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Abstract

Background: Most ‘transcriptomic’ data from microarrays are generated from small sample sizes compared to the
large number of measured biomarkers, making it very difficult to build accurate and generalizable disease state
classification models. Integrating information from different, but related, ‘transcriptomic’ data may help build better
classification models. However, most proposed methods for integrative analysis of ‘transcriptomic’ data cannot
incorporate domain knowledge, which can improve model performance. To this end, we have developed a
methodology that leverages transfer rule learning and functional modules, which we call TRL-FM, to capture and
abstract domain knowledge in the form of classification rules to facilitate integrative modeling of multiple gene
expression data. TRL-FM is an extension of the transfer rule learner (TRL) that we developed previously. The goal of
this study was to test our hypothesis that “an integrative model obtained via the TRL-FM approach outperforms
traditional models based on single gene expression data sources”.

Results: To evaluate the feasibility of the TRL-FM framework, we compared the area under the ROC curve (AUC) of
models developed with TRL-FM and other traditional methods, using 21 microarray datasets generated from three
studies on brain cancer, prostate cancer, and lung disease, respectively. The results show that TRL-FM statistically
significantly outperforms TRL as well as traditional models based on single source data. In addition, TRL-FM
performed better than other integrative models driven by meta-analysis and cross-platform data merging.

Conclusions: The capability of utilizing transferred abstract knowledge derived from source data using feature mapping
enables the TRL-FM framework to mimic the human process of learning and adaptation when performing related tasks. The
novel TRL-FM methodology for integrative modeling for multiple ‘transcriptomic’ datasets is able to intelligently incorporate
domain knowledge that traditional methods might disregard, to boost predictive power and generalization performance.
In this study, TRL-FM’s abstraction of knowledge is achieved in the form of functional modules, but the overall framework
is generalizable in that different approaches of acquiring abstract knowledge can be integrated into this framework.

Keywords: Transfer learning, Knowledge transfer, Functional modules, Functional mapping, Classification rules,
Integrative modeling, Gene expression, Biomarker discovery

Background
With the advent of high-throughput ‘transcriptomic’ tech-
nology, biomarkers measured in tissue or bodily fluids
have generated a vast amount of data, from which classifi-
cation models can be and have been developed to predict
the early development, diagnosis, and prognosis of
diseases [1]. A major challenge for class prediction tasks is

that a small sample size (tens to hundreds) and a large
number of variables (ranging from hundreds to several
thousand) characterize most types of ‘transcriptomic’ data,
like gene expression data. Classification models learned
from such high-dimensional data might not generalize
well nor command a strong statistical support. In addition,
the heterogeneity of sample sources and experimental
protocols can make discovering robust biomarkers that
can predict a disease state with high fidelity very difficult.
To address these challenges a combination of multiple,

but independent studies, which were designed to investigate

* Correspondence: hao9@pitt.edu
1Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA
Full list of author information is available at the end of the article

© 2015 Ogoe et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ogoe et al. BMC Bioinformatics  (2015) 16:226 
DOI 10.1186/s12859-015-0643-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0643-8&domain=pdf
mailto:hao9@pitt.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


the same biological problem, have been proposed to im-
prove classification performance in diagnostic and prognos-
tic models [1–4]. Two of the most common strategies for
combining “transcriptomic” data for integrative modeling
are via meta-analysis and cross-platform data merging [5].
In the former approach, integration occurs at the interpret-
ive level, where results (e.g., classification accuracy, p-
values, ranks, etc.) from individual studies are combined,
while with the latter, integration occurs by rescaling of ex-
pression values into numerically comparable measures be-
fore the class prediction task.
A major limitation about these approaches is that they

are unable to incorporate prior domain knowledge nor
transfer latent biological information, which might help
boost predictive performance. Studies by Ptitsyn and col-
leagues [6] revealed that the state (e.g., level of perturba-
tions) of some pathways like, cell adhesion, energy
metabolism, antigen presentation, and cell cycle regulation
could predict metastasis progression in colorectal and
breast cancer samples. Meanwhile, Huang et al. [7] sug-
gested that pathway-based prognosis models for breast
cancer performs better than a gene-based one. Thus, in-
corporating or transferring prior biological knowledge,
such as the state of a pathway or functional associations of
genes, into model generation could improve predictive
performance on ‘transcriptomic’ datasets.
Ganchev and colleagues proposed a novel framework —

transfer rule learning (TRL) — which leverages the con-
cept of transfer learning to build an integrative model of
classification rules from two datasets [8]. Transfer learning
(TL) is the use of information learned from one task,
which we call the source task, to learn another different,
albeit related, task, which we call the target task [9]. Given
two datasets, where one is designated as the source and
the other as target, TRL builds classification rules accord-
ing to two main steps. First, it learns a rule model on the
source, and second, it transfers knowledge learned from
the source model to seed learning of a new rule model on
the target. TRL is a useful tool for integrative modeling for
multiple microarray gene expression (MAGE) studies.
Given two or more datasets, TRL can carry out integrative
modeling in a pairwise fashion.
The TRL framework has limited capabilities. Its strategy

for knowledge transfer could be improved. Generally,
humans are able to recognize and apply knowledge learned
from a previous task to a new task if they can align the
commonalties between the two [9, 10]. For instance, skills
learned from a programming language like C++, could be
applied to learn a new language, like Java. Both adhere to
common programming principles (e.g., both implement a
“for loop”) even though the syntax can be different. There-
fore, for transfer learning to be meaningful it is essential to
capture the commonalities that the source and target
share. TRL’s mechanism for establishing this commonality

is to identify common variables between the source and
target datasets. However, studies have shown that different
classification models built on independent microarray
datasets can contain different sets of biomarkers with little
overlap. In addition, models based on different variable
sets can yield similar classification performance when
tested on the same validation dataset [1, 11, 12]. This
means that relying solely on identical variables to establish
commonality might not be enough, and therefore explor-
ing and incorporating other means of determining variable
equivalence could be vital for model performance.
Several genes, though represented by different sym-

bols, could have something in common. For instance,
they might belong to the same biological pathway or be
associated to the same disease. In humans, for example,
the TP53 gene, which encodes the tumor protein p53, is
known to play a key role in the activation and/or control
of apoptosis [13]. Meanwhile, caspase-6, an effector cas-
pase, which is encoded by the CASP6 genes, cleaves to
other proteins to trigger the apoptosis process [13].
Superficially, TP53 and CASP6 are different, but they
both play a prominent role in apoptosis. TRL and several
meta-analysis methods cannot capture this functional
similarity or many others for integrative analysis.
We present in this paper, TRL-FM, an extension to the

TRL framework, which can capture and incorporate ab-
stract knowledge to improve integrative modeling of
MAGE datasets. TRL-FM leverages functional modules
to capture and abstract underlying commonalities, such
as functional similarities, among variables across MAGE
datasets. To the best of our knowledge, this is the first
paper proposing the application of functional modules
via knowledge transfer for integrative rule modeling of
multiple gene expression datasets.
A functional module (FM) consists of a group of cellu-

lar components and their interactions that can be associ-
ated with a specific biological process. An FM can be a
discrete functional entity separable from other FMs or
an amalgam of various FMs with a single functional
theme [14]. TRL-FM posits that biomarkers that co-
occur in the same FM can possess similar predictive
value, so that they can serve as proxies for each other
during knowledge transfer from one dataset to another.
Armed with this basis, TRL-FM should be able to
recognize functionally similar, but non-identical variables
(e.g., TP53 and CASP6 as illustrated above) to facilitate
knowledge transfer.
Our goal in this study was threefold. First, to test whether

FMs can be used to capture the underlying commonality
among variables of different but related gene expression
datasets, and are more effective when used as bridges to as-
sist knowledge transfer than relying on identical variables.
Second, to test the hypothesis that integrative modeling via
the TRL-FM approach outperforms traditional models

Ogoe et al. BMC Bioinformatics  (2015) 16:226 Page 2 of 15



based on single gene expression data sources. Last, to
evaluate and compare the classification performance of
TRL-FM with traditional methods, using 21 gene ex-
pression datasets that were collected from three re-
spective studies: one on brain cancer, one on prostate
cancer, and one on a lung disease (idiopathic pulmon-
ary fibrosis or IPF).

Methods
Figure 1 depicts an overview of the TRL-FM framework.
For the sake of simplicity, this framework performs trans-
fer between two different, but related, sets of microarray
data — a source and a target. However, TRL-FM, as we
will show later in this article, can glean information from
several sources to facilitate knowledge transfer — a strat-
egy that is akin to receiving advice from several experts.
The key steps according to the framework are as follows:
First select — using a feature selection method — relevant
variables from the source(s). Second, identify FMs among
the selected variables. Third, using the discovered FMs,
along with rules induced from the source(s) datasets; build
a prior hypothesis of classification rules. Finally, using the
prior hypothesis as a seed, learn a new classification rule

model from the target dataset. TRL-FM is composed of
four major components to execute these steps namely,
feature selection via discretization, identification of func-
tional modules, classification rule learning, and transfer
learning of classification rules via functional mapping. We
briefly describe these components below.

Feature selection via discretization
MAGE datasets are comprised of hundreds or thousands
of measured variables. The goal in integrative modeling
is to identify and select a handful of relevant variables
from among these hundreds or thousands that can ac-
curately predict a disease state or estimate the risk of
disease in an individual. The selected variables serve as
building blocks for constructing classification models.
Moreover, the variables in MAGE data are continuous in
most cases, meaning that the variables can take an infin-
ite number of possible values within a specified range.
Continuous data pose several challenges to knowledge
discovery and data mining tasks. It makes it more difficult
to create compact, interpretable, and accurate classifica-
tion models [15]. Several machine learning algorithms,
such as decision trees [16] and rule learners [17, 18],

Fig. 1 The TRL-FM framework. The framework for knowledge transfer using functional mapping and classification rules works as follows. First,
use a feature selector to select relevant variables from the source and target datasets. Second, combine the selected variables into a single list
and partition them into functional modules (FMs). Third, using the discovered functional modules in addition to rules induced from the source data,
build a prior hypothesis of classification rules. Finally, using the prior hypothesis as a seed, learn a new classification rule model on the target data
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which are used for learning classification models, handle
discretized data much better [19]. It has also been shown
that discretization, the process of converting a continuous
variable to a discrete one, can improve the accuracy of
some classifiers [20]. Integrated into the TRL-FM algo-
rithm is a discretization method that converts continuous
MAGE variables into discrete ones. After discretization,
variables that have single-intervals can be filtered out since
they cannot discriminate the target class. With this filtra-
tion strategy, discretization can also serve as a feature se-
lection method.
We applied Efficient Bayesian Discretization (EBD) [19],

a supervised discretization method, to discretize the input
data. EBD uses a Bayesian score to discover the appropri-
ate discretization, which guarantees optimal discretization
of continuous variables from high-dimensional biomedical
datasets. EBD has statistically significantly better perform-
ance than other commonly used methods for discretization
[19] (see Additional file 1 for an overview of the
algorithm).

Discovering Functional Modules
Given a list of arbitrary genes, several methods can be
used to identify underlying biological commonalities,
which can subsequently be abstracted into domain know-
ledge in the form of functional modules. Biological com-
monality here can mean association to a common disease,
function, pathway, etc. Gene set enrichment analysis
(GSEA), for instance, is a popular method which is used
to identify functional sets of genes associated with particu-
lar conditions of interest from ‘transcriptomic’ data. There
are a plethora of GSEA methods, each with its inherent
strengths and limitations [21, 22]. The focus of this paper
is to highlight the utility of incorporating abstracted back-
ground knowledge to improve classification modeling, but
not necessarily, to evaluate which knowledge abstraction
method improves performance. To this end, we imple-
mented a Gene Ontology (GO)-similarity-based method
to identify commonalities among variables in MAGE
datasets.

The protocol
Figure 2 illustrates steps to discover functional modules
among an arbitrary list of genes (see Additional file 1 for
additional details).
First, we mapped each gene in the input set to the corre-

sponding GO term(s) that annotate(s) the gene, according
to the GO annotation database [23]. For example, if G de-
notes the set of input genes, then we map each gene g
(where g ∈G), to the GO term go (where g ∈G),) that anno-
tates it. Here, GO refers to a set of biological process terms
in the GO. For example, the mapping M(g1) = {go1, go3}
means that terms go1 and go3 annotate gene g1. Subse-
quently, we formed a union of all GO terms that annotate

at least one member of the input gene set. This set of GO
terms served as input to the clustering phase.
Second, using semantic similarity [24] as a distance

measure, we constructed a similarity matrix among the
GO terms. With the similarity matrix as input, we applied
the spectral clustering algorithm [25] to group the GO
terms into functionally similar clusters. Subsequently, we
applied the Silhouette value technique [26] to estimate ap-
propriate cluster size as well as cluster validity.
Finally, we mapped each gene gi (i.e., keys of map M)

to cluster Ci if there existed at least one term in Ci that
annotates gi. This enabled us to identify groups of genes
that perform the same or similar functions as well as
genes that perform multiple functions. Any group of
genes that mapped to a particular GO cluster (e.g.,
{g1, g2, g3}→ C1) forms a functional module.

Classification rule learning with RL
The TRL-FM framework is driven by the rule learner
(RL) [18], a classification rule learning algorithm, which
has been used successfully in several classification tasks
involving genomic and proteomic studies [27–30].
Given a set of training examples — a vector of

variable-value pairs, including a class label —RL learns a
set of IF-THEN propositional rules. RL induces rules of
the form:
IF Condition THEN Consequent

where the Condition consists of one or more variable
tests, which we also call conjuncts, and the Consequent
denotes prediction of the target variable, also known as
a class variable. Every induced rule has classification-
relevant statistics associated with it. For example, let us
consider the hypothetical rule below:
IF ((gene1 > 1680) AND (gene2 ≤ 28.6)) THEN (Class =

Case)

CF ¼ 0:98; P ¼ 0:007; TP ¼ 56; FP ¼ 4

where gene1 and gene2 are biomarkers with two intervals
of values after discretization. We interpret the rule as
follows: “when gene1 is up-regulated (i.e., > 1680) and
gene2 is down-regulated (i.e., ≤ 28.6), then predict the
target class as Case.” Relevant statistics are associated to
each rule induced by RL. In the given example above,
the ensuing statistics mean that RL induced the rule
with a 98 % degree of confidence, which we call the
Certainty Factor (CF). Several rule evaluation functions,
such as precision or Laplace estimate, are used by RL to
calculate CF. P represents the p-value, computed by
Fisher’s exact test. We define other relevant statistics as
follows: True Positives (TP) are the number of positive
examples that are correctly predicted as positive, while
False Positives (FP) are the number of negative exam-
ples that are incorrectly predicted as positive. The TP
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and FP values in the example above mean that, out of 60
data instances that the rule antecedent (Conditions)
matched logically, 56 were predicted correctly.
RL has several characteristics that make it particularly

suitable for use in biomarker discovery studies [31].
First, unlike other knowledge discovery algorithms like
artificial neural networks or support vector machines,
humans can easily interpret classification models learned
by RL. Second, RL is simple and flexible such that, users
can leverage domain knowledge to set learning parame-
ters apriori in order to improve a search in the hypoth-
esis space. Third, RL covers rule with replacement. That
is, it does not recursively partition the instance space of
the training example (e.g., C4.5 [16]), nor does it elimin-
ate training instances covered by a rule as learning pro-
ceeds (e.g., CN2 [17]), but instead it allows rules to
cover overlapping regions in the instance space. Cover-
ing training instances with replacement particularly suits
situations where data are scarce (e.g., microarray data),
since ample data will be available to provide statistical
support for newly induced rules. Fourth, RL can handle
nonlinear relationships as well as hierarchical variables,
such as cancer and its subtypes. Fifth, to avoid costly

errors, RL can abstain (i.e., it is agnostic) from predicting
a test case when it has low confidence in the accuracy of
the rule [27, 31].
Internally, RL stores induced rules in a priority queue

(aka, the beam) by sorting them according to their CF
and coverage. By default, we set the beam-width (i.e.,
total number of rules in memory) to 1000. To construct
a rule model,—a set of disjunctive rules—the RL algo-
rithm proceeds as a heuristic beam search through the
space of rules, using a general-to-specific approach [18].
First, it considers every variable as a potential predictor
of the target class variable. For each discretized interval
value of a marker, it creates as many rules as there are
target class values. Example, for a Case/Control binary
class, it will create two rules for each discretized marker
value. One rule predicts Case and the other predicts
Control. Second, it places an induced rule on the beam
if it satisfies user-specified constraints, also known as
good-rule criteria. The criteria are minimum CF value,
minimum coverage, maximum false positive rate, and
maximum conjuncts (i.e., the maximum number of
variable-value pairs allowed in a rule antecedent). Subse-
quently, each rule on the beam is specialized if it satisfies

Fig. 2 A protocol for identifying functional modules using spectral clustering and the Gene Ontology. Given an input set of genes, first map each
gene to the corresponding GO term(s) that annotate(s) it according to the GO annotation database [23]. For example, if G denotes the set of
input genes then we map each gene g (where g ∈ G), to the GO term go (where go ∈ GO) that annotates it. Here, GO refers to a set of biological
process terms in the GO. For example, the mapping M(g1) = {go1, go3} means that terms go1 and go3 annotate gene g1. Second, form a set union
of all GO terms that annotate at least one member of the input gene set. Third, using semantic similarity [24] as a distance measure, construct a
similarity matrix among the GO terms. Fourth, with the similarity matrix as input, applied the spectral clustering algorithm [25] to group the GO
terms into functionally similar clusters. Fifth, apply the Silhouette value technique [26] to estimate appropriate cluster size as well as cluster
validity. Finally, map each gene gi (i.e., keys of map M) to cluster Ci if there exist at least one term in Ci that annotates gi
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the constraints. Specialization is the process whereby the
rule learner successfully adds conjuncts (i.e., marker-
value pairs) to the rule antecedent until the constraints
are violated. The algorithm stops and outputs the set of
rules on the beam if there are no more rules to
specialize. This set of classification rules output by RL is
referred to as a rule model. The RL algorithm has been
integrated as a subroutine in the TRL-FM algorithm
(see Fig. 3).

Transfer learning of classification rules via functional
mapping
The TRL-FM algorithm, illustrated in Fig. 3, implements
the TRL-FM framework (see Fig. 1). In this version of
the framework, transfer via functional mapping occurs
between a single source and target dataset. You can
modify it to include multiple source datasets or a list of
biomarkers in place of the source. The latter is particu-
larly useful when a source dataset is not readily available
but markers, which can be mined from literature or
gleaned from domain knowledge, are obtainable. Fur-
thermore, this method of providing source information

injects flexibility into the prior rules generation phase as
it does not present the challenges, well elucidated by
Ganchev et al. [31], that arise with mapping variable
values — or discretized intervals — across the source
and target datasets.
The algorithm accepts as inputs the source and target

datasets, including user specified constraints (i.e., mini-
mum CF, minimum coverage, inductive strengthening,
and maximum conjuncts) for RL. EBD discretizes the in-
put dataset if they contain continuous variables. Next,
FMs are discovered among the selected variables from
EBD to facilitate the transfer of knowledge for learning a
model on the target dataset. Knowledge transfer occurs
via the formulation of prior hypothesis (i.e., a set of rules),
which is used to seed learning of the target model.
The source dataset is first analyzed using RL. The rule

model learned on the source, in combination with the
FMs, is used through the GeneratePriorRules function
(see Fig. 4) to formulate a prior hypothesis, which is
used to seed learning of a new rule model on the target.
Using the FM as a bridge, the function instantiates prior
rules as follows:

Fig. 3 An algorithm for implementing the TRL-FM framework. This algorithm, a vast modification of the TRL algorithm [8], incorporates a subrou-
tine (see Fig. 4) for mapping functionally related variables between the source and target data. The statements in red font are additions to the
TRL algorithm
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1. For a particular functional module, FMk, select a
variable, aTj, for rule instantiation if the condition below
holds:

aTj∈}Set2}
� �

∧ aSi; ; aTj
� �

∈FMk
� �

∧ aSi∈}Set1}ð Þ:

2. Build a prior rule “structure” as follows:

IF aTj ¼ ?
� �

THEN Class ¼ ?ð Þ

3. For every selected variable, instantiate a prior rule
structure with all discrete ranges of values and all class
values. For example, if the discretized ranges of values
for a marker, aTj, are LOW and HIGH and the target
class values are Case and Control, then the instantiated
rules become:

IF aTj ¼ LOW
� �

THEN Class ¼ Caseð Þ

IF aTj ¼ HIGH
� �

THEN Class ¼ Caseð Þ

IF aTj ¼ LOW
� �

THEN Class ¼ Controlð Þ

IF aTj ¼ HIGH
� �

THEN Class ¼ Controlð Þ

Subsequently, the instantiated rules are loaded onto
the beam and learning proceeds as a heuristic beam
search in a typical RL fashion, as described above. In the
specialization step (see Fig. 3), through the specialize()
function, all non-redundant patterns obtained by adding
a single variable-value pair to a rule’s antecedent are
considered. Note that all induced rules, including the
prior rules, that do not satisfy the “good rule” criteria
are pruned away (i.e., discarded). A rule is “good” if it
satisfies the user-specified constraints.

Results and discussion
Experiments
To test the feasibility of TRL-FM as a viable tool for in-
tegrative modeling of MAGE datasets we applied the
framework to learn classification rule models using pub-
licly available datasets. The goals of the experiments
were threefold. First, to ascertain TRL-FM’s ability and
flexibility in capturing abstract biological knowledge
from source datasets in order to facilitate transfer learn-
ing. Second, to evaluate the classification performance of
models built by TRL-FM, and how it compares with
traditional methods built on single source datasets. Last,
compare the performance of integrative modeling via
the TRL-FM approach with meta-analysis and cross-
platform data merging methods.

Datasets
Table 1 provides details of the three example MAGE
datasets that we used for the experiments. Each example
contained 7 microarray studies of two-group comparison
(i.e., case vs control). The datasets were collected from
three studies: a brain cancer study, a prostate cancer
study, and an IPF study. These datasets particularly suit
the goals of our experiments and the utility of integrative
modeling of MAGE datasets because, (1) they are pub-
licly available, (2) they have been used extensively to test
experiments in several integrative modeling studies, and
(3) they were generated using diverse microarray plat-
forms. Testing the flexibility of TRL-FM with datasets
generated using diverse platforms is essential since TRL
and many meta-analysis methods require identical plat-
forms and variables for integrative modeling. That is,
TRL-FM avoids the critical and often challenging task of
mapping features (e.g., gene names) across disparate
platforms for integrative modeling.

Fig. 4 An algorithm for generating prior rules for seeding learning of a rule model. This algorithm, a subroutine within the TRL-FM framework,
leverages information from domain knowledge, through functional modules, to instantiate prior rules to seed learning on the target data
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Experimental Design
Our task was to build a classification rule model that can
classify normal tissue versus diseased tissue from same
organ, e.g., to distinguish normal prostate tissue from
prostate cancer. We designed our experiments to evaluate
if knowledge learned from datasets of the same MAGE ex-
ample set (i.e., same organ of origin, like IPF) can be trans-
ferred to enhance learning of a classification model on a
new dataset. For each example set of the experimental
datasets, consider a set of n datasets, D = {D1, D2, …, Dn},
where Di represents the ith dataset. Within a set, each
dataset, Di, in turn was set as target, while the rest, {D −Di},
were designated as source data for knowledge transfer.
Guided by the TRL-FM framework (see Fig. 1), classification
rule models were generated from the source datasets—one
model per dataset. With this approach, n number of TRL-
FM experiments can be performed within a set, so in all, we
executed 21 (i.e., 3 X 7) experiments. This study design
strategy was necessary to test the notion that knowledge
transfer from multiple sources will more likely improve
learning on the target.

Evaluation
We used the area under the Receiver Operative Character-
istic curve (AUC) [32] to evaluate the predictive efficacy of

TRL-FM. For each experiment, we measured the mean of
the AUC on 10-fold cross-validation. In addition, we also
estimated the performance of TRL-FM when each FM
was used solely as a bridge for transfer. The rationale for
this strategy was to ascertain whether particular functional
themes improve the baseline performance (or not). We
could have experimented with different combinations of
the FMs to determine which particular group(s) optimizes
learning. However, for n FMs, such an approach will yield

approximately
n
1

� �
þ n

2

� �
þ…þ n

n

� �
models, which

is computationally intractable—in the advent of high-
performance computing, this process can be automated.
For the sake of simplicity, we instead experimented with
an ensemble of all FMs.
In addition, we compared the performance of TRL-FM

over TRL and RL (baseline). Note that the TRL frame-
work is constrained with a single dataset as source, while
TRL-FM extracts knowledge from multiple sources, via
functional mapping. This means that for evaluating the
TRL experiments, for every ith dataset that was desig-
nated as target, the rest of the datasets in the same study
(e.g., IPF) in turn had to be set as source.
Finally, we compared the performance of our methods

with traditional algorithms for single source datasets

Table 1 Experimental data sources. Sources of data for experiments and their descriptions

Disease Author Year Platform Sample Size (Cases/Controls) Source

Prostate Cancer Singh 2002 HG-U95Av2 102 (52/50) www.broad.mit.edu

Lapointe 2004 cDNA 103 (62/41) GSE3933

Wallace 2008 HGU133A2 89 (69/20) GSE6956

Nanni 2006 HG-U133A 30(23/7) GSE3868

Varambally 2005 HG-U133 Plus 2 13(7/6) GSE3325

Welsh 2001 HG-U95A 34(25/9) public.gnf.org/cancer

Yu 2004 HG-U95Av2 83(65/18) GSE6919

Brain Cancer Freije 2004 HG-U133A,B 85 (59/26) GSE4412

Phillips 2006 HG-U133A,B 100 (76/24) GSE4271

Sun 2006 HG-U133 Plus 2 100 (81/19) GSE4290

Petalidis 2008 HG-U133A 58 (39/19) GSE1993

Gravendeel 2009 HG-U133 Plus 2 175(159/16) GSE16011

Paugh 2010 HG-U133 Plus 2 42(33/9) GSE19578

Yamanaka 2006 Agilent 29(22/7) GSE4381

Lung Disease Studies (IPF) Pardo 2005 Codelink 24(13/11) GSE2052

Yang 2007 Agilent 43 K 29(20/9) GSE5774

Konishi 2009 Agilent 4x44K 38(23/15) GSE10667

KangA 2011 Agilent 4x44K 63(52/11) Dr. Kaminski

KangB 2011 Agilent 8x60K 96(75/21) Dr. Kaminski

Larsson 2008 HG-U133 Plus 2 12(6/6) GSE11196

Emblom 2010 cDNA 58(38/20) GSE17978
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namely, Support Vector Machines (SVM), Linear Discrim-
inant Analysis (LDA), Random Forest (RF), C4.5, Naïve
Bayes (NB), and Penalized Logistic Regression (PLR). Using
the same metric (i.e., AUC on 10-fold cross-validation), we
evaluated the classification performance of these methods
on the raw datasets as well as cross-study integration via
meta-analysis and data merging. Several methods have
been proposed for microarray data merging via meta-ana-
lysis and cross-platform data merging [5, 33], but for
the sake of brevity and demonstration purposes, we
adopted the adaptively weighted (AW) Fisher method
[34], while we applied COMBAT [35], which uses an
empirical Bayes method to adjust for batch effect across
multiple gene expression studies before merging.

Identification of functional modules
For each round of TRL-FM experiments, we identified a
set of FMs from the list of relevant source variables. In
all, 21 sets of FMs were generated, since each dataset, in
turn, was set as target in each round of experiment. To
simplify the rest of this discussion, we have randomly se-
lected and present one FM table from each disease study—
Tables 2, 3, and 4. We provide the rest as supplementary
data (see Additional file 2).
Table 2 shows the functional modules that facilitated

rule transfer when we set Petalidis (brain cancer) as the
target dataset. Similarly, Tables 3 and 4 represent func-
tional modules when KangA (IPF) and Lapointe (pros-
tate cancer) were set as targets, respectively. Observe
that the number of functional modules are not necessar-
ily the same for all target data. KangA, for example,
had 14, while Lapointe contained 10. This means that

the former and latter had 14 and 10 FMs, respect-
ively, that were functionally homogenous — that is,
had average Silhouette values of at least 0.5.
We made three observations from the functional mod-

ules. First, almost all of the functional themes were com-
posed of more than one gene. Second, some genes were
multi-functional. That is, they were associated with more
than one different functional theme. In Table 2, for in-
stance, ADCY3 (adenylate cyclase 3) was associated with
DNA repair, protein phosphorylation, transport, and re-
sponse to glucose stimuli. We made a similar observa-
tion in Table 3, where CBS (cystathionine beta synthase)
was associated with some metabolic processes, brain de-
velopment, and the regulation of kinase activity. Lastly,
most of the discovered functional themes like signal
transduction, apoptotic processes, cell differentiation,
cell proliferation, and many others, are associated with
the hallmarks of cancer [6, 36].
The biological information revealed from these obser-

vations obtained using the TRL-FM style to capture, ab-
stract, and formulate propositional rules for knowledge
transfer could be essential for algorithm and model de-
velopment for integrative modeling of MAGE datasets.
Normally, for symbolic data mining algorithms like RL,
the interestingness criteria (i.e., how good a rule is) for a
newly induces rule is evaluated by objective methods like
confidence (e.g., positive predictive value) and support
(e.g., the probability that a pattern will occur). Other
subjective methods, which leverage background know-
ledge or an expert opinion, have also been proposed to
define explicit criteria for rule interestingness [37]. Prior
knowledge, for instance, when gleaned from functional

Table 2 FMs for target, Petalidis. Functional modules to facilitate functional mapping to target (Petalidis) variables from sources
(Freije, Gravendeel, Paugh, Phillips, Sun, Yamanaka) variables

Clusters GO Functional Theme Markers

FM1 DNA repair ADCY3, ADCY7, ALDH6A1, BLVRA, CSTF2T, DHX9, DNASE1L1, MCM2, MRE11A, STRAP, USP47

FM2 Apoptotic processes ADAMTSL4, ADORA1, ARAF, CASP5, CTSL2, FKTN, MCM2, MRE11A, P2RX1, RPS6KA3, SGPL1, STRN, TEX261, TRIAP1,
USP47, VEGFA

FM3 Regulation of protein
phosphorylation

ADCY3, ADCY7, ADORA1, ARAF, CDC37, DVL1, MRE11A, PPP2R5A, VEGFA

FM4 Cell differentiation ACTG1, ALDH6A1, AP2B1, CRB1, DVL1, EFNB2, IFRD1, JAG1, MGP, MYO10, NHLH2, PBX1, RPS6KA3, RYR1, SGPL1,
STRN, VEGFA, ZIC3, ZMYM3

FM5 Transport ABCC10, ADCY3, ADCY7, ADORA1, AP2B1, CDC37, LRMP, MSR1, MYO10, P2RX1, PDIA4, RYR1, VEGFA

FM6 Signal transduction ADCY3, ADCY7, ADORA1, AP2B1, ARAF, CD97, CSNK1G1, CXCL6, DVL1, EFNB2, IGFBP2, JAG1, LANCL1, NDST1,
P2RX1, PPP2R5A, RPS6KA3, SGPL1, STC1, STRN, VEGFA

FM7 Cell proliferation IGFBP2, JAG1, MSR1, MYO10, PBX1, RPS6KA3, USP47, VEGFA

FM8 Response to glucose stimuli ADCY3, ADCY7, CTSL2, CYP2E1, IGFBP2, JAG1, NDST1, P2RX1, RPS6KA3, RYR1, STC1, STRAP, VEGFA

FM9 Toll-like receptor signaling RPS6KA3

FM10 Transcription ADCY7, BTAF1, DAZL, DVL1, FBN1, JAG1, MRE11A, NHLH2, NKRF, PBX1, RPS6KA3, STRAP, USP47, VEGFA, ZIC3,
ZMYND11, ZNF187

FM11 Response to stress ACTG1, ADORA1, CASP5, CD97, CTSL2, CXCL6, DHX9, IGFBP2, LDHA, MRE11A, NDST1, NPEPPS, P2RX1, RPS6KA3,
RYR1, STC1, TRIAP1, USP47, VEGFA
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modules, literature, and/or a domain expert, could be in-
corporated into classification rule induction to contribute,
subjectively, to the evaluation of how good an induced
rule is. However, while the incorporation of FMs into the
TRL-FM framework facilitated the mapping of variables
across source(s) and target datasets, the biological know-
ledge contained in them did not explicitly contribute to
rule confidence within the rule-induction engine of the
framework. It rather affected the learning bias of the algo-
rithm by seeding the search with prior information. That
is, instead of learning from scratch it starts learning from

a point in the search space that is presumably closer to the
target solution.

RL vs TRL vs TRL-FM
With Tables 5 and 6, we compare and contrast the perform-
ance TRL-FM with its predecessors, RL and TRL, on three
datasets (Petalidis, KangA, and Lapointe), one from each
disease type. Similarly, we provide results for the rest of the
datasets as supplementary data (see Additional file 3 and
Additional file 4). Tables 5 and 6 show the performances of
classification rule models learned with and without TRL-FM
(i.e., TRL-FM vs baseline RL) and TRL, respectively (i.e.,
TRL vs baseline RL). Table 7 (see Additional file 5 for
detailed results) summarizes the overall performances of the
three algorithms, including the other traditional method
(i.e., SVM, LDA, RF, C4.5, NB, and PLR), on all datasets. In
addition, Tables 5 and 6 provides information for sources of
knowledge transfer. That is FMs, including their union, for
TRL-FM, and for TRL, every possible source within a
disease type. In the summary table, we show results for
TRL-FM using union FMs, while for TRL; the AUC from
the best performing source is displayed. For example,
with Petalidis as target, the best performing source was
Gravendeel (see Additional file 4 for details).
The goal of transfer learning is to improve the learning

performance on the target task. Positive transfer occurs
when the transferred knowledge from the source im-
proves classification performance on the target, while
negative transfer is the reduction of performance on the
target after knowledge transfer. The AUCs (in Tables 5
and 6) with bold font denote positive transfer, while
those resulting from negative transfer are underlined.
Generally, learning with TRL-FM yielded more positive
transfers than TRL. In addition, transfer with the union
of FM usually produced positive transfer, while with
TRL; you have to experiment with all available sources

Table 3 FMs for target, KangA. Functional modules to facilitate
functional mapping to target (KangA) variables from sources
(Emblom, KangB, Konishi, Larsson, Pardo, Yang) variables

Clusters GO Functional Theme Markers

FM1 Regulation of kinase activity CBS, FCER1A, THY1

FM2 Notch signaling BAI2, CNTNAP2, HEY1, PKIG

FM3 Cell junction assembly ASPN, CBS, CNTNAP2, HEY1,
KLK7

FM4 Cell adhesion CDH2, CNTNAP2, THY1

FM5 T cell receptor signaling pathway ASPN, CDH2, FCER1A, HEY1,
THY1

FM6 Brain development BAI2, CBS, CNTNAP2

FM7 Protein homooligomerization DPYSL3, MPP6

FM8 Pyrimidine nucleobase catabolic
process

CBS, DPYSL3, THY1

FM9 Transcription HEY1, HR, PKIG, FCER1A

FM10 Transsulfuration CBS

FM11 Muscle cell differentiation CDH2, HEY1, SRD5A1

FM12 Sex determination CBS, CNTNAP2, SRD5A1

FM13 Superoxide metabolic process CBS

FM14 Cellular protein localization CNTNAP2

Table 4 FMs for target, Lapointe. Functional modules to facilitate functional mapping to target (Lapointe) variables from sources
(Nanni, Singh, Varambally, Wallace, Welsh, Yu) variables

Clusters GO Functional Theme Markers

FM1 Cardiac and urinary organ morphogenesis ACTL6A, ANXA2, ERG, FZD7, GATA3, GATM, JUND, NFATC3, SOX9, WHSC1

FM2 Lipid metabolism ABCA2, AMACR, C3, GATA3, GATM, LEPR, NFATC3

FM3 Regulation of chemokine production C3, DARC, GATA3, SCGB1A1, SOX9

FM4 Histone acetylation and methylation ACTL6A, C3, GATA3, MUC1, NELL1, PRKCB, SOX9

FM5 Signal transduction ACTL6A, ADCY2, BCAM, C3, CCL1, DARC, DYNLT1, ERG, FZD7, GATA3, GDI1, GJA1, KCNN4, LEPR,
MAP3K14, MUC1, PRKCB, RCAN2, SCGB1A1, SNAI2, SOX9, USP33, WIF1

FM6 Chemotaxis ABCA2, CCL1, GATA3, GATM, GDI1, JUND, SCGB1A1

FM7 Transcription ACTL6A, BCAS2, ERG, GATA3, GATM, JUND, NFATC3, NFYB, POLR2H, PRKCB, RPS29, WHSC1

FM8 Regulation of transcription ABCA2, ACTL6A, ETV5, FOSB, FZD7, GATA3, JUND, MUC1, NFATC3, NFYB, POLR2H, PRKCB, SCGB1A1,
SNAI2, SOX9, TCEAL4, WHSC1

FM9 Translation DNAJC11, EEF2, ERG, MUC1, POLR2H, PRKCB, RPS29, USP33

FM10 Cellular response to cytokines ANXA2, DARC, FOSB, FZD7, GATA3, JUND, NFATC3, PRKCB, SOX9
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to determine the best possible transfer. Thus, while the
outcomes of integrative modeling with the TRL-FM
framework will most likely lead to positive transfer, cur-
rently, it cannot be estimated, a priori, which particular
source from the same set of data will lead to a positive
transfer if you use the TRL framework. Furthermore, a
Mann–Whitney paired-sample signed rank test with a
significance level α = 5 % showed that transfer with TRL-
FM statistically significantly improves the baseline than
even the best TRL (see Table 8).
These results highlight the impact of FMs on the in-

duction of a rule model. As we observed, no particular
functional theme (s) consistently improved classification
performance across all target datasets. That is, there was
no direct correlation between functional themes and

Table 5 Comparison of TRL-FM with baseline RL. AUCs when RL
(baseline) and TRL-FM are applied to build a classification rule
model on three datasets, Petalidis (brain), KangA (IPF), and
Lapointe (prostate). For TRL-FM, the FMs are the medium through
which knowledge transfer occurs. “Union” is an ensemble of all
FMs. The mean and the standard error of the mean (SEM) for the
AUC of a dataset was obtained by 10-fold cross-validation

Dataset Petalidis KangA Lapointe

AUC (SEM) AUC (SEM) AUC (SEM)

Baseline 0.83 (0.06) 0.86 (0.07) 0.93 (0.03)

FM1 0.82 (0.07) 0.93 (0.05) 0.87 (0.04)

FM2 0.89 (0.07) 0.92 (0.05) 0.88 (0.04)

FM3 0.89 (0.07) 0.85 (0.07) 0.96 (0.02)

FM4 0.88 (0.06) 0.89 (0.07) 0.90 (0.03)

FM5 0.84 (0.08) 0.81 (0.07) 0.90 (0.03)

FM6 0.85 (0.06) 0.86 (0.07) 0.94 (0.02)

FM7 0.81 (0.07) 0.82 (0.07) 0.95 (0.03)

FM8 0.86 (0.06) 0.93 (0.05) 0.92 (0.03)

FM9 0.81 (0.07) 0.86 (0.07) 0.88 (0.04)

FM10 0.84 (0.08) 0.86 (0.07) 0.89 (0.03)

FM11 0.89 (0.07) 0.82 (0.07)

FM12 0.86 (0.07)

FM13 0.93 (0.05)

FM14 0.93 (0.05)

Union 0.91 (0.06) 0.97 (0.03) 0.97 (0.02)

For each dataset, positive transfer is shown in bold font, while underlined
AUCs denote negative transfer

Table 6 Comparison of TRL with baseline RL. AUCs when RL
(baseline) and TRL are applied to build a classification rule
model on three datasets, Petalidis (brain), KangA (IPF), and
Lapointe (prostate). SRC means the source dataset (e.g., for
target Petalidis, SRC1 is Freije, see Additional File 3). The mean
and the standard error of the mean (SEM) for the AUC of a
dataset was obtained by 10-fold cross-validation

Dataset Petalidis KangA Lapointe

AUC (SEM) AUC (SEM) AUC (SEM)

Baseline 0.83 (0.06) 0.86 (0.07) 0.93 (0.03)

SRC1 0.82 (0.05) 0.86 (0.07) 0.93 (0.03)

SRC2 0.88 (0.07) 0.86 (0.07) 0.89 (0.05)

SRC3 0.81 (0.07) 0.93 (0.05) 0.90 (0.03)

SRC4 0.78 (0.06) 0.86 (0.07) 0.93 (0.03)

SRC5 0.85 (0.05) 0.86 (0.07) 0.91 (0.04)

SRC6 0.81 (0.07) 0.86 (0.07) 0.91 (0.04)

For each dataset, positive transfer is shown in bold font, while underlined
AUCs denote negative transfer

Table 7 Comparison of classification performance of all classifiers
on all datasets. Comparison of classification performance (AUC)
among selected machine learning methods namely, Support
Vector Machines (SVM), Linear Discriminant Analysis (LDA),
Random Forest (RF), C4.5, Naïve Bayes (NB), Penalized Logistic
Regression (PLR), as well as RL (baseline), TRL, and TRL-FM on all
datasets. Note that for TRL, the AUC for the highest performing
source is shown, while for TRL-FM, the medium of knowledge
transfer is the union of all FMs. In addition, the average (AVG)
AUC performances, including average standard error of the
mean, for each classifier across the entire datasets are provided
(see Additional File 5 for detailed results)

Dataset SVM LDA RF C4.5 NB PLR RL TRL TRL-FM

Emblom 1.00 1.00 1.00 0.98 0.96 0.98 0.97 0.97 0.94

Freije 0.74 0.72 0.72 0.73 0.82 0.76 0.76 0.78 0.80

Gravendeel 0.52 0.59 0.59 0.53 0.63 0.56 0.49 0.49 0.59

KangA 0.93 0.86 0.86 0.79 0.94 0.90 0.86 0.93 0.97

KangB 0.91 0.87 0.87 0.87 0.91 0.95 0.83 0.91 0.95

Konishi 0.90 0.68 0.68 0.74 0.90 0.90 0.78 0.83 0.95

Lapointe 0.96 0.91 0.91 0.94 0.97 0.96 0.93 0.93 0.97

Larsson 0.33 0.67 0.67 0.58 0.67 0.67 0.75 0.75 1.00

Nanni 0.70 0.61 0.61 0.44 0.57 0.65 0.54 0.54 0.64

Pardo 0.83 0.85 0.85 0.63 0.80 0.88 0.85 0.90 0.95

Paugh 0.48 0.45 0.45 0.43 0.50 0.45 0.51 0.52 0.54

Petalidis 0.75 0.71 0.71 0.69 0.80 0.80 0.83 0.88 0.91

Phillips 0.73 0.70 0.70 0.66 0.75 0.80 0.66 0.73 0.78

Singh 0.89 0.90 0.90 0.89 0.88 0.91 0.89 0.89 0.93

Varambally 1.00 0.92 0.92 0.67 1.00 1.00 0.83 1.00 1.00

Wallace 0.82 0.85 0.85 0.76 0.81 0.87 0.76 0.81 0.84

Welsh 0.94 0.66 0.66 0.79 0.93 0.94 0.92 0.95 0.93

Yamanaka 0.57 0.57 0.57 0.56 0.71 0.56 0.50 0.50 0.79

Yang 0.69 0.51 0.51 0.89 0.57 0.73 0.94 0.94 0.89

Yu 0.94 0.93 0.93 0.80 0.97 0.94 0.88 0.90 0.93

AVG AUC 0.77 0.74 0.74 0.71 0.80 0.81 0.77 0.80 0.86

AVG SEM 0.06 0.07 0.07 0.07 0.06 0.05 0.07 0.06 0.04
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positive (or negative) transfer. However, what became
clear was that an ensemble of the FMs, most often than
not, resulted into positive transfer. The reason for this
improvement could be that an aggregate of FMs widens
the space of relatedness among variables of the source
and target datasets. The intuition here is that, the more
related two domains are, the better the learning per-
formance of transfer learning. In addition, when snippets
of information from the FMs are fused together, poten-
tial errors inherent in knowledge transfer via individual
FMs can be alleviated. Meanwhile, results from other
studies support our take that a combination of FMs (e.g.,
group of pathways), more often than not, improves per-
formance for integrative analysis of genomic data [7, 38].
Furthermore, since TRL-FM is able to capture and ab-

stract underlying domain knowledge, in the form of
functional modules, it is able to go a step further to ask
the question whether two or more identically different
biomarkers have any commonality among them. This
capability of TRL-FM makes it more intelligent and ef-
fective for transfer learning than TRL. That is, TRL-FM
can facilitate knowledge transfer among MAGE datasets
that have different variable symbols, as long as the vari-
ables can be mapped to a common biological function
(s). For example, in the transfer of classification rules
from the Larsson to KangA data (all from the IPF set),
TRL is unable to transfer knowledge because the set of
variables (MPP6, PKIG) used to build the source model
does not overlap the set of variables (ASPN, FMO5,
MMP11, IL13RA2) which the target model incorporates.
TRL-FM, on the other hand, is able to transfer know-
ledge because of the association of PKIG (from source
model) and ASPN (from target model) to cell signaling
(Table 3). Another example here is the transfer of
classification rules from the Nanni dataset to Lapointe
dataset—both of the prostate set. As in the previous
case, the set of variables (CCL1, MUC1, ATOX1, BCAM,
BAT3) contained in the source model, does not overlap
with that (MYL6, ADCY2, GJA1,TCEAL4, PARG, MTMR7,
SEC23A, ACTA2, COQ7, SNAI2, MAP3K14) incorporated

in the target model. Nevertheless, TRL-FM was able to use
functional mapping via FMs to instantiate prior rules for
seeding learning on the target using ADCY2, GJA1, SNAI2,
and MAP3K14 due to their functional association with
MUC1 — signal transduction and regulation of transcrip-
tion (Table 4). Using the TRL framework, which requires
the recognition of identical variables across the same
source and target, this knowledge transfer could not have
occurred.

Comparison with other methods
The results displayed with Tables 7 and 8 indicate that
integrative modeling via the TRL-FM approach statisti-
cally significantly improves traditional models based on
single source datasets. The advantage TRL-FM has over
the traditional models is that it is able to pool informa-
tion, via transfer learning and functional mapping, from
other data sources to enhance model development.
Combining information from different source datasets,
via biological knowledge bases, for model building may
reduce inherent noise, which hampers predictive per-
formance. Thus for transcriptomic datasets, which are
mostly characterized by small sample sizes and large
variable sets, integrative modeling, via the TRL-FM ap-
proach, is a viable mechanism to boost predictive power
and generalization performance.
Table 9 (see Additional File 6 for further details) shows

the performance of all non-transfer learning based clas-
sifiers on the datasets after integration with meta-
analysis. The results indicate that there were no signifi-
cantly clear improvements in performance as compared
to transfer learning. What is more, in Table 10 we com-
pare the average classification performance within each
disease type (e.g., brain cancer) versus the performance
when disease specific datasets were merged, into one
data matrix, via meta-analysis and batch effect removal.
Classification performance on the meta-analysis inspired
dataset was not significantly different from average per-
formance per disease type. However, we observed a sig-
nificant reduction in performance when disease specific

Table 8 Pairwise significance test for classification performance among all methods. A Mann–Whitney paired-sample signed rank
test with significance level α = 5 %. P-values were adjusted with the Benjamini Hochberg method [45]

Method SVM LDA RF C4.5 NB PLR RL TRL

LDA 0.1230

RF 0.1230

C4.5 0.0386 0.0943 0.0943

NB 0.3453 0.0076 0.0076 0.0035

PLR 0.0737 0.0043 0.0043 0.0043 0.6280

RL 0.3473 0.6825 0.6825 0.0137 0.1151 0.0700

TRL 0.6924 0.0648 0.0648 0.0017 0.8666 0.6825 0.0076

TRL-FM 0.0094 0.0006 0.0006 0.0002 0.0094 0.0217 0.0017 0.0052

Significant p-values are displayed in bold font
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datasets were merged via removal of systematic bias.
This result is not too surprising as a similar observation
was made in a related study [3]. It is most likely that the
method could not handle, effectively, the heterogeneity
inherent across the different studies.
Overall, integrative modeling, via the transfer rule

learning and functional mapping approach performs bet-
ter as compared to methods inspired by meta-analysis
and cross-platform data merging. Highlights from the
results suggest that in predictive model design it might
be better to focus on sub populations or individual stud-
ies as opposed to merging independent studies into one
data matrix. In addition, while meta-analysis is a viable
approach for integrative MAGE analysis, it cannot trans-
fer information among datasets in order to boost per-
formance, and more so robust differential expression
does not necessarily translate into high predictive power.

Limitations and future work
Though our preliminary empirical results suggest that
the TRL-FM framework is sound, we have identified po-
tential limitations and several avenues for future work.
First, in building FMs we relied only on the GO as the
information source. Although the results are promising,
relying on GO as the only source from which to extract
domain knowledge might limit the knowledge base of
the framework for generating prior rules for transfer. Fu-
ture work could expand this knowledge base by explor-
ing and incorporating other methods of eliciting domain
knowledge for transfer learning. For instance, the GO
driven functional mapping module could morph into a
lookup table, which would integrate information from
other sources like Online Mendelian Inheritance in Man

Table 10 Comparing average performance per disease type to merged datasets per disease type. This table shows the average
classification performance per disease type as compared to merged datasets per disease type. In the dataset column, Avg denotes
average, MM denotes merged by meta-analysis, and M means merged by cross-platform data merging

Dataset SVM LDA RF C4.5 NB PLR RL TRL TRL-FM

Average performance per disease type

Avg_brain 0.67 0.66 0.66 0.64 0.73 0.69 0.66 0.68 0.76

Avg_ipf 0.80 0.78 0.78 0.78 0.82 0.86 0.85 0.89 0.95

Avg_prostate 0.89 0.83 0.83 0.76 0.88 0.90 0.82 0.86 0.89

Merged per disease type by meta-analysis

MM_brain 0.67 0.70 0.70 0.69 0.70 0.69 0.67 * *

MM_ipf 0.88 0.88 0.88 0.85 0.74 0.88 0.81 * *

MM_prostate 0.89 0.84 0.84 0.81 0.70 0.85 0.76 * *

Merged per disease type by batch effect removal

M_Brain 0.50 0.51 0.51 0.48 0.53 0.51 0.54 * *

M_IPF 0.67 0.63 0.63 0.60 0.63 0.64 0.68 * *

M_Prostate 0.53 0.53 0.53 0.53 0.53 0.55 0.59 * *

*denotes that transfer learning methods were not evaluated. Currently, TRL and TRL-FM cannot be applied to cross-domain studies (i.e., transfer from one disease
type to another)

Table 9 Comparison of classification performance of all non-
transfer rule learning classifiers on post meta-analysis datasets. Using
the AW [34] meta-analysis method only biomarkers with statistically
significant effect size within a particular disease type are used for a
class prediction task (see Additional File 6 for further details)

Dataset SVM LDA RF C4.5 NB PLR RL

Emblom 1.00 1.00 1.00 0.99 0.99 0.99 0.96

Freije 0.77 0.74 0.74 0.71 0.72 0.79 0.73

Gravendeel 0.50 0.73 0.73 0.59 0.69 0.67 0.49

KangA 0.82 0.72 0.72 0.86 0.93 0.96 0.86

KangB 0.94 0.89 0.89 0.85 0.94 0.93 0.83

Konishi 0.88 0.58 0.58 0.77 0.88 0.87 0.80

Lapointe 0.95 0.92 0.92 0.91 0.95 0.95 0.91

Larsson 0.33 0.33 0.33 0.67 0.42 0.67 0.75

Nanni 0.56 0.68 0.68 0.55 0.72 0.66 0.75

Pardo 0.88 0.88 0.88 0.78 0.83 0.88 0.80

Paugh 0.57 0.45 0.45 0.65 0.51 0.66 0.52

Petalidis 0.86 0.66 0.66 0.75 0.82 0.79 0.84

Phillips 0.75 0.83 0.83 0.68 0.80 0.81 0.64

Singh 0.92 0.86 0.86 0.84 0.87 0.90 0.92

Sun 0.73 0.66 0.66 0.66 0.73 0.73 0.69

Varambally 0.75 0.92 0.92 0.79 0.92 1.00 0.83

Wallace 0.81 0.82 0.82 0.77 0.76 0.81 0.70

Welsh 0.98 0.80 0.80 0.85 0.98 0.91 0.92

Yamanaka 0.63 0.42 0.42 0.79 0.71 0.70 0.61

Yang 0.74 0.51 0.51 0.90 0.71 0.80 0.94

Yu 0.91 0.92 0.92 0.87 0.92 0.95 0.90

AVG AUC 0.78 0.73 0.73 0.77 0.80 0.83 0.78

AVG SEM 0.06 0.07 0.07 0.07 0.06 0.06 0.07
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(OMIM) [39], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [40], MSigDB [41], BioCarta [42],
Reactome [43], and/or the Pharmacogenomics Knowledge
Base (PharmGKB) [44]. This might boost prior rule gener-
ation through a more confident relational mapping between
source(s) and target. Second, in particular instances, both
TRL and TRL-FM frameworks yield negative transfer.
Negative transfer, which is akin to giving “bad advice”, can
be detrimental to model generation for diagnostic and
prognostic studies. A future study could investigate the
relative risks of transfer of classification rules, which would
help make an immense contribution to the question of
“when to transfer,” an open research problem in the trans-
fer learning community. Last, after incorporating the above
propositions into a more robust and well-refined TRL-FM
framework, the feasibility of pan-cancer transfer of classifi-
cation rules for integrative modeling could be explored.

Conclusions
In this paper, we develop and evaluate a novel TRL-FM
framework that extends existing classification rule-learning
methods to use abstract domain knowledge to facilitate in-
tegrative modeling of multiple types of gene expression
data. Empirical results from this study highlight a couple of
key points. First, the results from our comprehensive exper-
iments conducted in this paper lend strong support to our
hypothesis that the TRL-FM approach can statistically
significantly outperform TRL, including traditional models
based on single gene expression data sources. Second, TRL-
FM’s ability to leverage functional modules to capture the
relatedness among source and target variables is more in-
telligent, effective, and biologically intuitive than TRL’s reli-
ance on variable overlaps, which can be superficial and
uninformative. Third, integrative modeling, via the TRL-
FM framework leads to better performance than other inte-
grative analysis approach, like meta-analysis, which cannot
transfer vital information from one dataset to another. Last,
the TRL-FM framework, when extended and refined, can
serve as a viable alternative and/or complementary method-
ology for integrative modeling of multiple ‘transcriptomic’
datasets.
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