarda Hospital “Ca’ Granda”,
Milan, and was performed according to the Declaration of
Helsinki. All the patients participating to the present study
have given written informed consent for the use of their
data for research purpose.

Basic notations
Data acquisition and subject details
In the present study we analyzed data from 28 subjects
of which 13 male and 15 female of 28.89 year in aver-
age ranging from 17 to 47 years. The full details about
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Figure 3 An Example of the result of algorithm reconstruction. The reconstructed centroids (red or blue spheres) are confidently representing
the center of each original contact (shaded gray) visually assessing the accuracy of the method (a) even in presence of SEEG specific problems such
as (b) crossing or (c) touching electrodes.

SEEG implant approach and all the required steps that
lead to a successful implant can be found elsewhere (see
[13]). Here we briefly give some details to clarify the
context.
During planning of SEEG implants, neurosurgeons

define a set of trajectories, one for each electrode, in order
(i) to reach the pre-defined targets (ii) avoiding visible
arteries and veins. These trajectories are then provided to
a robotic stereotactic system (Neuromate, Renishaw may-
field), able to align its tool holder along the vector of the
planned trajectory. The vector is defined as two points, the
entry and the target points, which are the most proximal
and most distal points with respect to cortical surfaces,
respectively.
After surgical implant, the electrode positions are visu-

ally assessed on a CT scan acquired directly in the oper-
ating room (OR). Moreover, the planned entry and target
points are then saved on a ASCII text file for offline pro-
cessing in the presented algorithm as initial estimation of
electrode axis.
Thus, in our framework we extract contact coordinates

fusing the two CT volumes acquired in the OR before
(pre-CT) and after (post-CT) surgical implantation of
intracerebral electrodes. Pre-CT is routinely acquired to

register the patient’s head to the surgical reference space
[13].
After a preliminary registration (Correlation Ratio, 6

Degrees of Freedom (DOF)), we subtract the pre- from the
post-implant CT scan in order to delete the bone tissue
since its voxels have intensities in the same range as the
contacts.
Furthermore, to increase the contrast between contacts

and brain tissues, we threshold the images with a single
threshold filter using 1600 as cut-off value (Figure 1(a)).
The voxels laying above the threshold maintained their
original value, while the voxels below the threshold have
been set to 0.
The fiducial file containing the planned entry and target

points is created with 3DSlicer (http://www.slicer.org) and
contains two types of information (1) comments (each line
starting with #), and (2) several pairs of points with the
following format:

label, x, y, z

where label represents the unique electrode name and
(x, y, z) the coordinates in millimeters of either the target
or entry point.

http://www.slicer.org
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In the presented study we consider electrode shafts con-
taining 5–18 contacts (DIXI Medical, Lyon) where each
contact is a platinum-iridium cylinder of 0.8 mm diam-
eter, 2 mm long with 1.5 mm of inter-contact distance.
Conventionally, we mark each electrode with a capital
letter and each contact belonging to the electrode with
an increasing integer from 1 to N depending on elec-
trode model. We define as the first contact (i.e., 1) the
one on the tip of the electrode shaft, while the last con-
tact (i.e., N) is the most superficial one closer to the
screw.

Definitions
We consider an image as a set of points, which can be
described by a tuple

(x, y, z, I(x, y, z)) (1)

where (x, y, z) are the coordinates of a point in the
euclidean R3 space, while I(x, y, z) is the intensity func-
tion over the same space. Given a point p(x, y, z), I(p) (or
I(x,y,z) ) represents the intensity value in p. For sake of
simplicity in the following we can refer to an image
with its intensity function. Two points, p1(x1, y1, z1) and
p2(x2, y2, z2), define a straight line having the following
parametric representation:

p = p1 + vp2,p1 · t = p1 + p2 − p1
‖ p2 − p1 ‖ · t (2)

The point p with distance d from p1 along vp2,p1 can be
computed by the following equation:

p = p1 + v1,2 · d (3)

Given the intensity function I(x, y, z), we define the
moment of order p + q + r in the equation:

Mpqr =
∑
x

∑
y

∑
z
xpyqzrI(x, y, z) (4)

The moment of order 0, M000 of a given 3D image is
defined as

M000 =
∑
x

∑
y

∑
z
I(x, y, z) (5)

and it represent the total mass of an image having intensity
function I(x, y, z). There are three different moments of
order 1 in a given 3D image, and they are defined as:

M100 =
∑
x

∑
y

∑
z
x · I(x, y, z)

M010 =
∑
x

∑
y

∑
z
y · I(x, y, z)

M001 =
∑
x

∑
y

∑
z
z · I(x, y, z)

(6)

A region R of an image I in R3, can be defined as a sub-
set of points of the image. A cubic region R of an image

I, centered in c, and with a side length l, R(c, l), is a set of
the points of the image belonging to the cube. The cen-
ter of mass of a three dimensional region R is defined
as

cRm =
(
MR

100
MR

000
,
MR

010
MR

000
,
MR

001
MR

000

)
(7)

where each moment is computed with respect to the
region R.
We define the threshold S as the value in the range

of the intensity function, that marks the line between
points belonging to an electrode (intensity value above
S) from points belonging to the background. In our
dataset S is always 1600, i.e., the threshold value used
to filter the CT images before the segmentation. How-
ever, to be more general, in our framework we pick as
threshold S the first local minima in the image histo-
gram.

Automatic segmentation
Algorithm overview
The goal of the algorithm is to segment SEEG elec-
trodes from post-implant CT scan, as the one presented
in Figure 1(a). In this section we present the algorithm
which initially assumes that: (a) the axis of an electrode
cannot be a curve; (b) two electrodes cannot cross each
other, and (c) each electrode must have a unique axis.
For each electrode the algorithm executes two main steps:
electrode axis estimation (step 1, S1) and electrode con-
tacts segmentation (step 2, S2). The axis estimation needs
two points: the head point and the tail point which we
define as the most superficial and the deepest points
belonging to the electrode, respectively. Thus, the elec-
trode axis estimation is further divided in two sub steps:
(S1.1) the estimation of the head point, and (S1.2) the
estimation of tail point. These two sub steps are imple-
mented in the functions LOOK4HEAD and LOOK4TAIL,
respectively, and are presented in Figures 4 and 5. In the
second step, electrode contacts segmentation, the algo-
rithm iteratively estimates the position of each contact
within a geometrical-constrained search space by means
of the NEXT function. The search-space is defined by
two strong constraints. The former represents the fixed
inter-contact distance (i.e., the distance between two sub-
sequent contacts); the latter states that the axis deviations
which can only occur within electrode cables connect-
ing two adjacent contacts, should be minimal (i.e., <

10 deg). This geometrical-constrained estimation of each
electrode contacts is handled in ELECTRODECONTACT-
SEGMENTATION function (see Algorithm 1 from line 6 till
line 13).
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Algorithm 1 Pseudo-code
ELECTRODECONTACTSEGMENTATION(H , T)

1 C′
0 = T + vT ,H · D

2
2 R0 = COMPUTEREGION

(
C′
0, l

)
3 C0 =

(
MR0

100
MR0

000
, M

R0
010

MR0
000

, M
R0
001

MR0
000

)
4 electrode.push_back(C0)
5 Ci−1 = C0
6 do
7 C′

i = Ci−1 + vT ,H · D
8 Ri = COMPUTEREGION

(
C′
i , l

)
9 Ci =

(
MRi

100
MRi

000
, M

Ri
010

MRi
000

, M
Ri
001

MRi
000

)
10 if I(Ci) > S
11 electrode.push_back(Ci)
12 Ci−1 = Ci
13 while I(Ci) > S
14 return electrode

Electrode axis estimation: head point computation - S1.1
In most cases both the planned entry point and the last
(i.e., the most superficial) recording contact are masked
by metal artifacts surrounding the screw used to fix the
electrode to the skull. Nonetheless, in order to estimate
the head point position is sufficient to find approximately
the center of the screw. We proceed by searching for a
cubic region with the highest intensity nearby the planned
entry point and using its center of mass as first approxima-
tion as can be seen in Figure 4. To this aim, starting from
the planned entry point(E in Figure 4(a)), we search for a
voxel p with significant (i.e., I(p)>S) value within a cubic
region (R) of 3 mm centered in E. If no points within the
region exceed the threshold, we enlarge with 1 mm step
the region length up to 10 mm, R′, until a point is found
(Figure 4(b)). From this initial candidate, C0, we iteratively
compute the center of mass Ck of a region R centered in
Ck−1 using the equation in 7 until the contact centroid Ck
is equal to Ck−1 ± ε (Figure 4(c)). This final point, Ck , is
the approximated head point (H) position.

Electrode axis estimation: tail point computation - S1.2
While the planned entry point displacement is a rare
event, since it can only deviate from its original position
due to surgical reasons, the displacement of a planned
target point indeed might occur more often. However,
for what concerns the tail point estimation, the approach
adopted for the head point estimation has a major draw-
back in case of several converging electrodes. This way,
looking for the center of mass of the region with the high-
est intensity in the neighboring of the planned target point
might results on unrealistically deviated contacts which
affects the whole search.

This drawback is indeed much more evident in SEEG
implants compared to other iEEG modalities where sev-
eral electrodes are routinely used to target the same region
from different sides and rarely even from opposite hemi-
spheres. In order to estimate the tip of the electrode, D,
the algorithm uses theH position and the estimate r1, rep-
resented by the line connecting H and the planned target
point T . The algorithm iteratively try to follow the elec-
trode shape individuating subsequent point,Ak , belonging
to the electrode until the tip D is reached, see Figure 5.
Each point Ak is computed by executing the following
steps:

• A point sk with distance d from Ak−1 is computed,
laying on the line rk−1 connecting two subsequent
points, Ak−1 and Ak−2. The algorithm starts with
Ao = H , and r0 represented by the line connecting A0
and T , the planned target point.

• Starting from a generic sk , as in the H computation
phase S1.1, a cubic region (R) centered in sk is
defined and iteratively enlarged until a significant
voxel q0 is found (I(q0) > S). A graphic
representation of this step is in Figure 5(c).

• Starting from q0, the algorithm iteratively compute
the center of mass qj of a region R centered in qj−1
using Equation 7, until the difference between two
subsequent centroids is less than a threshold ε, i.e.,
‖ qj − qj−1 ‖< ε. The final centroid qj represents the
position of the new point Ak . A graphic
representation of this step can be found in Figure 5(d).

Electrode contacts segmentation - S2
Once the position D of the tip of the electrode has been
estimated, it is possible to start the process of contact seg-
mentation. The algorithm is the same adopted in phase
S1.2 for tail point computation. In this case the starting
point C0 is the tip D and the starting search direction is
from C0 to H . The only exception is in the computation
of the first point s0: since D represents both the tip of the
electrode and the tip of the contact, s0 has distance d

2 from
C0, where d is the distance between two subsequent center
of contacts.

SEEG-specific methods
In describing the algorithm we have not made any
assumptions about the electrodes, except the possible
deviation of the target points from their planned posi-
tions. However, post-CT scans are affected by three major
problems: (a) the axis of an electrode could be a curve,
(b) two electrodes can apparently cross each other, (c) two
electrodes can lay on the same axis.

Curved electrode
Curved electrode may arise when during surgical implant
the tip of the electrode encounter hard tissues or simply
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Figure 4 An example of the head point computation of the Electrode Axis Estimation step. (a) in a region R the algorithm looks for a point,
C0, with an intensity value greater than the threshold. If such point does not exist the region size is increased, R′ , until the point is found. In (b) the
algorithm compute the center of mass of a region R centered in C0. This step is iterated, Ck , until the point Ck is equivalent to Ck−1. In (c) the point
Ck will be used as head point point (H) in later analysis steps.

end up in a sulcus. If the algorithm deals with a fixed elec-
trode axis it may fail to find a solution since the region R
may not contain points above the threshold and thus the
resulting center of mass will be null. In these cases the
algorithm stops even if the contacts are not yet all discov-
ered. In our algorithm the axis is represented as piece-wise
linear function, where each segment is the conjunction of
two subsequent contacts,Ck−1, and Ck−2. This allows to
follow precisely the curvature of the electrode.

Crossing electrodes
When an electrode cross another electrode, the crossing
contacts are merged and they became an indistinguish-
able big contact (Figure 1(b)). In this case the center of
mass of a region R constructed around this big contact
may produce a wrong center of mass and thus a wrong

contact. This problem may impair the computation of the
next contact points, resulting in errors in the reconstruc-
tion. However, given the fixed geometry of an electrode, a
contact Ck cannot be too far from the line passing for the
two previous points, Ck−1 and Ck−2, i.e., it cannot deviate
too much from its expected trajectory. Indeed we exper-
imentally see that given a contact Ck the angle between
the two lines rCk ,Ck−1 and rCk−1,Ck−2 is at most 10 degrees.
If the angle is greater than 10 degrees it means that a
contact is crossing another contact and we must reduce
the amount of points in R, or in other words, we have to
reduce the size of R. More in details we iterate the lines
8 and 9 of the algorithm (see Algorithm 1) by decreasing
the size of R each time, until either the angle between the
lines rCk ,Ck−1 and rCk−1,Ck−2 is less than 10 degree, or R has
size 0.
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Figure 5 An example of the behaviour of the algorithm in the Electrode Axis Estimation step. (a)This panel represents the result of the
algorithm, i.e., the axis (rH,D) and each axis point, Ak , computed at each iteration, while the other three figures represent the steps executed at each
iteration: (b) represent the computation of a point s, on the line connecting the two previous computed axis points, Ak−1 and Ak−2, with distance d
from the point Ak−1; (c) is the computation of a point q0 that it is the point with the higher intensity value in “cubic” region R centered in s; (d) represent
the computation of the axis point Ak , i.e., the center of mass of a region R centered in q0.

Electrodes on the same approximate axis
This problem can be seen in Figure 1(c) and typically is
posed by two electrodes having approximately the same
axis, which happens, e.g., when the target point is in
deep structures and is approached bilaterally. In this case
two different electrodes seems merged into one long elec-
trode since their tip is very close to, if not crossing, each
other. However in case of reliable planned target point this
would not be a problem, but the tail point computation
fails because the step S1.2 cannot distinguish one elec-
trode from the other, and cannot correctly stops. In order
to solve this problem we assume that an electrode cannot
pass the medial longitudinal fissure, i.e., cannot pass from
one hemisphere to the other. Thus we modify the stop cri-
teria of the tail point computation, step S1.2, by adding
the condition that an electrode cannot be into two differ-
ent hemispheres at the same time. To do this we add the

computation of the geometrical plane to which belong the
medial longitudinal fissure, and then, given a contact, we
compute the difference between the distance of this plane
from the head point, and the distance of the contact from
the head point: if it is negative than the contact pass the
hemisphere and the search must stop, otherwise it can
continue.

DEETO
seeg electroDE rEconstruction TOol (DEETO) is an
open-source software that implement the advanced algo-
rithm presented above. It is written in C++ on the top
of some libraries presented below. It takes the following
inputs:

• A 3D image, i.e., a pre-filtered post-implant
Cone-beam CT scan.
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• A fiducial file where are stored the name and the
coordinates of the planned entry point and planned
target point for each electrode. By default, the
coordinates are suppose to be in CT space.

• A bunch of switch, that are self explained in the
readme file. The most used one is the flag -r (–noref)
used to indicate that in the fiducial file the points
coordinates are not in the CT space.

DEETO output can be of two types:

• A simple txt file where each contacts is stored and
written using the same format, and the same
coordinate system, of the fiducial file; or/and

• A single vtk polydata file that represents the
triangular meshes of all the electrodes in their
estimated positions or a separate vtk polydata file for
each electrode.

Download
DEETO source code can be freely downloaded from
the following web-page: https://github.com/mnarizzano/
DEETO.

Dependencies
For building DEETO is necessary to install the following
libraries and/or tools:

• CMake, version 2.8 downloadable from http://www.
cmake.org/cmake/resources/software.html. CMake is
an extensible, open-source system that manages the
build process in an operating system and in a
compiler-independent manner.

• Insight Toolkit (ITK) version 4.3.1 downloadable
from http://www.itk.org/ITK/resources/software.
html. Is an open-source software toolkit for
performing registration and segmentation of a
digitally sampled representation.

• tclap, Templatized C++ Command Line Parser,
version 1.2, downloadable from http://sourceforge.
net/projects/tclap/files/, is a simple templatized C++
library for parsing command line arguments.

• Visualization Toolkit library (VTK), version 5.6,
downloadable from http://www.vtk.org/VTK/
resources/software.html. It is an open source, freely
available software system for 3D computer graphics,
modeling, image processing, volume rendering,
scientific visualization and information visualization.

Build and run
Build the project with cmake by running the following
commands
cmake CMakeLists.txt
make

and finally run the generated executable file in directory
bin by using the following command line: deeto -o <file

out name> -f <fiducial file input name> -c <CT image
in name>.
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