
Taguchi et al. BMC Bioinformatics  (2015) 16:139 
DOI 10.1186/s12859-015-0574-4

RESEARCH ARTICLE Open Access

Principal component analysis-based
unsupervised feature extraction applied to
in silico drug discovery for posttraumatic stress
disorder-mediated heart disease
Y-h Taguchi1*, Mitsuo Iwadate2 and Hideaki Umeyama2

Abstract

Background: Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample
numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE
because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem.
Developing sample classification independent unsupervised methods would solve many of these problems.

Results: Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended
to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as
sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both
performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease
data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart.
A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control
samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility
than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was
performed as translational validation of the methods.

Conclusions: Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated
data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have
suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug
discovery.

Keywords: Unsupervised feature extraction, Principal component analysis, Variational Bayes, Posttraumatic stress
disorder, Heart disease, In silico drug discovery, chooseLD, FAMS

Background
Feature extraction (FE) is an important task in bioin-
formatic analyses, as there are often more features than
samples. The number of bases spanning linear space is
at most equivalent to the number of independent vec-
tors. Accordingly, more features than samples inevitably
leads to redundancy. Although dimensional reduction is
often used to eliminate redundancy, it is far from true
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redundancy elimination as reconstructed bases are usually
the linear combination of all features, which is not always
necessary for spanning entire linear space.
Instead of dimensional reduction, FE can be used

to eliminate redundancy, and is often performed to
maximize performance of targeted tasks (supervised
FE), e.g., discrimination between samples or regression
analysis, although fewer samples than features often
creates difficulties due to overfitting and/or bias. Multi-
ple class samples commonly provide additional problems
when supervised FE is used, complicating performance
evaluations compared with two-class samples. Although
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pairwise evaluations (e.g., one versus one or one versus
others) are possible, they are time-consuming. FE using
a set of pairwise evaluations is often even more difficult,
because it is hard to maximize performance simultane-
ously for all pairwise evaluations with commonly selected
features for all pairs. In addition, supervised FE is often
heavily sample-dependent, and alternative sample sets
often provide alternative optimal FE. Moreover, with cat-
egorical classes the problems are greater, since frequently
used FE with regression analyses, e.g., lasso [1], cannot be
directly applied to categorical multiclass data sets.
In order to avoid these difficulties, unsupervised FE is

useful as it is assumed to be more robust and stable,
although this has not been extensively studied because of
implementation difficulties, e.g., supervision is not based
upon performance, therefore FE has nothing suitable for
optimization. Variational Bayesian approaches eliminate
redundancy in an unsupervisedmanner, and have recently
been proposed as promising unsupervised FE methods.
In this paper, we used variational Bayes (VB) principal
component analysis (PCA) [2,3] to perform unsupervised
FE. In addition, a simpler and more conventional PCA
(CPCA)-based unsupervised FE method (CPCAFE) that
worked well with a simulated data set was proposed as
an alternative to VBPCA. As VBPCA is more computa-
tionally challenging, CPCAFE is an even more promis-
ing alternative unsupervised FE candidate than the VB
approach.
To demonstrate applicability to translational research,

we used CPCA-based, and partially, VBPCA-based unsu-
pervised FE (VBPCAFE) to examine heart disease associ-
ated with posttraumatic stress disorder (PTSD). PTSD [4]
is caused by exposure to high-magnitude, life-threatening
stressors, i.e., traumatic events. PTSD patients typically
develop acute stress responses that include symptoms of
arousal, anxiety, sadness, grief, agitation, irritability, and
sleep disturbances. Heart disease is associated with PTSD,
with a meta-analysis showing association between coro-
nary heart disease (CHD) and PTSD [5]. Moreover, hospi-
talization due to cardiovascular disease is associated with
PTSD caused by the September 11, 2001, World Trade
Center disaster [6]. PTSD was also associated with CHD
using a prospective twin study design [7]. However, the
underlying genetic background of the association is not
well known.
By applying CPCAFE and VBPCAFE to publically avail-

able mRNA and microRNA (miRNA) expression data
[8] from stressed mouse hearts, we identified aberrantly
expressed miRNAs and mRNAs. Biological feasibility of
the identified miRNAs and mRNAs was determined (by
negative correlation between miRNAs and mRNAs, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [9]
pathway enrichment of miRNA target genes), showing
suitability of our selections.

Two supervised FE methods, specifically, regression
analysis using categorical pseudo variables and backward
elimination using Hilbert-Schmidt norm of the cross-
covariance operator (BAHSIC), identified unstable and
biologically less feasible sets of mRNAs and miRNAs
that were not always negatively correlated, and suggested
superiority of unsupervised FE methods.
Among the aberrantly expressed genes identified by

CPCAFE, fatty acid binding protein 3 (FABP3) was con-
sidered a potential drug target candidate by structural
investigations, and inhibitory drugs were sought using the
in silico drug discovery tool, chooseLD, a profile-based
drug discovery program.

Results and discussion
FE methods applied to a simulated categorical multiclass
data set
We performed FE using a simulated categorical multiclass
data set, to determine the limitations of FE and usefulness
of our proposed methods.
The data set consisted of 100 simulated ensembles of 20

samples with 100 features, of which only 10 features were
distinct between four classes, and with each class consist-
ing of 5 samples (see Methods). As sample values of each
feature were obtained from an identical mixture of four
Gaussian distributions, FE is difficult but discrimination
between four classes varies between three cases (shown
in Figure 1; a typical feature boxplot with distinct expres-
sion among classes). We named these three cases as easy
(s = 2), medium (s = 1), and hard (s = 0.5). Furthermore,
we did not use order between the four classes, so the data
could be treated as a categorical data set.
In order to demonstrate the limitations of FE, we first

tested one vs one t test based FE (see Methods). No signif-
icantly different features were detected between the four
classes in any of the three cases (Figure 2; confusion tables
are available in Additional file 1), demonstrating that FE
on a categorical multiclass data set is difficult.
Next, we applied a more sophisticated method, specif-

ically, categorical regression based FE (using significance
based on adjusted P-values, see Methods). The number
of correctly extracted features improved, with Matthews
correlation coefficients of 0.95, 0.35, and 0.05, and F mea-
sures of 0.98, 0.15, and 0.005 for easy, medium, and hard
cases, respectively (Figure 2; confusion tables are avail-
able in Additional file 1). However, for the hard case, both
values are almost zero.
In order to improve performance, we selected the top 10

ranked features with the smallest P-values, independent
of significance (using P-value ranks, see Methods). This
resulted in Matthews correlation coefficients of 0.97, 0.61,
and 0.22, and F measures of 0.97, 0.65, and 0.30 for easy,
medium, and hard cases, respectively (Figure 2; confusion
tables are available in Additional file 1). Thus, FE accuracy
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Figure 1 Boxplot of typical features with distinct values between four classes (1 ≤ i ≤ 5) in the simulated data set; s = 2 (easy), 1 (medium), and 0.5
(hard).

is reasonable, but selecting features using non-significant
P-values is not ideal, highlighting the problem of using FE
on a categorical multiclass data set.
In order to overcome this, we next tested BAHSIC

[10] (see Methods), a recently proposed non-parametric
FE method that has been used on high-dimensional
microarray data sets. The obtained Matthews correla-
tion coefficients were 0.84, 0.49, and 0.18, and F mea-
sures were 0.86, 0.54, and 0.27 for easy, medium, and
hard cases, respectively (Figure 2; confusion tables are
available in Additional file 1). Although performance is
relatively improved (without using highly ranked but non-
significant features), BAHSIC does not use P-values, and
again the results are not completely satisfactory, especially
for the easy case: a Matthews coefficient of 0.84 is less
than the 0.95 achieved by categorical regression based
FE.
Therefore, we next considered VBPCAFE. In order to

perform FE with VBPCA, original VBPCA was extended
to incorporate feature dependence (see Methods). Prior

distribution in this extension has feature-dependent
parameters, and therefore automatic elimination of irrele-
vant features was expected. The Ci1

B histogram reflects the
prior distribution parameter of the first principal compo-
nent (PC) (Figure 3), with smaller values assumed to be
irrelevant features. Originally, CB was introduced to elim-
inate irrelevant PCs, and therefore has only q (PC) and not
i (feature) dependence. However, we needed to eliminate
irrelevant features as well; therefore, in our study CB must
also have i dependence. Although we did not use sample
labelling information, as expected, irrelevant features had
smaller Ci1

B . Averaged Aj1 (contribution of the jth sample
to the first PC) over 100 ensembles (Figure 4), demon-
strates thatAj1 represents the distinction between the four
classes. Thus, features not coincident with Aj1 (and with
smaller Ci1

B ) were eliminated, producing Matthews corre-
lation coefficients of 0.91, 0.39, and 0.04, and F measures
of 0.92, 0.46, and 0.14 for easy, medium, and hard cases,
respectively (Figure 2; confusion tables are available in
Additional file 1).

Figure 2 Matthews correlation coefficients and F measure for various FE methods applied to the simulated data set. t test, one vs one t test based
FE; CRP, categorical regression based FE (using adjusted P-values); CRR, categorical regression based FE (using ranked P-values); BAHSIC, backward
elimination using Hilbert-Schmidt norm of the cross-covariance operator; VBPCAFE, variational Bayes principal component analysis based
unsupervised FE; CPCAFE, conventional principal component analysis based unsupervised FE.
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Figure 3 Relationship between Cib and features with distinct expression among four classes. Left column: histogram obtained from logarithmic CiB
for 100 independent ensembles. Red color indicates features with distinct expression between four classes. Right column: proportion of features
with distinct expression between four classes in each bin. Top: s = 2, easy; middle: s = 1, medium; bottom: s = 0.5, hard cases.
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Figure 4 Aj1 boxplot with distinct values between four classes in 100 independent ensembles of the simulated data set; s = 2 (easy), 1 (medium),
and 0.5 (hard).

Although performance has been successfully improved
for the easy case, VBPCAFE is computationally chal-
lenging and is a potential drawback to its use. Iteration
involves updates proportional to the number of features,
which can often be as many as several tens of thousands.
Thus, amore computationally effectivemethod is of value,
and a relatively straightforward idea is to replace Ciq

B with
Biq, the qth PC score of ith feature, because a larger Biq is
expected to result in relevant (thus larger) Ciq

B (for exam-
ple, see eq. (1) in Methods). Indeed, replacing Ci1

B with
B1i, we obtainedMatthews correlation coefficients of 0.88,
0.34, and 0.02, and F measures of 0.89, 0.41, and 0.12
for easy, medium and hard cases, respectively (Figure 2,
confusion tables are available in Additional file 1). These
values are comparable with those using Ci1

B . Considering
that CPCAFE requires minimal computational resources,
CPCAFE is a promising candidate for applying to real
data that often consists of more than several thousand
features.
In summary, there are at least four methods that achieve

comparable FE performance on a categorical multiclass
data set: categorical regression based FE (using ranked
P-values), BAHSIC, VBPCAFE, and CPCAFE. Each has
its own advantages and disadvantages: although categor-
ical regression based FE achieved the best overall per-
formance, it used features with non-significant adjusted
P-values. BAHSIC does not have this problem, but as it
does not use P-values, its performance using the easy
case was poorest of the tested methods. VBPCAFE and
CPCAFEweremore effective using the easy case, but their
performance was poor for the hard case. VBPCAFE is
computationally challenging, while CPCAFE is not.
However, these conclusions may be viewed as slightly

subjective. The methods recommended for the hard
case (i.e., categorical regression based FE and BAHSIC)
have strict label dependency. Harder class discrimina-
tion often means label uncertainty (or incorrectness). Of
course, there are many objective labels (e.g., gender or
age), but those related to experimental conditions often
include subjective criterion or insufficient controls for

experimental conditions. Hard class discrimination often
originates from these subjective labels, and consequently,
robustness to mislabeling is desired, especially for hard
cases.
In order to test robustness of the four methods towards

partial mislabeling, we determined performance after
mislabeling (Table 1). Figure 5 shows performance degra-
dation caused by little, medium, and heavy partial mis-
labeling. Little, medium, and heavy were defined by the
distance between true and wrong labels. The number of
samples with wrong labels included only a proportion of
the data, and never more than 20%. Although only 20% of
samples were mislabeled, performance degradation with
BAHSIC and categorical regression based FE was con-
siderable for medium and heavy mislabeling. Conversely,
VBPCAFE and CPNAFE performance were not affected
by mislabeling as these two methods do not require label-
ing information. This indicates that the two methods
recommended for hard cases are not particularly robust,
even against partial mislabeling, and therefore not always
recommended.
In conclusion, CPCAFE or VBPCAFE are the best meth-

ods for FE from categorical multiclass data sets, as they
maintain robustness and show relatively stable and good
performance for most cases.

Table 1 Artificial partial mislabeling introduced to the
simulated data set to check robustness of FE

(a) (b) (c)

Corr. coef. 0.92 0.68 0.60

Class 1 2 3 4 1 2 3 4 1 2 3 4

1 4 1 0 0 4 0 1 0 4 0 0 1

2 1 4 0 0 0 4 0 1 0 4 1 0

3 0 0 4 1 1 0 4 0 0 1 4 0

4 0 0 1 4 0 1 0 4 1 0 0 4

Rows and columns represent true and modified labels. Numbers represent the
number of samples with correct and modified labels. (a) little; (b) medium; and
(c) heavy mislabeling. Correlation coefficients represent the amount of
mislabeling (larger correlation coefficients correspond to less mislabeling).
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Figure 5 Matthews correlation coefficients and F measure for various FE methods applied to the simulated data set with partial mislabeling,
indicated in Table 1. Correlation coefficients between mislabeled and true labeling were (a) 0.92, (b) 0.68, and (c) 0.60, as shown in Table 1. Other
notations are the same as in Figure 2.

Translational use of CPCAFE
In order to determine the effectiveness of CPCAFE in
a real application, we examined PTSD associated heart
disease. Our data set consisted of multiclass categorical
samples, including several experimental conditions with
no pre-defined rank orders (see Methods), and is suitable
for estimating CPCAFE performance. Two-dimensional

embedding of miRNA profiles are shown (Figure 6). Two
probes (corresponding to mmu-miR-302c and -370) with
extremely large values were deemed to be erroneous sig-
nals and excluded prior to embedding. Since each miRNA
was attributed to multiple probes, removing these two
probes did not mean exclusion of these miRNAs from
the analysis. In addition, probes with relatively large PC2
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Figure 6 Two-dimensional embedding of miRNA expression determined by PCA. Each dot represents a probe. Red dots indicate the 100
top-ranked probes with larger PC1 scores, selected as outliers based on the criterion of CPCAFE. A few probes with relatively large PC2 scores were
excluded to allow selection of PC1 enhanced probes. See Additional file 2 for more detail.

Figure 7 Boxplots of logarithmic P-values obtained from t tests comparing control and treatment samples. P-values < 0.5 indicate greater miRNA
upregulation in treatment samples than controls (justification for using logarithmic P-values is available in Additional file 2). From left to right, the
experimental conditions were 2, 5, and 10 days of stress and 1 day of rest; 5 days of stress and 10 days of rest; and 10 days of stress and 42 days of
rest. Right-hand boxes (“selected”) are the 27 miRNAs identified by PCA-based unsupervised FE, and left-hand boxes (“others”) the remaining
miRNAs. P-values shown above each plot were calculated using t tests to compare logarithmic P-values between selected and other miRNAs. P>s
(P<s) is the rejection probability that rejects the null hypothesis (both sets have equal means) in favor of the alternative hypothesis (“others” have a
larger or smaller mean than “selected”). Based on these criteria, selected miRNAs are upregulated in treatment samples with 2 days of stress and 1
day of rest, and downregulated in treatment samples for the other conditions.
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projections were excluded and the 100 top-ranked out-
liers along PC1 selected. This strategy ensured selection
of PC1 enhanced probes, as outliers along both PC1 and
PC2 were not expected to be PC1 specific (PCs other than
PC1 or PC2 were excluded, with our rationale discussed
in Additional file 2). CPCAFE assumes that if a set of
probes are outliers along a PC, they behave in a group ori-
ented manner. If not, they are not outliers and are instead
located on the origin, where the majority of probes with-
out biological feasibility are presumed to be located. This
criterion requires no user input and probe biological rel-
evance (e.g., distinct expression between treatment and
control samples) is unknown. Using these assumptions,
we further investigated a selected 100 probes, represent-
ing 27 unique miRNAs, specifically, mmu-miR-451, -22,
-133b, -709, -126-3p, -30c, -29a, -143, -24, -23b, -133a,
-378, -30b, -29b, -125b-5p, -675-5p, -16, -26a, -30e, -1983,
-691, -23a, -690, -207, and -669l, and mmu-let-7b and -7g.
We investigated differential expression of these miRNAs
between treatment and control samples using various sta-
tistical tests (e.g., t-test, Wilcoxon rank sum test, and
Kolmogorov-Smirnov test), but obtained no significant
results. However, owing to the small number of samples
(four samples for treatment and control conditions), the
significance criterion (i.e., P < 0.05) was not satisfied by
any miRNA examined, including the 27 selected miRNAs.
Therefore, we compared the selected and other miRNAs
as two separate groups. Boxplots of logarithmic P-values
obtained by t tests between miRNAs in treatment and
control samples are shown (Figure 7).
The 27 selected miRNAs have larger or smaller P-values

than the other miRNAs, indicating that CPCAFE success-
fully selected differentially expressed miRNAs between
treatment and control samples (justification for using log-
arithmic P-values is provided in Additional file 2).
Although the selected miRNAs were expressed

distinctly from the other miRNAs, this does not demon-
strate biological relevance. As our aim was to investigate
the underlying transcriptomic background of PTSD-
mediated heart disease, preliminary validation of our
approach can be provided by prior involvement of the
selected miRNAs with heart disease. To address this,
we performed literature searches (Table 2). Of the 27
selected miRNAs, 23 (excluding miR-1983, -691, -690,
and -207) were previously reported to be related to heart
disease, suggesting our miRNA selection is biologically
useful.
To further confirm biological suitability of the identi-

fied miRNAs, we examined KEGG pathway enrichment
using miRNA target genes (see Methods). Associations
between enriched KEGG pathways and heart disease
are summarized (Table 3). Next, we examined the 21
top-ranked pathways (the complete list is available in
Additional file 3), with 17 found to be related to heart

Table 2 Summary of studies with association between the
27 selectedmiRNAs and heart disease

miRNAs Ref. Description

miR-451 [39] Upregulated in heart due to ischemia

miR-22 [40] Elevated serum levels in patients with stable
chronic systolic heart failure

miR-133 [41] Downregulated in transverse aortic constriction
and isoproterenol-induced hypertrophy

miR-709 [42] Upregulated in rat heart four weeks after chronic
doxorubicin treatment

miR-126 [43] Association with outcome of ischemic and
nonischemic cardiomyopathy in patients with
chronic heart failure

miR-30 [44] Inversely related to CTGF in two rodent models
of heart disease, and human pathological left
ventricular hypertrophy

miR-29 [45] Downregulated in the heart region adjacent to
an infarct

miR-143 [46] Molecular key to switching of the vascular smooth
muscle cell phenotype that plays a critical role in
cardiovascular disease pathogenesis

miR-24 [47] Regulates cardiac fibrosis after myocardial infarction

miR-23 [48] Upregulated during cardiac hypertrophy

miR-378 [49] Cardiac hypertrophy control

miR-125 [50] Important regulator of hESC differentiation to cardiac
muscle(potential therapeutic application)

miR-675 [51] Elevated in plasma of heart failure patients

let-7 [52] Aberrant expression of let-7 members in
cardiovascular disease

miR-16 [53] Circulating prognostic biomarker in critical limb
ischemia

miR-26 [54] Downregulated in a rat cardiac hypertrophy model

miR-669 [55] Prevents skeletal muscle differentiation in postnatal
cardiac progenitors

disease. Overall, these findings validate both our selection
of miRNAs, and utility of CPCAFE.
Moreover, our results suggest that the aberrantly

expressed miRNAs are likely involved in PTSD-mediated
heart disease. Hence, further investigation of the miRNA
target genes may clarify the underlying molecular biology
and transcriptomic background of PTSD-mediated heart
disease.
In this regards, we applied PCA to mRNA expres-

sion. Two-dimensional embedding of mRNA expression
is shown (Figure 8). To determine correlation between
miRNA and mRNA expression, we compared their
expression profiles and determined the contribution of
each sample to PC1 (Figure 9(a)), showing negative cor-
relation between PC1s. Additionally, to determine if the
observed correlation is coincident with experimental con-
ditions, scatterplots of averaged values within each condi-
tion were examined (Figure 9(b)). This strengthened the
correlations but did not change significance, indicating
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Table 3 Summary of studies with association between heart disease and KEGG pathways enriched bymiRNA target genes

KEGG pathway Enrichment P-value Ref. Description

Axon guidance 3.61 × 10−14 [56] Axon guidance of sympathetic neurons to
cardiomyocytes is a promising target for regulation of
cardiac function in diseased hearts

Colorectal cancer 1.92 × 10−10 [57] Significant association between colorectal neoplasm
and coronary artery disease

Chronic myeloid leukaemia 1.92 × 10−10 [58] Imatinib mesylate (a therapeutic agent for chronic
myeloid leukaemia) has cardiotoxicity

Glutamatergic synapse 3.35 × 10−9 — —

Hepatitis B 5.86 × 10−9 [59] Hepatitis B virus causes varied forms of heart disease

Pancreatic cancer 6.60 × 10−9 — —

Acute myeloid leukaemia 2.54 × 10−8 [60] Cause of acute ischemic heart disease

Focal adhesion 6.65 × 10−8 [61] Focal adhesion kinase deletion attenuates pressure
overload-induced hypertrophy

MAPK signaling pathway 3.50 × 10−7 [62] Plays an important role in cardiac and vascular disease
pathogenesis

Endometrial cancer 4.55 × 10−7 [63] Cardiovascular disease is the leading cause of death
among endometrial cancer patients

Chagas disease 6.33 × 10−7 [64] Association with heart disease

T cell receptor signaling pathway 9.82 × 10−7 — —

ErbB signaling pathway 1.01 × 10−6 [65] ErbB-signaling pathway proteins are potential drug
targets for heart failure treatment

Prostate cancer 2.47 × 10−6 [66] Coronary artery disease and prostate cancer are both
common diseases sharing many risk factors

Neurotrophin signaling pathway 3.08 × 10−6 — —

Toxoplasmosis 3.16 × 10−6 [67] Toxoplasmosis is a cause of heart disease

Bacterial invasion of epithelial cells 3.84 × 10−6 — —

TGF-beta signaling pathway 7.35 × 10−6 [68] Upregulated in infarcted myocardium

Nonsmall-cell lung cancer 9.00 × 10−6 — —

VEGF signaling pathway 1.17 × 10−5 [69] A VEGF inhibitor has cardiotoxicity

Dopaminergic synapse 2.19 × 10−5 [70] Dopamine agonists affect the cardiovascular system

Figure 8 Two-dimensional embedding of mRNA expression by PCA. Notations are the same as in Figure 6. See Additional file 2 for more detail.
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(a) (b)

Figure 9 Comparison of sample contributions to PC1 between mRNA and miRNA. (a) Scatterplot comparing mRNA and miRNA expression profiles
for sample contribution to PC1 (i.e., components of the first loading vector). Pearson’s correlation coefficient = −0.37 (P = 0.01). (b) Averaged
contributions within each condition. Pearson’s correlation coefficient = −0.69 (P = 0.01). XY-Zd with X = C (control); X = T (treatment); Y, stress
days; and Z, rest days in experimental conditions. See Additional file 2 for more detail.

that the observed negative correlation between mRNA
and miRNA expression is reliable. Next, we selected
mRNAs using CPCAFE. To select PC1 enhanced probes,
the 100 top-ranked outliers along PC1 were selected,
excluding probes with relatively large projections to PC2.
In total, 59 uniquemRNAs were identified (RefSeqmRNA
IDs are provided in Additional file 4). To confirm negative
correlation between miRNAs and miRNA target mRNAs,
correlation coefficients were determined (see Additional
file 4). There were no targets common to the selected
59 mRNAs and TarBase, employed by DNA intelligent
Analysis (DIANA)-mirpath [11] and used in KEGG path-
way analysis (see Methods), possibly because of TarBase’s
experiment-oriented, thus context-dependent, nature (i.e.,
TarBase does not include PTSD). Thus, instead we used
seed matching to identify miRNA target genes, with so
called 7mer-m8 [12] detecting exact matches to positions

2-8 of mature miRNAs (seed + position 8). Among the
59 mRNAs, 24 were targeted by at least one of the 27
selected miRNAs. In addition, 47 pairs of miRNAs and
miRNA target genes were identified. In total, there were
45/47 negative correlation coefficients between miRNAs
and miRNA target genes. We also examined correlation
coefficient significance (see Methods), with 26/47 pairs
(more than half ) associated with significant correlations
(two positive correlations were judged insignificant), and
confirming negative correlation between miRNAs and
miRNA target genes.
In order to determine if the selected 59 mRNAs were

differentially expressed between control and treated sam-
ples, we examined the logarithmic ratio. Using t tests, the
averaged logarithmic ratio of the 59 samples was signifi-
cantly negative or positive compared with that averaged
over other mRNAs, excluding only one condition (see

Table 4 P-values calculated by t tests from logarithmic ratios between treated and control samples

C2-1d C5-1d C10-1d C5-10d C10-42d

P-values vs vs vs vs vs

T2-1d T5-1d T10-1d T5-10d T10-42d

Control < treated 6.9 × 10−4 7.4 × 10−8 1.0 0.22 0.03

Control > treated 1.0 1.0 2.35 × 10−8 0.78 0.97

Smaller P-values indicate that the difference in mean logarithmic ratio is more significant in the selected 59 mRNAs than that in the other mRNAs. For descriptions of
each experimental condition, see the caption for Figure 9. For more methodological detail, see Additional file 2.
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Table 4). Thus, our results show that the 59 selected
mRNAs are mostly distinctly expressed between control
and treated samples.
Although the selected mRNAs include many targeted

and negatively regulated bymiRNAs, and are differentially
expressed between control and treated samples, published
associations between the selected mRNAs and heart dis-
ease would provide direct biological relevance. Associa-
tion between the identified genes and heart disease are
summarized (Table 5). In total, 9 genes were both targeted
by at least one of the 27 miRNAs and related to heart dis-
ease. In addition, 17 genes were related to heart disease
but not targeted by any of the 27 miRNAs (see Additional
file 5). Among the genes not associated with heart disease,
15 genes were targeted by at least one of the 27 miR-
NAs, and only 18 genes were not targeted by any. Because
approximately half (26 in total) of the selected 59 genes are
related to heart disease, our gene selection is feasible from
a biological point of view.
Finally, we compared the selected 59 genes with KEGG

pathways. KEGG pathway analysis had been performed
for the miRNAs, but as they are not the only mRNA regu-
latory mechanism, mRNA expression may be, at least par-
tially, distinct from miRNA expression. We found many
genes were concentrated to specific KEGG pathways (see
Additional file 6). For example, Uqcrh, Uqcrq, Cox6a2,
Cox7a1, Cox5a, Cox4i1, Cox8b, Cox6c,Myl2,Myl3,Myh6,
Myh8, Tpm1, Tnni3, and Tnnt2 belong to the KEGG
pathway “Cardiac muscle contraction” (mmu04260), and
most are also components of cytochrome c oxidase,
involved in mitochondrial proton transfer. Thus, it is
biologically reasonable that heart disease is associated

with aberrant expression of these genes. Mybpc3, Tnni3,
and Tnnt2 belong to the KEGG pathway “Hypertrophic
cardiomyopathy” (mmu05410), also coincident with a
role in heart disease. Atp5g1, Atp5b, Atp5g3, Atp5h,
Atp5a1, Atp5e, Atp5j2, Ndufa13, and Ndufs6 belong
to “Oxidative phosphorylation” (mmu00190 + 11951).
This KEGG pathway is an essential part of mitochon-
drial energy metabolism, and malfunction is likely to
be directly related to muscle functionality. Mdh2 and
Aco2 belong to the “Citrate cycle” (mmu00020), and are
involved in energy production, while Fabp3 belongs to
the “peroxisome proliferator-activated receptor (PPAR)
signaling pathway” (mmu03320), involved in muscle func-
tion. Thus, based on these KEGG pathway functions,
the genes identified by CPCAFE are related to heart
disease.
In order to further confirm the validity of our methodol-

ogy, i.e., integrated analysis of mRNA and miRNA expres-
sion, we have also performed KEGG pathway analysis by
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) [13] restricted to 24 genes targeted
by at least one of 27 miRNAs (see Methods). DAVID
identified five KEGG pathways associated with signif-
icant P-values adijutsted by Benjamini and Hochberg
(BH) critetion (Table 6). Two out of five were related
to cradiadic diseases (“Cardiac muscle contraction” and
“Oxidative phosphorylation”[14]) and three were related
to neurodegenerative diseases (“Parkinson’s disease”,
“Alzheimer’s disease” and “Huntington’s disease”). Thus,
these are very coincident with those causing PTSD medi-
ated heart diseases. Figure 10 summarizes the analyses
performed in the above.

Table 5 Summary of studies with association between heart disease and genes selected by CPCAFE

Gene RefSeqmRNA miRNAs Heart disease association (P-values from the Gendoo
server)

Fabp3 NM_010174 miR-709 Cardiomegaly (0.031)

Cox4i1 NM_009941 miR-709 Cardiac output, low (5 × 10−4)

Atp5g1 NM_001161419 miR-29a/b-3p, Cardiomyopathies (1.5 × 10−3)

miR-16

Cox6a2 NM_009943 miR-23a/b-3p Heart disease (1.3 × 10−3); Cardiomyopathies (2.3 × 10−3);
Heart failure (5.0 × 10−3)

Aldoa NM_001177307 miR-16 Cardiomyopathy, dilated (2.0 × 10−3)

Cox5a NM_007747 miR-26a-5p Cardiomyopathies (5.4 × 10−3); Myocardial ischemia
(7.4 × 10−4)

Myl2 NM_010861 miR-1983 Heart defects, congenital (4.9 × 10−48); Cardiomyopathy,
dilated (5.2× 10−21); Cardiomegaly (1.1× 10−17); Heart failure
(2.1 × 10−9)

Myl3 NM_010859 miR-691 Heart defects, congenital (1.1 × 10−7); Cardiomegaly
(1.2 × 10−4); Myocardial infarction (2.4 × 10−4); Heart septal
defects, ventricular (6.9 × 10−4)

Tcap NM_011540 miR-207 Cardiomyopathy, dilated (1.1 × 10−8); Cardiomyopathy,
hypertrophic (1.7 × 10−3); Heart defects, congenital
(6.0 × 10−3); Heart failure (1.2 × 10−2)
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Table 6 KEGG pathway enriched by 24mRNAs targeted by 27miRNAs, identified by DAVID

KEGG pathway Number of genes % P-values Adjusted P-values

Cardiac muscle contraction 7 30.4 2.30E-09 3.20E-08

Parkinson’s disease 7 30.4 5.80E-08 4.10E-07

Oxidative phosphorylation 6 26.1 2.30E-06 1.10E-05

Alzheimer’s disease 6 26.1 1.20E-05 4.20E-05

Huntington’s disease 6 26.1 1.20E-05 3.50E-05

Number of genes are genes included in pathway, % is the ratio genes included in pathway among 24 genes. P-values and those adjusted by BH criterion were
provided by DAVID.

Our findings suggest that PTSD-mediated heart disease
may be caused by malfunction in “Cardiac muscle con-
traction” and/or “Oxidative phosphorylation” of energy
metabolism. These malfunctions are related to aber-
rant gene expression likely mediated by aberrant miRNA
expression. From a therapeutic point of view, PTSD-
mediated heart disease may be treated based upon this
knowledge. To perform in silico drug discovery for these
genes, the 26 genes associated with heart disease were
investigated. First, tertiary structures were predicted (see
Methods), and found to be similar to predicted or exper-
imentally determined tertiary structures available in the
Protein Data Bank (PDB), indicating our tertiary struc-
tures are reliable (see Additional file 7).
Among the proteins with tertiary structures predicted

or available in PDB, FABP3 has a “pocket” to which
inhibitors can bind, and was therefore selected as a can-
didate drug target for in silico drug discovery. FABP3 is
an acid binding protein and its function can be blocked
by inhibition of acid binding. Moreover, FABP3 is upreg-
ulated in patients with ventricular-septal defects in com-
parison to normal controls [15]. FABP3 is also a member
of FABPs that play critical roles in the PPAR signaling

pathway identified above. Thus, it is likely that FABP3 is a
key protein in PTSD-mediated heart disease.
The 10 top-ranked drug candidate compounds obtained

by in silico drug discovery (see Methods) are listed
(Table 7). The complete list of compounds ranked by
FPAScores is available in Additional file 8. The com-
pounds include promising drug candidates, for example,
two heat shock protein 90 (HSP90) inhibitors are upreg-
ulated in dilated cardiomyopathy [16], and two PPAR
inhibitors are regarded as pharmacological therapeutic
targets [17]. Furthermore, overexpression of two Cyclin-
dependent kinase 2 (CDK2) inhibitors results in smaller
mononuclear cardiomyocytes [18]. All of these candidates
should be investigated further.

Stability and comparison with other methods
We have shown biological feasibility of CPCAFE when
applied to PTSD. However, it is also important to com-
pare its performance against other methods, as CPCAFE
superiority is doubtful if any other method can achieve
comparable performance. Hence, we used a modified data
set to ensure performance is due to the method and
not the data set. If slight modifications of the sample

Figure 10 Schematic that illustrates biological validations towards 27 miRNAs and 59 mRNAs.
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Table 7 Top ranked FABP3 inhibitor compounds identified by in silico drug discovery

Rank FPAScore Drug name DrugBank/CHEMBL No. Target/Activity reported in DrugBank
and CHEMBL

1 907.4 Oxaprozin DB00991/CHEMBL1071 PTGS1 (Cox1) & PTGS2 (Cox2) inhibitor

2 901.9 — DB08539/CHEMBL249736 Inhibits human CDK2

3 866.2 — DB06964/CHEMBL252124 HSP90β binding affinity

4 864.4 — DB08702/— Metallo-β-lactamase L1*

5 826.7 — DB08396/— Ig heavy chain V-III region CAM*

6 809.3 — DB06908/CHEMBL209749 PPARα/γ binding affinity

7 790.5 — DB08483/CHEMBL47590 Agonist activity at human PPARδ/γ /α;
CDK2/4 inhibition

8 773.8 Flavoxate DB01148/CHEMBL1493 CHRM1/2 antagonist; PDE 4/7/8 inhibitor

9 771.6 — DB07594/CHEMBL399530 Inhibits HSP90 activity

10 761.2 Rolitetracycline DB01301/CHEMBL1237046 Inhibitor of 30S ribosomal protein S9 &
16S rRNA; Inhibits synthetic amyloid β-42
fibrillization

*pharmacological action unknown.

data set drastically decrease performance, CPCAFE supe-
riority is doubtful. In addition, VBPCAFE performance
on the PTSD data set is unknown. If VBPCAFE derives
completely different outcomes from CPCAFE, proposing
CPCAFE as an alternative to VBPCAFE (with a firmer
theoretical base, albeit a more time-consuming method)
would be less convincing.
First, we examined equivalence between CPCAFE and

VBPCAFE. VBPCAFE is too time-consuming to be
directly applied to the whole PTSD data set, therefore
we created a data set small enough to be used directly
that consisted of 200 features, with 100 features selected
by CPCAFE and 100 distinct features. If VBPCAFE and
CPCAFE are equivalent, the 100 features selected by
CPCAFE should have larger Ci1

B s than those attributed to
the other 100 features (see Methods). Feature frequencies

selected from the 100 top-ranked probes with larger
Ci1
B values after investigation of 100 independent ensem-

bles are shown (Figure 11). Scatterplots between Ci1
B

and Bi1 are also shown (Figure 12). As expected (from
eq. (1) in Methods), Ci1

B is quadratically dependent
upon Bi1, definitely demonstrating equivalence between
CPCAFE and VBPCAFE when applied to a real data set.
Of course, there is still the possibility that VBPCAFE
applied to the whole PTSD data set would select a com-
pletely different set of features from the 100 features
selected by CPCAFE. However, we believe it is unlikely
as there are almost no features not selected by CPCAFE,
within the 100 top-ranked in any of the 100 ensembles.
Thus, CPCAFE and VBPCAFE show equivalence when
applied to not only simulated data, but also a real data
set.

(a) (b)

Figure 11 Frequency of 100 probes selected by CPCAFE and also identified by VBPCAFE within the 100 top-ranked probes with largest Ci1B values
over 100 independent ensembles. (a)miRNA; and (b)mRNA. Red and black circles correspond to probes selected or not selected, respectively, by
CPCAFE.
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(a) (b)

Figure 12 Scatterplots between Bi1 (horizontal axis) and Ci1B (vertical axis). Red and black open circles correspond to 100 features selected or not
selected, respectively, by CPCAFE. Solid green lines indicate quadratic regression lines. (a)miRNA; and (b)mRNA.

Next, we examined CPCAFE stability, i.e., sample
independence, by performing a 4-fold cross-validation
study (see Methods). We specifically used a 4-fold
cross-validation as there are only four biological repli-
cates in each experimental condition, therefore using
any other cross-validation would not be straightfor-
ward. The results from 100 independent ensembles are
shown (see Additional file 9). For mRNAs, 78 probes
were always selected by CPCAFE and only 10 probes
not always selected, demonstrating high sample indepen-
dence. Among the 78 probes always selected, 53 had
associated RefSeq IDs that were part of the 59 RefSeq IDs
selected by applying CPCAFE to the whole data set. For
miRNAs, 27 probes were always selected and no probe
not always selected (see Additional file 9). Among the 27
selected mature miRNAs, 25 were part of the 27 mature
miRNAs selected by CPCAFE previously. Thus, CPCAFE
selected almost all features 100% of the time, demonstrat-
ing stability and suggesting that performance is not likely
due to the selected data set. As CPCAFE and VBPCAFE
show potential equivalence, it is likely that VBPCAFE also
shares this stability.
Third, we determined if other conventional supervised,

and thus possibly sample dependent, FE methods can
achieve a comparable performance to CPCAFE. As there
are as many as 12 experimental setups without any pre-
defined rankings or orderings, it is not straightforward
to use a popular multiclass oriented FE with regression
analyses, e.g., lasso [1]. Not only is there no way to
attribute labels with actual values to each experimental
setup, but it is also not known if it is possible, in prin-
cipal, to align these 12 experimental conditions in one
dimensional order. Thus, the number of usable super-
vised FE methods that can be tested on the present
PTSD data set is limited. Nevertheless, we identified and

examined two methods. The first was regression anal-
ysis, which attributes a 0 or 1 to each experimental
setup with a linear combination assumed to represent
mRNA/miRNA expression (categorical regression-based
FE, see Methods). Each feature is then ranked by signif-
icance (small P-values are attributed to regression), and
the 100 top-ranked features selected. Using this method,
we identified 100 mRNA/miRNA probes and investigated
biological feasibility and stability of selected ones. For
mRNAs, among the 100 selected probes, only 23 had
associated RefSeq IDs (see Additional file 4), a smaller
number than CPCAFE, suggesting that CPCAFE more
readily identifies biologically important genes (with the
underlying assumption that biologically important genes
are more likely to have RefSeq IDs). Disease association
of the selected genes was also poorer than those selected
by CPCAFE (Table 8). Only 4/23 genes (Ttn, Ubr2, Gata5,
and Hs2st1) were associated with heart failure-related dis-
eases, in contrast with the 26 heart disease associated
genes (out of 59 genes) selected by CPCAFE. Even extend-
ing the target species to human, only one additional gene
(Cxc11) was identified. Altogether, these results show
that CPCAFE has greater power for identifying biologi-
cally feasible genes. For miRNAs, among the 100 selected
probes, 77 were identified with unique mature miRNA
names (see Additional file 4), a much larger number than
CPCAFE. Again, this demonstrates the biological feasibil-
ity of CPCAFE, as each miRNA is attributed to multiple
probes and should therefore have been selected simulta-
neously. Thus with miRNAs, a smaller number of identi-
fied unique mature miRNA names reflects more plausible
FE. The identified miRNAs were uploaded to DIANA-
mirpath for KEGGpathway analysis (see Additional file 3),
and 74 KEGG pathways identified (66 with CPCAFE),
although the number of miRNAs related to each pathway
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Table 8 Disease association of mRNAs selected by categorical regression-based FE and BAHSIC

RefSeqmRNA Gene Heart disease association (P-values: mouse, human)

Categorical regression-based FE

NM_011652 Ttn Cardiomyopathy, dilated (5.49× 10−7, 1.80× 10−10); Cardiomyopathies (1.5× 10−4, 9.19× 10−5); Cardiomyopathy,
hypertrophic (5.6 × 10−3, 4.74 × 10−10); Heart defects, congenital (1.90 × 10−2, —); Heart failure (—, 1.02 × 10−5);
Cardiomyopathy, hypertrophic, familial (—, 1.02 × 10−5)

NM_019494 Cxcl11 Cardiomyopathy, hypertrophic (—, 3.05 × 10−2)

NM_001177374 Ubr2 Heart Defects, congenital (8.64 × 10−4, —); Cardiomegaly (1.46 × 10−3, —)

NM_008093 Gata5 Heart defects, congenital (1.40 × 10−7, —); Heart septal defects (4.12 × 10−3, —); Hypertrophy, right ventricular
(1.36 × 10−4, —); Cardiovascular abnormalities (1.49 × 10−3, —); Cardiomyopathy, dilated (8.14 × 10−3, —);
Cardiomyopathies (9.27 × 10−3, —); Cardiomegaly (1.75 × 10−2, 7.60 × 10−3)

NM_011828 Hs2st1 Cardiomyopathies (3.87 × 10−3, —);

BAHSIC

NM_009722 Atp2a2 Cardiomegaly (7× 10−21, 1.33× 10−3); Cardiomyopathy, dilated (2.68−12, 7.37−9); Cardiomyopathies (5.87× 10−12,
9.69 × 10−4); Heart Failure (6.50 × 10−12, —); Cardiac Output, low (2.01 × 10−7, —); Arrhythmias, cardiac (8.85 ×
10−7, —); Hypertrophy, left ventricular (3.03 × 10−6, 3.38 × 10−2); Myocardial reperfusion injury (2.33 × 10−5, —)
Myocardial stunning (3.42×10−3,—); Atrial fibrillation (5.42×10−3,—); Myocardial infarction (6.11×10−3,—); Heart
disease (2.38× 10−2, 7.00× 10−4); Ventricular dysfunction, left (2.74× 10−2, 3.4× 10−4); Cardiomyopathy, restrictive
(—, 2.12× 10−3); Myocardial ischemia (—, 2.91× 10−3); Mitral valve insufficiency (—, 3.68× 10−3); Cardiomyopathy,
hypertrophic (—, 3.49 × 10−2)

NM_001164171 Myh6 (Already identified by CPCAFE)

NM_008725 Nppa Heart Defects, congenital (2.53 × 10−55, 9.09 × 10−9); Cardiomegaly (1.11 × 10−28, —); Cardiomyopathies (7, 57 ×
10−17, —); Hypertrophy, left ventricular (9.16 × 10−12, 1.19 × 10−13); Cardiomyopathy, dilated (6.47 × 10−11,
2.41 × 10−8); Heart disease (9, 72 × 10−8, 1.11 × 10−4); Endocardial cushion defects (3.51 × 10−6, —); Heart septal
defects (4.63× 10−6, —); Cardiovascular abnormalities (6.34× 10−5, —); Tachycardia, ectopic atrial (1.97× 10−4, —);
Arrhythmias, cardiac (4.35× 10−4, —); Cardiomyopathy, hypertrophic, familial (4.90× 10−3, —); Heart septal defects,
ventricular (5.70×10−3, —); Hypertrophy, right ventricular (1.04×10−2, —); Heart failure (1.04×10−2, 5.07×10−29);
Cardiomyopathy, hypertrophic (2.20× 10−2, 4.40× 10−2) Ventricular dysfunction, left (—, 3.04× 10−10); Myocardial
reperfusion injury (— 1.76 × 10−7); Cardiovascular disease (—, 4.21 × 10−6); Myocardial infarction (—, 9.73 × 10−6);
Mitral valve insufficiency (—, 1.04×10−5); Heart valve disease (—, 3.27×10−5); Myocardial ischemia (—, 1.49×10−4);
Ventricular dysfunction (—, .198× 10−3); Cardiomyopathy, restrictive (—, 2.68× 10−2); Ventricular dysfunction, right
(—, 3.53 × 10−3)

NM_008103 Gcm1 Heart defects, congenital (6 × 10−3, —)

NM_009608 Actc1 Heart defects, congenital (2.54×10−38,—); Cardiomyopathy, dilated (6.55×10−9, 2.16×10−14); Heart septal defects
(5.15 × 10−7, 6.80 × 10−4); Arrhythmias, cardiac (4.90 × 10−5, —); Cardiomyopathies (2.75 × 10−4, 1.23 × 10−2);
Heart septal defects, atrial (1.33× 10−3); Cardiovascular abnormalities (3.85× 10−2, —); Cardiomegaly (4.45× 10−2,
1.01 × 10−4); Cardiomyopathy, hypertrophic (—, 4.91 × 10−13); Cardiomyopathy, hypertrophic, familial (—, 1.97 ×
10−6); Cardiomyopathy, restrictive (—, 5.87 × 10−4); Heart septal defects, atrial (—, 1.73 × 10−3); Hypertrophy, left
ventricular (—, 1.09 × 10−2)

NM_013468 Ankrd1 Heart defects, congenital (3.98 × 10−12, 4.70 × 10−5); Cardiomegaly (2.52 × 10−6, 1.00 × 10−2); Cardiomyopathies
(9.11 × 10−5, —); Heart septal defects (6.18 × 10−4, —); Cardiomyopathy, hypertrophic, familial (9.66 × 10−4, —);
Cardiomyopathy, dilated (1.22× 10−2, 1.22 × 10−2); Heart failure (—, 3.04× 10−4); Hypertrophy, left ventricular (—,
7.55 × 10−3)

NM_011540 Tcap (Already identified by CPCAFE)

NM_177369 Myh8 (Already identified by CPCAFE)

NM_007450 Slc25a4 (Already identified by CPCAFE)

NM_010174 Fabp3 (Already identified by CPCAFE)

NM_008084 Gapdh (Already identified by CPCAFE)

NM_019494 Cxcl11 Already identified by categorical regression based FE

NM_013463 Gla Cardiomyopathy, hypertrophic (—, 2.46×10−2); Heart disease (—, 2.64×10−2); Cardiomyopathies (—, 3.10×10−2)

NM_001038592 Glrx2 Myocardial reperfusion injury (—, 1.56 × 10−3)

P-values obtained from the Gendoo server for both mouse and human. Genes annotated as “Already identified by CPCAFE” are listed in Table 5.

is much smaller: using CPCAFE, on average seven miR-
NAs contributed to each pathway, while with categori-
cal regression-based FE, only four miRNAs contributed,

despite almost three times larger (77 vs 27) miRNAs
uploaded (P = 1.67× 10−17, difference between mean val-
ues computed by t test). This suggests that categorical
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regression-based FE is less able to identify biologically
important miRNAs than CPCAFE. We also determined
if miRNA target mRNAs were negatively correlated with
miRNA expression, and identified 180 mRNA-miRNA
pairs but with only 35 pairs negatively correlated (see
Additional file 4). This again contrasts with CPCAFE,
with almost all mRNA-miRNA pairs negatively corre-
lated. Correlation coefficient significance was examined,
and only 20 significantly correlated pairs were identified.
Since all significant correlation coefficients were nega-
tive, categorical correlation-based FE can extract correct
features, but is less able to confidently screen more fea-
tures than CPCAFE; more than half of the pairs identi-
fied by CPCAFE were associated with significant negative
correlations. This is consistent with the limited num-
ber of miRNAs selected by categorical regression-based
FE contributing to KEGG pathway analysis. Stability was
also compared with CPCAFE (see Additional file 9). For
mRNAs, only 24 probes were always selected among
100 cross-validation ensembles, with 122 probes selected
only once. For miRNAs, only eight probes were always
selected (see Additional file 9). The next highest frequen-
cies selected were 93 and 95, corresponding to only two
probes each. Conversely, 33 and 29 probes were selected
only once and twice, respectively. Thus, with regards
to stability, CPCAFE outperforms FE with categorical
regression analysis.
It is possible that CPCAFE outperforms FE with cate-

gorical regression analysis because it is too simple (naive)
an alternative. Therefore to compare CPCAFE perfor-
mance with a more sophisticated method, we used BAH-
SIC (see Methods).
For mRNAs, among the 100 selected probes, only 37

had RefSeq IDs, again less than CPCAFE (see Additional
file 4). Of these 37 mRNAs, only 16 were associated
with heart failure-related disease (Table 8), even when
the target species was extended to human. Thus, 43%
of extracted RefSeq associated mRNAs are related to
heart disease in the Gendoo server. This is similar to the
45% reported for genes selected by CPCAFE. Consider-
ing that the total number of selected RefSeq associated
mRNAs is larger, this suggests that CPCAFE outper-
forms BAHSIC as well as categorical regression based
FE. Interestingly, 15/37 mRNAs (not always including
the 16 disease associated genes) were also selected by
CPCAFE, despite use of distinct algorithms by BAH-
SIC and CPCAFE. Nine genes selected by CPCAFE (in
addition to the six genes listed in Table 8 or Additional
file 5), but with missing disease association were Synrg,
Milr1, Exosc2, Medag, 2610028H24Rik, pbld1, Hbb-bt,
1700047I17Rik2, and Hba-a2. Thus, mRNAs extracted
by CPCAFE and BAHSIC overlap significantly. Further-
more, if we also consider PC2 outliers (see Additional
file 2) that were excluded in the previous analyses, an

additional 15 genes (Rhox8, Kctd14, Ttc38, Glrx2, Ndor1,
Dcc, Elk1, Gcm1, Hccs, Nppa, Actc1, Pigr, Slc10a1,
Cxcl11, and Med16) have been identified by CPCAFE
(Bolditalic six genes are also associated with heart failure-
related disease, see Additional file 2). Consequently, there
is a substantial increase in overlap significance between
mRNAs extracted by CPCAFE and BAHSIC. Figure 13
shows the relationship between CPCAFE, BAHSIC, and
heart failure-related disease association. The many genes
identified by both methods and associated with disease
show that our method (i.e., treating expression data as
a categorical multiclass data set and not a collection of
pairwise comparisons) can identify biologically relevant
genes.
For miRNAs, among the 100 probes, 47 unique mature

miRNAs were selected (see Additional file 4), a much
larger number than CPCAFE (27). The 47 miRNAs were
uploaded to DIANA-mirpath (see Additional file 4), and
65 KEGG pathways identified as significant. Although this
number is similar to that obtained by CPCAFE (66), con-
sidering that the number of uploadedmiRNAs was almost
twice (47 vs 27), CPCAFE is still superior to BAHSIC. In
fact, the averaged number of miRNAs with target mRNAs
enriched in each pathway, was approximately seven, sim-
ilar to that obtained by CPCAFE despite two-times more
uploaded miRNAs. We also compared biological signifi-
cance of the KEGG pathways obtained by BAHSIC and
CPCAFE. In contrast to 17 reported pathways related to
heart-failure related disease (from the top most signifi-
cant 21 KEGG pathways) using CPCAFE (Table 3), only
11 identified by BASHSIC (of which, seven were also
identified by CPCAFE; Table 3) were related to heart-
failure related disease by literature searching (Table 9).
Thus, from a biological point of view, CPCAFE outper-
forms BAHSIC. We also determined if targeted mRNAs

Figure 13 Venn diagram of mRNAs extracted by CPCAFE and BAHSIC,
and heart failure-related disease association. Numbers in parentheses
correspond to those with outliers along PC2 (see Additional file 2).
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Table 9 Summary of studies with association between heart disease and KEGG pathways enriched by BAHSIC identified
miRNA target genes

KEGG pathway Enrichment P-value Ref. Description

Long-term depression 5.37 × 10−19 [71] Depression has been linked with additional health
problems, including heart disease

Prion diseases 3.13 × 10−17 [72] Prion-induced amyloid heart disease with high blood
infectivity in transgenic mice

Axon guidance 5.99 × 10−14 (Already identified by CPCAFE)

Fatty acid biosynthesis 2.01 × 10−12 [73] A relationship between fatty acid synthase and
cardiac calcium signaling has been suggested

Calcium signaling pathway 2.04 × 10−10 (Already identified by CPCAFE)

Gap junction 5.03 × 10−10 [74] Gap junction alterations in human cardiac disease

Prostate cancer 6.04 × 10−10 (Already identified by CPCAFE)

Pancreatic cancer 1.63 × 10−9 — —

Glutamatergic synapse 2.02 × 10−8 — —

Endometrial cancer 2.02 × 10−8 (Already identified by CPCAFE)

Long-term potentiation 2.65 × 10−8 — —

Neurotrophin signaling pathway 2.81 × 10−8 — —

Focal adhesion 8.34 × 10−8 (Already identified by CPCAFE)

TGF-beta signaling pathway 2.00 × 10−7 (Already identified by CPCAFE)

Endocytosis 2.27 × 10−7 — —

Cholinergic synapse 9.60 × 10−7 — —

Regulation of actin cytoskeleton 1.33 × 10−6 — —

Colorectal cancer 3.52 × 10−6 (Already identified by CPCAFE)

Salmonella infection 5.65 × 10−6 — —

PI3K-Akt signaling pathway 1.01 × 10−5 — —

Pathways annotated as “Already identified as CPCAFE” are listed in Table 3.

negatively correlate with miRNA expression, and identi-
fied 164 mRNA-miRNA pairs, although only 73 were neg-
atively correlated (see Additional file 4). Conversely, with
CPCAFE, almost all pairs are negatively correlated. Cor-
relation coefficient significance was examined, with only
33 significantly correlated pairs identified. Since all sig-
nificant correlation coefficients were negative, this shows
that BAHSIC cannot correctly extract features, and is less
able to confidently screen more features than CPCAFE.
Again this coincides with the limited number of miRNAs
selected by BAHSIC that contribute to KEGG pathway
analysis.
BAHSIC stability was compared (see Additional file 9).

For mRNAs, only one probe was selected only 14 times
among the 100 independent ensembles, and was also the
most frequently selected. The second most frequent four
probes were selected only 13 times, and 2133 probes
were selected only once. For miRNAs, 68 probes were
always selected among 100 cross-validation ensembles
(see Additional file 9). The second most frequent probes
were selected 99 times, but this only included three
probes. The third, fourth, and fifth frequent probes were
selected 98, 97, and 96 times, but included only 2, 3

and 1 probes, respectively. Thus, with stability, CPCAFE
definitely outperforms BAHSIC.
In conclusion, CPCAFE outperformed two conven-

tional supervised FEmethods on both stability and biolog-
ical feasibility, and performed equally well to VBPCAFE,
which has more theoretical confidence. Thus, CPCAFE
and VBPCAFE are the most suitable FE methods for
categorical multiclass problems.
We have included diagrams summarizing the discussed

points (Figure 14). Figure 14(a) shows the number of
unique miRNAs. The same 100 probes were extracted
using all methods, and miRNAs assigned to multiple
probes. As all probes to which the same miRNAs are
assigned should be extracted at the same time, smaller
numbers of unique miRNAs assigned to 100 probes shows
better extraction. In this context, CPCAFE outperformed
the other two methods (Venn diagram is also available
in Figure 15). Figure 14(b) shows the number of mRNAs
with RefSeq IDs. As mRNAs with RefSeq IDs are more
likely to have known biological significance, a larger num-
ber of RefSeq IDs accompanying mRNAs shows selection
of more biologically relevant mRNAs. In this context,
CPCAFE outperformed the other two methods. Figure
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14 Barplots comparing CPCAFE, categorical regression based FE, and BAHSIC. See text for details about panels included, from (a) to (l).

14(c) shows the number of RefSeq miRNA genes related
to heart failure-related disease. Larger numbers suggest
that FE has correctly extracted mRNAs related to the tar-
get disease, therefore CPCAFE outperformed the other
two methods. Figure 14(d) shows the number of KEGG
pathways identified by uploading the miRNAs shown in
Figure 14(a) to DIANA-mirpath. Although categorical
regression based FE outperformed the other twomethods,
it may have incorrectly extracted the most unique miR-
NAs in Figure 14(a), therefore increased number of KEGG
pathways does not always reflect method superiority.

Indeed, counting the average number of miRNAs con-
tributing to each pathway (Figure 14(e)), indicates that
CPCAFE and BAHSIC are comparable while categori-
cal regression based FE performs worse. This suggests
that categorical regression based FE cannot identify as
many KEGG pathways as CPCAFE or BAHSIC if the
same number of unique miRNAs are extracted (albeit
experimentally). Thus, it is reasonable to assume that
CPCAFE and BAHSIC outperformed categorical regres-
sion based FE in this context. Figure 14(f ) shows the
possible number of mRNA/miRNAs pairs, i.e., product
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Figure 15 Venn diagram of miRNAs extracted by CPCAFE and
BAHSIC.

of the unique miRNAs (Figure 14(a)) and RefSeq accom-
panying mRNAs (Figure 14(b)). Although these num-
bers are comparable among the three FE methods, the
number of miRNA and targeted mRNA pairs is dis-
tinct (Figure 14(g)). Considering the ratio (Figure 14(h))
(obtained by dividing the numbers in Fig. 14(g) by those in
Figure 14(f )), CPCAFE appears worst (i.e., smallest), but
this is reversed if significance is considered. Figure 14(i)
shows the number of miRNA and targeted mRNA pairs
with significant correlations. Converting these numbers
to a ratio (Figure 14(j)) by dividing the number of
pairs of miRNAs and targeted mRNAs (Figure 14(g)),
CPCAFE outperformed the other two methods. The same
result is obtained when considering negative correlations
(Figures 14(k) and (l)), which are desirable as miRNAs
suppress target mRNA expression. Overall, these results
(from Figure 14(g)-(l)) suggest that CPCAFE extracted
significantly more miRNA and targeted mRNA pairs than
the other two methods, which had apparently extracted
more. In conclusion, based on our summarized discus-
sions, we conclude that CPCAFE outperforms two other
FE methods.

Conclusions
We have extended VBPCA for FE. Although VBPCAFE
is an effective method when applied to simulated data,
feature-dependent extension inevitably makes it compu-
tationally challenging. Thus, we replaced VBPCAwith the
simpler CPCA, and achieved reasonable FE performance
on simulated data. In order to demonstrate CPCAFE
effectiveness on real data, we performed an integrated
analysis of mRNA and miRNA expression from stressed
mouse heart, investigating the underlying molecular biol-
ogy and transcriptomic background of PTSD-mediated
heart disease. CPCAFE successfully identified aberrantly

expressed miRNAs and their negatively regulated target
mRNAs. Biological significance of the identified miR-
NAs and mRNAs was confirmed. Equivalence between
CPCAFE and VBPCAFE was demonstrated by applying
both methods to the PTSD data set. Two conventional
supervised FE methods were also tested, with CPCAFE
outperforming them both. In silico drug discovery was
performed for a selected gene, FABP3, with the top-
ranked compounds identified including protein inhibitors
reportedly upregulated in heart disease.

Methods
Simulations based on synthetic data of categorical
multiclass samples
To simulate multiclass samples with N features and M
samples, expression values were modeled using Gaussian
distributions with μk mean (k class). Standard deviations
were fixed at 0.5. μk was

μk =
(
k − 1
K − 1

− 1
2

)
s, k = 1, . . . ,K ,

with K indicating class number. Considering xij to be an
expression of the ith feature of the jth sample, it obeys:

xij ∈

⎧⎪⎨
⎪⎩
N

(
μk , 12

)
, 1 ≤ i ≤ N ′

2 , (k − 1)MK < j ≤ kM
K

N
(−μk , 12

)
, N ′

2 < i ≤ N ′, (k − 1)MK < j ≤ kM
K

N
(
ε, 12

)
, N ′ < i ≤ N

,

where N (μ, σ) is the normal distribution with a mean of
μ and standard deviation of σ . The reason for including
positive and negative μk signs was to simulate coexis-
tence of up/downregulated genes among multiple classes.
The s parameter represents difficulty of distinguishing
among multiple classes. Larger (smaller) s indicates eas-
ier (harder) samples with fixed K . ε is a random number
satisfying the probability, P:

P(ε = μk) = 1
K

In the present study, N = 100,N ′ = 10,K = 4, and
M = 20 were used, and performances averaged over 100
independent ensembles.

One vs one t test based FE of a simulated categorical
multiclass data set
P values, Pk,k

′
i , attributed to each i were computed using

t tests to compare between
{
xij; (k − 1)MK < j ≤ kM

K
}
and{

xij; (k′ − 1)MK < j ≤ k′ M
K

}
, for all K(K − 1)/2 pairs of k

and k′. Pk,k
′

i was adjusted by BH criterion [19], with each
k, k′ pair and the ith gene adjusted. Pk,k

′
i s < 0.05 for all

(k, k′) pairs were identified as distinct features between
multiple classes.
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Categorical regression-based FE
Categorical regression-based FEwas defined as follows, xij
reflects “expression” of the jth feature of the ith samples,
therefore xij can be represented as:

xij = Ci0 +
∑
k

Cikδjk ,

with δjk = 1 only when the jth sample belongs to the kth
category, otherwise it is 0. Category summation was taken
and Ciks are fitting parameters. Because independent
variables are categorical, the above regression equation
belongs to a category of equations often named as cat-
egorical regression. For each ith feature, P-values were
computed using the lm function implemented in R[20]
(this can be easily performed if factors corresponding to
experimental setups are used as independent variables in
lm).
FE was used for simulated categorical multiclass regres-

sion in two ways. The first selected features with BH cri-
terion [19] adjusted P-values < 0.05. The second selected
the top 10 features with smallest P-values. Finally, for the
PTSD data set, the 100 top-ranked features with smallest
P-values were selected as extracted features.

BAHSIC
BAHSIC uses the Hilbert-Schmidt norm of the cross-
covariance operator (HSIC), defined as follows:

||Cjk||2HS ≡
〈(∑

i
xijxij′

)
δjkδj′k′δkk′

〉
jj′

+
〈∑

i
xijxij′

〉
jj′

〈
δjkδj′k′δkk′

〉
jj′

− 2
〈〈∑

i
xijxij′′

〉
j′′

〈
δj′kδj′′′k′δkk′

〉
j′′′

〉
jj′
,

where 〈·〉j and 〈·〉jj′ are averaged over all j and j, j′ pairs,
respectively, and δkk′ is cronecker’s delta. The reason why
linear kernel was employed was because it was shown to
achieve best performances when applied to microarray
gene expression [10]. In BAHSIC, features with smaller
HSIC are iteratively discarded until the desired number of
features remain. The number of features discarded at each
step was 1 for the simulated categorical multiclass data set
and 10% of remaining features for the PTSD data set.
R code for this algorithm is available in Additional file 2.

Extended VBPCA
Before extending VBPCA, conventional VBPCA is briefly
explained.
X = {xij} was modeled [2,3] as:

X = BAT + E,

where B andA areN×Q andM×Qmatrices, respectively,
and E is a N × M matrix obeying a Gaussian distribution
with zero mean and standard deviation, σE . The purpose
of VBPCA is to obtain an optimal approximation using
Q � N ,M.
Thus, following conventional notation and after substi-

tuting X = V , the conditional probability is:

p(V |A,B) ∝ exp
(

− 1
σ 2
E

||V − BAT ||2Fro
)
,

where || · ||Fro is the Frobenius norm matrix. In order to
obtain optimalQ values, a prior distribution was assumed:

P(A) ∝ exp
[
−1
2
tr

(
AC−1

A AT
)]

P(B) ∝ exp
[
−1
2
tr

(
BC−1

B BT
)]

,

where CA and CB areQ×Q diagonal positive matrices qth
(q = 1, . . . ,Q) is a diagonal element of CA and CB that
expresses the importance of the obtained qth principal
component. Free energy was minimized as:

F = ||V ||2Fro
2σ 2

E
+ NM

2
log σ 2

E + M
2

log
|CA|
|�A| + N

2
log

|CB|
|�B|

(Ci
B)−1 + 1

2
tr

{
C−1
A

(
ÂT Â + M�A

)
+ C−1

B

(
B̂T B̂ + N�B

)
+ σ−2

E

(
−2ÂTVT B̂+

(
ÂT Â +MσA

) (
B̂T B̂+ N�B

))}
+ const.

where �A and �B are variance matrices of Â and B̂, esti-
mated from A and B by the variational method. Locally
optimal Â, B̂,�A,�B,CB, and σE were obtained by per-
forming the following iterative updates in this order:

�A ← σ 2
E

(
B̂T B̂ + N�B + σ 2

EC
−1
A

)−1

Â ← VTB̂
�A

σ 2
E

�B ← σ 2
E

(
ÂT Â + M�A + σ 2

EC
−1
B

)−1
,

B̂ ← V Â
�B

σ 2
E
,

(�A)qq,C
q
B ← ||B̂q||2

N
+ (�B)qq, q = 1, . . . ,Q,

σ 2
E ← 1

NM

{
||V ||2Fro − tr

(
2VTB̂ÂT

)
+ tr

((
ÂT Â + M�A

) (
B̂T B̂ + N�B

))}
,

where B̂q is the qth columnar vector of matrix B̂, and Cq
B is

the qth diagonal element of CB. ith row V vector. In addi-
tion to the above iteration, which should be repeated from
top to bottom, i.e., �A in the left hand side of the first
equation substituted to �A in the right hand side of the
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second equation, CA should be I in order to simulate con-
ventional PCA [21]. It is also known that CB can be used
to estimate the optimal number of PCs [2].
Next, we extended VBPCA so that it can extract fea-

tures. In order to do this, CB was assumed to have i, (i =
1, . . . ,N) dependence, and should be denoted asCi

B. Thus,
P(B) should also have i dependence as:

P(Biq) ∝ exp
{

− (Biq)2

2Ciq
B

}
.

Furthermore, it is required that �B has i dependence, and
should also be denoted as �i

B. For example, in the above
equations, NCB and N�B are replaced with

∑
i Ci

B and∑
i �

i
B, respectively.

Then N
2 log |CB|

|�B| in F is replaced with 1
2

∑
i log

|Ci
B|

|�i
B| .

tr
{
C−1
B

(
B̂T B̂

)}
in F is replaced with

∑
i B̂i

T (
Ci
B
)−1 B̂i,

where B̂i is the ith row vector of B̂. C−1
B N .�B and N�B

in F are replaced with
∑

i
(
Ci
B
)−1

�i
B and

∑
i �

i
B, respec-

tively. As a result:

F = ||V ||2Fro
2σ 2

E
+ NM

2
log σ 2

E + M
2

log
|CA|
|�A| + 1

2
∑
i
log

|Ci
B|

|�i
B|

+ 1
2

∑
i
B̂i

T (
Ci
B
)−1 B̂i

+ 1
2
tr

{
C−1
A

(
ÂT Â + M�A

)
+

∑
i

(
Ci
B
)−1

�i
B

+ σ−2
E

(
−2ÂTVT B̂ +

(
ÂT Â + MσA

) (
B̂T B̂ +

∑
i

�i
B

))}

+ const.

is obtained. Reflecting these extensions, the above itera-
tion rules are modified as:

�A ← σ 2
E

(
B̂T B̂ +

∑
i

�i
B + σ 2

EC
−1
A

)−1

Â ← VTB̂
�A

σ 2
E

�i
B ← σ 2

E

(
ÂT Â + M�A + σ 2

E
(
Ci
B
)−1)−1

, i = 1, . . . ,N

B̂i ← V iÂ
�i

B
σ 2
E
, i = 1, . . . ,N

C̃q
A ← ||Âq||2

M
+ (�A)qq, q = 1, . . . ,Q

Cq
A ← C̃q

A∑
q′ C̃q′

A

, q = 1, . . . ,Q

Ciq
B ← (Biq)

2 + (
�i

B
)
qq , q = 1, . . . ,Q, i = 1, . . . ,N (1)

σ 2
E ← 1

NM

{
||V ||2Fro − tr

(
2VTB̂ÂT

)

+ tr
((

ÂT Â + M�A
) (

B̂T B̂ +
∑
i

�i
B

))}
,

where Vi is the ith row V vector, and Âq is the qth
columnar vector of matrix Â. Because of extension, diver-
gence was suppressed by introducing CA normalization
instead of using constant values. Therefore, Ci

B expresses
ith feature importance, and CA (instead of the former CB)
represents importance of the qth PC, and must be non-
constant. The order of iterations in eq. (1) is arbitrary
since each iteration is independent of one another.
In the present study, the above iterations began by sub-

stituting pre-computed PCs (using the prcomp function
in R[20]) in A and B, to compensate for slow convergence.
After a suitable number of iterations, parameters with the
smallest F values were used for further analysis. Conver-
gence was judged if extracted features change after more
than 100 iterations.
R code for this algorithm is available in Additional file 2.

Statistical analysis of CPCAFE and VBPCAFE applied to
simulated data
For VBPCAFE, the top-ranked features with larger Ci1

B
values were extracted after convergence, judged by
changes in extracted features after more than 100 itera-
tions. For CPCAFE [22-29], expression data

({xij}) was
embedded into low dimensional space using PCA. After
selecting the PC for FE, outliers along the PC were
extracted i. e., the top 10 features with larger absolute
projections to the selected PC.

Evaluation of FE performance
In order to evaluate FE performance in a simulated cat-
egorical multiclass data set, two measures were used for
discrimination of binary classes with unequal member
numbers. In this computation, true positive (TP) rep-
resents the number of features with distinct expression
between classes (i ≤ N ′), which are identified by the
specified feature. Conversely, true negative (TN) is the
number of features with no distinct expression between
classes (i > N ′), and are not identified by the specified
feature. False positive (FP) is the number of features with
no distinct expression between classes (i > N ′), but are
identified by the specified feature. False negative (FN) is
the number of features with distinct expression between
classes (i ≤ N ′), but are not identified by the specified
feature. Accordingly, the Matthews correlation coefficient
is defined as:

TP · TN − FP · FN√
(FP + FN)(FP + TP)(TN + TP)(TN + FN)

,
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while the F measure is:

2TP
(TP + FP) + (TP + FN)

,

where TP + FP corresponds to the number of features
identified by specific FE, andTP+FN represents the num-
ber of features with distinct expression between classes
(i ≤ N ′), thus representing the harmonic mean of sensi-
tivity

(
TP

TP+FN

)
and precision

(
TP

TP+FP

)
.

Translational application to PTSD associated heart disease
The overall work flow is illustrated in Figure 16.

mRNA andmiRNA expression
mRNA and miRNA expression data were obtained from
the Gene Expression Omnibus (GEO) using the GEO ID:
GSE52875 [8]. Expression was observed in stressedmouse
hearts. The length of time subservient mice were exposed
to aggressor mice varied, with variable rest times after
exposure. Exposure and rest times were 1, 2, 3, or 10 days
of exposure and 1 day of rest, 5 days of exposure and 1
or 10 days of rest, and 10 days of exposure and 42 days of

rest (in total, seven distinct treatment conditions). Con-
trols were housed separately from the aggressor mice in
personal cages, and prepared for all treatment conditions
except for 1 or 3 days of exposure and 1 day of rest. Thus,
there were only five control conditions. For each condi-
tion there were four biological replicates and therefore 48
samples in total were available.
mRNA expression was included in the subseries

GSE52866 and GSE52871. GSE52866_RAW.tar and
GSE52871_RAW.tar (provided as Supplementary Data
in GEO) were downloaded, and the gProcessedSignal in
each of 48 GSM files used for analysis. miRNA expression
was included in the subseries GSE52869 and GSE52872.
From GSE52872, eight raw Exiqon files (provided as
Supplementary Data in GEO) were downloaded, and
gProcessedSignal and rProcessedSignal used as miRNA
profiles for further analysis. From GSE52869, 16 files
(provided as Supplementary Data in GEO) were down-
loaded, and “Spot Mean Intensity Cyanine3” and “Spot
Mean Intensity Cyanine5H” used as miRNA profiles for
further analysis. The conditions attributed to each sam-
ple were provided by the file names. mRNA and miRNA

(a) (b)

Figure 16 Overall study work flow. The methods used for data processing and evaluation are indicated in red and blue, respectively. Dotted lines in
sample descriptions (i.e., 1 or 2 day(s) stress vs 1 day rest) indicate missing control samples (see Methods for more detail).



Taguchi et al. BMC Bioinformatics  (2015) 16:139 Page 23 of 26

expression were not normalized, apart from for CPCAFE,
where mRNA expression was normalized to have zero
mean and a standard deviation of 1.

KEGG pathway analysis of miRNAs using DIANA-mirpath
For CPCAFE, the 27 identified miRNAs were uploaded
to the DIANA-mirpath server [11]. Although DIANA-
mirpath requires mature miRNA names used in miRBase
(rel. 18), the mature miRNA names in GEO ID: GSE52875
were used in the previous release, therefore the uploaded
mature miRNAs are not exactly the same as the 27 identi-
fiedmiRNAs. Target gene prediction was performed using
Tarbase [30], a database using experimentally validated
targets that are more biologically plausible. Combined tar-
get genes sets were used for KEGG pathway enrichment
analysis. False discovery rate corrected P-values were used
to screen KEGG pathways. Direct weblinks to DIANA-
mirpath results are provided in Additional file 10. The
same analyses were performed for categorical regression-
based FE and BAHSIC, excluding the number of uploaded
miRNAs.

Disease association analysis of genes using theGendoo server
The Gendoo server [31], a literature-based disease associ-
ation database, was used to identify associations between
selected mRNAs and disease. As mRNAs were identi-
fied using RefSeq mRNA IDs, these were interpreted to
gene symbols. Obtained gene symbols were uploaded to
the Gendoo server with mouse being the specified target
species. Human was also tested for categorical regression-
based FE and BAHSIC, to compensate for the small
number of hits.

KEGG pathway analysis of mRNAs by DAVID
Employed 24 genes were mRNAs that have non zero val-
ues in the column named as “target” of the “CPCA based”
sheet in Additional file 4. Refseq IDs for these 24 genes
were identified and were uploaded to DAVID [13] server
using default setting. Then KEGG pathways identified
were extracted.

Tertiary protein structure prediction
Tertiary protein structures were predicted using two pre-
diction servers, Protein Homology/analogY Recognition
Engine V2.0 (phyre2) [32] and full automatic modeling
systems (FAMS) [33]. Among the 26 genes investigated,
14 genes were included in the PDB [34]. Tertiary protein
structures of the remaining genes were predicted by either
phyre2 or FAMS. The complete list of template proteins
and amino acid sequences of investigated genes in fasta
format is available in Additional file 11.

In silico drug discovery for FABP3
ChooseLD [35] was used for FABP3 drug discovery. Using
the PDB structure of chain A in 1HMR as the template

protein, and four ligands (9-OCTADECENOIC ACID
in 1HMR, OLEIC ACID in 1HMS, STEARIC ACID in
1HMT, and PALMITIC ACID in 2HMB) as template lig-
ands (acids not provided in 1HMRweremapped to 1HMR
prior to chooseLD execution), with four additional FABP3
inhibitors from ChEMBL [36] as template ligands (see
Additional file 2 for more detail), drug candidate com-
pounds were selected from DrugBank [37]. ChooseLD
was applied to 1450 compounds with a Tanimoto index
> 0.20 from at least one of the eight template ligands. The
1450 compounds were selected from 6510 compounds
with tertiary structures computed by Babel software [38],
from among the 6583 compounds listed in DrugBank
[37]. The 1450 compounds were ranked based on Finger
Print Alignment Scores (FPAScores) averaged over three
independent runs.

Generation of a test PTSD data set
In order to test equivalence between CPCAFE and VBP-
CAFE on PTSD data, a test data set was generated. In
addition to the 100 probes selected by CPCAFE, an addi-
tional 100 probes were chosen from those remaining,
generating a test data set with 200 features. VBPCAFE
was applied to the generated data set, and Ci1

B s val-
ues calculated. The top-ranked 200 features with largest
Ci1
B s values were selected as extracted features. FE was

performed over 100 independent ensembles, and the
frequency (number of times each feature was selected)
counted. Frequency number = 100, indicates that the
feature was always selected.

FE cross-validation
In order to test FE stability on the PTSD data set, a 4-fold
cross-validation was performed, with each experiment
repeated four times. For each experimental setup, three
out of four replicates were randomly selected, generating
a data set with 36 samples. Since the total possible number
of independent samplings was 412 � 2 × 107, it is impos-
sible to test all samplings. Therefore, 100 samplings were
tested, which was large enough to demonstrate superior
stability of CPCAFE compared with the two conventional
supervised methods of categorical regression-based FE
and BAHSIC.

Significance of correlation coefficients
Correlation coefficient significance was investigated by
transforming the correlation coefficient (r) to the statisti-
cal test variable (t):

t = r
√
M − 2√
1 − r2

,

obeying the t distribution ofM−2 degrees of freedom. As
there were 48 samples in our study, M = 48. Computed
P-values were adjusted by BH criterion [19]. Correlation
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coefficients with adjusted P-values < 0.05 were regarded
as significant.

Additional files

Additional file 1: Confusion tables for simulated data. Performance of
FE methods applied to a simulated data set and expressed using confusion
tables.

Additional file 2: Supplementary text. Supplementary discussion not
included in the main text.

Additional file 3: Complete DIANA-mirpath results. Complete list of
the KEGG pathway analysis reported by DIANA-mirpath for CPCAFE,
categorical regression-based FE, and BAHSIC (xlsx). A partial list for CPCAFE
is included in the main text as Table 3.

Additional file 4: Correlation coefficients between selected miRNAs
and target mRNAs. Correlation coefficients between selected miRNAs
and target mRNAs, with RefSeq IDs and gene symbols provided. None are
filled between miRNAs and off target genes. The column “target” indicates
the number of miRNAs targeting each gene (xlsx). CPCAFE, 27 miRNAs vs
59 mRNAs; categorical regression-based FE, 77 miRNAs vs 23 mRNAs; and
BAHSIC, 47 miRNAs vs 37 mRNAs.

Additional file 5: List of associated diseases with genes andmiRNAs.
List of associated diseases with genes and miRNAs targeting each gene
identified by CPCAFE. Lists genes not included in Table 5.

Additional file 6: KEGG pathway mapping diagram of identified
genes. KEGG pathway mapping diagram of genes identified by CPCAFE
(red characters). Genes listed as targets of drug candidate compounds in
Table 7 are also indicated (blue characters).

Additional file 7: Summary of predicted or PDB protein tertiary
structures. Summary of predicted or PDB protein tertiary structures of 26
genes with reported involvement in heart disease (see Table 5 or
Additional file 4).

Additional file 8: Full list of drug candidate compounds ranked by
FPAScores.

Additional file 9: Stability analysis. Stability analysis of CPCAFE,
categorical regression-based FE, and BAHSIC. Frequency represents the
number of times each probe was selected among 100 independent
ensembles. Number of probes represents the number of probes selected
by the corresponding frequency. Numbers in bold represent the number
of mRNAs/miRNAs selected 100%. Note that no mRNA was selected 100%
by BAHSIC.

Additional file 10: DIANA-mirpath link.Weblink retrieving the
DIANA-mirpath results of this study.

Additional file 11: Amino acid sequences uploaded to FAMS/phyre2.
Amino acid sequences in fasta format that were uploaded to FAMS/phyre2
to determine tertiary protein structures.
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