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Abstract

Background: How protein phosphorylation relates to kingdom/phylum divergence is largely unknown and the amino
acid residues surrounding the phosphorylation site have profound importance on protein kinase–substrate interactions.
Standard motif analysis is not adequate for large scale comparative analysis because each phophopeptide is assigned
to a unique motif and perform poorly with the unbalanced nature of the input datasets.

Results: First the discriminative n-grams of five species from five different kingdom/phyla were identified. A signature
with 5540 discriminative n-grams that could be found in other species from the same kingdoms/phyla was created.
Using a test data set, the ability of the signature to classify species in their corresponding kingdom/phylum was
confirmed using classification methods. Lastly, ortholog proteins among proteins with n-grams were identified in
order to determine to what degree was the identity of the detected n-grams a property of phosphosites rather than a
consequence of species-specific or kingdom/phylum-specific protein inventory. The motifs were grouped in clusters
of equal physico-chemical nature and their distribution was similar between species in the same kingdom/phylum
while clear differences were found among species of different kingdom/phylum. For example, the animal-specific top
discriminative n-grams contained many basic amino acids and the plant-specific motifs were mainly acidic. Secondary
structure prediction methods show that the discriminative n-grams in the majority of the cases lack from
a regular secondary structure as on average they had 88 % of random coil compared to 66 % found in the
phosphoproteins they were derived from.

Conclusions: The discriminative n-grams were able to classify organisms in their corresponding kingdom/phylum,
they show different patterns among species of different kingdom/phylum and these regions can contribute to
evolutionary divergence as they are in disordered regions that can evolve rapidly. The differences found possibly reflect
group-specific differences in the kinomes of the different groups of species.
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Background
Post-translational modifications offer ways to quickly and
reversibly regulate protein activity, subcellular localization
and stability. One of the most abundant modification is
protein phosphorylation and dephosphorylation, catalyzed
by kinases and phosphatases, respectively. There are
thousands of distinct phosphorylation sites in a given cell
and 30 % of proteins encoded in a genome can be phos-
phorylated [1, 2]. Phosphoregulation has great potential to
contribute to the evolution of phenotypic diversity though
mutations in phosphorylation sites that can create new
crosstalk in signaling networks and regulate the activity of

proteins that were once constitutively active [3]. The contri-
bution of these protein modifications to evolutionary diver-
gence and convergence is still largely unknown.
The majority of phosphorylation sites are in disordered

regions of proteins that can have a rapid evolution due
to their lack of structural constraints [4, 5]. In contrast
to structural domains in proteins, phosphorylation sites
are short disordered motifs that specify interactions in
regulatory networks and they should be able to arise
rapidly from random sequences [6, 7]. These interactions
can be modified by point mutations or insertions and
deletions or gene duplication.
Boekhorst et al. compared phosphoproteomics datasets

of five eukaryotes and found a high overlap between
closely related species (700 sites for human and mouse),
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in contrast with a single site for fish and yeast [8]. They
identified homologous phosphosites by using the Smith-
Waterman algorithm to do an all-against-all similarity
search of all full-length phosphoproteins. Freschi et al. [9]
studied the evolution of mammalian phosphoregulation
by comparing human and mouse phosphoproteomes.
They found that many of the positions that are phos-
phorylated in human and mouse were conserved at
the residue level and these conserved sites were phos-
phorylated in both species 2.5 times more often than
expected by chance alone. These results support the
hypothesis that the evolutionary turnover of phos-
phorylation sites contributes to the divergence in
phosphorylation profiles. They also found that these
sites tend to be phosphorylated by the same kinases,
which means that phosphoregulation was preserved.
Cross-species comparative studies of genetic interactions
performed by Beltrao et al. [10] revealed that kinases show
a faster than average rate of functional divergence. Van
Wijk et al. [11] used 27 published and unpublished
in-house mass spectrometry–based phosphoproteome
data sets for Arabidopsis thaliana and performed an
assembly of 60,366 phosphopeptides matching to
8141 non-redundant proteins. Then, they determined
the distribution of phosphoproteins across functions and
subcellular locations, and identified phosphomotifs for
different subcellular locations using motif-x and MMFPh
motif finders.
Recent high-throughput phosphoproteomics studies have

resulted in an accumulation of phosphopeptide datasets for
many species. Analysis of phosphopeptides is usually done
by defining phosphorylation motifs, which are short distinct
local amino acid patterns surrounding the local phosphoryl-
ation site shared by different proteins that are highly fre-
quent in an species, tissue or treatment. Problems are that
in standard motif identification methods, such as motif-x
and MMFPh, each phophopeptide is assigned to a unique
motif and they perform poorly with unbalanced input data-
sets. This calls for use of alternative methods to perform a
large scale comparative analysis. The term n-gram or n-
mer typically refers to all the possible substrings, of length
n, that are contained in a string; therefore an n-gram
is a contiguous sequence of n items from a given se-
quence. It is possible to build classification models
from sequences using the statistical properties of n-grams.
In this case, we have defined discriminative n-grams as
contiguous short peptide sequences of n items derived
from the phosphoproteins that are highly frequent in one
species but are either minimally present or absent in other
species. N-grams, have been used to align DNA sequences
[12], clustering sequences [13], predicting subcellular
localization [14] and for functional annotation of pro-
tein sequences [15], but not to identify kingdom/
phylum-specific phosphorylation motifs. In protein

sequence classification, the objective is to identify the
sequence elements that can discriminate between
classes. Identification of discriminative phosphopep-
tide motifs or phophopeptide n-grams that can pre-
cisely discriminate between species is a classification
problem itself. Ganapathiraju et al. [16, 17] using selective
n-grams performed optimized protein-family classifica-
tions by training Bayesian classifiers and neural networks.
In other studies, the distribution of n-grams have served
as a proteome-signature for species determining evolu-
tionary divergence at the genus level [18].
In this study we performed a novel comparative analysis

of phosphorylation events with serine type phosphosites
between different species of eukaryotes. To achieve this, we
performed a discriminative n-gram based analysis to iden-
tify kingdom/phylum-specific phosphorylation motifs.
First the discriminative n-grams of five species from five
different kingdoms/phyla were identified and from the
enriched counts of these n-grams in each species the
normalized frequencies discriminating the species were
derived. Then a signature with the discriminative n-grams
that could be found in other species from the same king-
doms/phyla was created. A testing dataset with five other
species in the same kingdoms/phylum was used to valid-
ate the potential of the normalized frequencies of the
discriminative n-grams in the signature to classify the
species in their corresponding kingdom/phylum.
The problem of PTM site prediction is traditionally an

issue of false-positive over-prediction. Predictions for
post-translational modifications reduce the false-positives
if they are frequently observed in a protein family as
opposed to a single protein sequence [19, 20] and it is
dangerous to build predictors without considering the
physico-chemical properties used to create sequence
families. A comparison of phosphorylation discriminative
n-grams in different species was done by grouping
these motifs in clusters according to physico-chemical
properties and analyzed whether the differences in the
distribution of these clusters between the different spe-
cies could be used to discriminate kingdoms/phyla.
The distribution between the different species of hydro-
phobic, negative, positive and proline amino acids along
the phosphorylation sites and the surrounding sequences
holding the discriminative n-grams was also analyzed.
We believe that this study creates a basis for identifying

kingdom/phylum specific phosphorylation substrates of
protein kinases for kinase inhibitor based drugs and
pesticides.

Methods
Datasets
To identify motifs with Motif-x and MMFPh Phytophthora
infestans [21], Arabidopsis thaliana, Saccharomyces
cerevisiae and Homo sapiens phosphoproteomics datasets
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were used (Table 1). For the discriminative n-gram analysis,
a training dataset composed of ten phosphoproteomics
datasets was used (two from five different species) (Table 1).
For the test set generation, five other datasets from five
different species from the same kingdom/phylum in the
training set were used (Table 1).

Identification of motifs
Motif-x and MMFPh
Motif-x [22, 23] and MMFPh [24] were used with pre-
aligned phosphosites from different phosphoproteomics
datasets to get the significant phosphorylation motifs.
Both methods iteratively extract overrepresented motifs
from pre-aligned peptides through comparison with a
dynamic statistical background. Both employ a local
assessment of individual amino acid/position pairs
during construction of a motif, but Motif-x performs
a greedy growing, that is, makes locally the optimal
choice at each iteration, while MMFPh considers all
the possible multiple ways to grow to a motif from
more than one fixed position at each iteration (e.g.
S→ PxS→ PxSR or S→ SR→ PxSR), guaranteeing to
find all significant maximal motifs. These methods
use the binomial probability as a scoring system and
this is dependent on foreground matches, foreground
size, background matches and background size. The
number of motifs found depends on the significance
threshold and the minimum number of occurrences
necessary to consider a given motif significant. A
Friedman test was used to measure whether there were
significant differences between the scores produced by
Motif-x and MMFPh. The number of motifs shared by the
two methods as well as the exclusive ones from each
method were also compared. Similarly, the difference
between the scores produced using 21 or 13-mer
peptides was measured, and the motifs generated by

using the different lengths were compared. The motifs in
each species were aligned and the uniquely significantly
enriched motifs in P. infestans compared to A. thaliana,
S. cerevisiae and H. sapiens were identified. One way
ANOVA was also used to test whether there were motifs
with a significant higher score in P. infestans.

21 and 13-mer centered phospho-serine pseudoalignment
peptide sequences
In kinase-substrate interactions, a phosphosite containing
the peptide sequence that includes the surrounding
specificity-determining residues fits into a kinase active site
[25]. The specificity for kinases is dictated by both the
amino acid sequence motif surrounding the phosphory-
lated residues and the three-dimensional structure of the
substrate proteins [26].
Several methods use the surrounding region of −6 to +6

amino acids in order to display motifs [27, 28]. Others use
a length of each extracted peptide of 21 with a measured
phosphorylated residue in the 11th position [29].
21 and 13-mer phospho-serine centered pseudoalignment

peptide sequences were used with Motif-x and MMFPh to
extract motifs that hold the kinase specificity-determining
residues, while only 21-mer phospho-serine centered
pseudoalignment peptide sequences were employed for
generating the n-grams.

Detection of discriminative motifs: n-grams based algorithm
The n-gram approach described in [15] was used to
construct a phosphoproteome-signature composed by
n-grams distinguishing the phosphoproteome of vari-
ous species belonging to different kingdoms/phyla. To
achieve this the discriminative n-grams from a train-
ing set of serine centered phosphopetides belonging
to 10 datasets (two from each species) were com-
puted and their normalized frequencies recorded: first,

Table 1 Serine centered phosphopetide sequences of 21 length, n-grams of varying size (6 to 21 mer) and references from the
datasets in each kingdom/phylum and species under study in the training set and the test set. For each species in the training set
two datasets were used, and hence, two numbers are given. There were many more n-grams than phospho-sites, due to the
window of phospho-sites (21) and varying length of n-grams within the sites

Training set Number of phosphopeptides Number of n-grams References Kingdom Phylum

Arabidopsis thaliana 2903 and 4270 349724 and 527397 [40, 41] Plantae

Homo sapiens 1972 and 4075 200661 and 454563 [50, 51] Animalia Chordata

Drosophila melanogaster 6363 and 6362 671933 and 596922 [52, 53] Animalia Arthropoda

Saccharomyces cerevisiae 6343 and 1178 712345 and 116095 [54, 55] Fungi Ascomycota

Plasmodium falciparum 744 and 1048 93799 and 137899 [56, 57] Chromalveolata Apicomplexa

Oryza sativa 447 50007 [58] Plantae

Mus musculus 7372 811443 [59, 60] Animalia Chordata

Caenorhabditis elegans 4003 436055 [61] Animalia Nematoda

Schizosaccharomyces pombe 1362 155639 [62] Fungi Ascomycota

Toxoplasma gondii 1388 172714 [56] Chromalveolata Apicomplexa
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n-grams of varying size (6 to 21 mer) were extracted from
each dataset’s serine centered phosphopetide sequences
of 21 length using the ‘tau’ r package. Second, their
frequency counts were summed to obtain the enriched
counts. Third, a dampening factor, which gives more
weight to n-grams that appear in fewer species and vice-
versa, was used to normalize the weights of n-grams from
different unbalanced phosphorylation datasets and
generate the normalized frequencies of n-grams. Finally, a
discriminative ratio was calculated for each n-gram to
identify the species that contained this n-gram with a fre-
quency at least T times higher than the average frequency
of the second and third highest frequencies having species.
In parallel the n-grams and their normalized frequen-
cies were computed on a testing dataset with other
five different species, each of which had a species in
the training dataset belonging to the same kingdom/
phylum. The validation set was created by selecting
the same n-grams in the training set and calculating
the enriched counts and the normalized frequencies.

Phosphoproteome-signature: detection and evaluation of
Kingdom/phylum specific motifs
The discriminative n-grams are designed to discrim-
inate between the species in the training set only. A
phosphoproteome-signature was generated holding a
subset of discriminative n-grams that are kingdom
specific. The discriminative n-grams for each species
in the training dataset that were present in at least
the species of the same kingdom/phylum in the testing
dataset were included in the signature. It was evalu-
ated the signature’s capability to distinguish the phos-
phoproteome of various kingdoms/phyla using the
normalized frequencies derived from enriched counts
of n-grams among the phosphopetides found in the
different species. This was carried out by using John
Platt’s sequential minimal optimization algorithm for
training a support vector classifier with the normalized
polynomial kernel on the normalized frequencies of the
discriminative n-grams with the species in the training
dataset [30]. Then it was evaluated the performance of the
discriminative n-grams’ normalized frequencies in the
signature to classify each species in the testing set
with the species in the training set belonging to the
same kingdom/phylum.
Additionally, we performed a hierarchical cluster ana-

lysis using pvclust R package [31] in order to explore the
signature’s capability to classify each species in the testing
set with the species in the training set using unsupervised
classification methods. Bootstrap resampling techniques
were used to assess the uncertainty in hierarchical cluster
analysis by calculating probability values (p-values) for
each cluster in the dendrogram that represents the
possibility that the cluster is the true cluster. Two

types of p-values were available: bootstrap probability
(BP) value and approximately unbiased (AU) p-value.

Analysis of orthologs among the proteins with
discriminative n-grams
By analysis of ortohlogs we distinguished between the
motifs which identity was a property of phosphosites
and motifs that were derived from the species-specific or
kingdom/phylum specific protein inventory. We used
the Homologene [32] to determine if the proteins with
kingdom/phylum specific discriminative n-grams in each
species had orthologs in other species. We made three
calculations: (1) The proportion of proteins having
kingdom/phylum specific discriminative n-grams with
no orthologs in other species, (2) The proportion of
proteins with kingdom/phylum specific discriminative
n-grams with orthologs only in a species of the same
kingdom/phylum, and (3) The proportion of proteins
with discriminative n-grams with orthologs in other
kingdoms/phyla.

Distribution of clusters of discriminative motifs
The discriminative n-grams were mapped back to the
their corresponding phosphopeptides and the values of
each amino acid in each position in the 21-mer sequences
were substituted with binary physico-chemical properties
defined by [33]. From this data hydrophobicity, negative,
positive and proline content were analyzed. Then, for each
physico-chemical property the average values of the
phosphopeptide sequences belonging to each discrimina-
tive n-gram were calculated.
For each physico-chemical property k-means (k = 10)

partitional clustering algorithm was used to cluster the
n-grams according to their average values. Consensus or
ensemble clustering is a way of reconciling clustering
information about the same dataset coming from different
sources. It refers to the situation in which a number of
different (input) clustering results have been obtained for
a particular dataset and goal is to find a single (consensus)
clustering. In this case the procedure was computed to
create a consensus cluster of each cluster of the indi-
vidual physico-chemical properties using soft least
squares Euclidean consensus partition to cluster the
motifs according to all the physico-chemical properties
together. The R packages “cluster” and “clue” were used to
implement the methodology. This resulted in grouping
the discriminative motifs in clusters of motifs of similar
physico-chemical nature.

Functional analysis
For each of the 10 species in the training and testing set,
the n-grams were mapped onto their original serine
centered phosphopeptides and these were mapped again
into their corresponding protein sequence (discriminative
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proteins). The discriminative proteins belonging to each
of the 10 species were used to identify significantly
enriched KEGG pathways by means of hypergeometric
test using the KEGG Orthology Based Annotation System
[34] except for the mice data, for which WebGestalt
[35, 36] was used. Then, it was measured whether
these discriminative proteins were functionally conserved
between each species in the training set and their
corresponding species of the same kingdom/phylum
in the test set as well as whether they were different
between species from different kingdoms/phyla.

Top discriminative n-gram logos
For each species the top n-grams that have the greater
discriminative ratio were extracted from the signature.
The top discriminative n-gram logos were generated using
WebLogo [37] from the serine centered phosphopeptides
that map each of the top n-grams. In each species the top
n-grams matching phosphopeptides that had the highest
discriminative ratio were used to create the logos. The
discriminative ratio calculated for each n-gram identifies
how many times higher is the frequency of the n-gram in
the species having the highest frequency than the average
frequency in the species that have second and third
highest frequencies. This means that the n-grams having
highest discriminative ratios will be the ones having
greater differences in frequency among the different
species in the training set. As the different species had a dif-
ferent highest discriminative ratio, distinct discriminative
ratio thresholds were defined to select the top n-grams to
create the top discriminative n-gram logos in each species.
The criterion to assess a cutoff was defined on the basis of
getting from each species the higher discriminative ratios at
which the phosphopeptide sequences showed clear regular-
ities. This allowed comparing the amino acid composition
of the top n-grams in each species.

Secondary structure prediction
We used PSIPRED to predict the secondary structure
(beta sheets, alpha helices and coils) from the primary
sequence of the proteins holding the kingdom/phylum
specific discriminative n-grams from all the species in
the signature. We recorded the proportion of random
coils in all the proteins and in the serine centered
21 and 13 mer phosphopeptides of each species. The
random coil is not a true secondary structure, but is
the class of conformations that indicate an absence
of regular secondary structure that can be thought
as a disordered region.

Results and discussion
Pitfalls in the motif detection by conventional methods
We investigated whether there were significant differences
between the scores produced by the two most commonly

used motif generators, Motif-x and MMFPh, by analyzing
our recently published P. infestans phosphopeptide dataset
[21]. By Friedman test, significant differences between both
methods were found among the binomial probabilities of
the two methods (p = 0.01279). This difference is probably
attributed to different ways of growing the motifs: Motif-x
performs a greedy growing while MMFPh considers all the
possible extensions at each iteration from the multiple
ways to grow a motif from more than one fixed position.
Little overlap in the motifs detected by the two
methods was found (Additional file 1: Table S1). In
contrast, no statistical difference was found between
scores produced using 21 or 13-mer serine centered
pseudoalignment peptide sequences to generate the
motifs (p = 0.715). The motifs overlap and exclusivity
between the two serine centered phosphopeptide
lengths were analysed, and we found a greater number of
motifs detected exclusively using 21 mer than using 13
mer (Additional file 1: Table S1).
The motifs in P. infestans , A. thaliana, S. cerevisiae

and H. sapiens (Additional file 2: Table S2) from both
methods and phosphopeptide lengths were extracted
and aligned. Among these motifs, 24 were found to be
unique in P. infestans compared to the other species and
were sorted by motif score (Additional file 1: Table S3).
In this analysis the PxSPR motif was the uniquely
enriched significant motif in P. infestans with the highest
score even though this motif is known to be abundant in
MAP kinase signaling in A. thaliana [38, 39]. The SPR
motif also had a significantly higher score in P. infestans
(Additional file 1: Table S3) than A. thaliana, S. cerevisiae
and H. sapiens, even though it is a common motif in all
the investigated species.
Thus, Motif-x and MMFPh failed to find species specific

motifs that can be used for phosphoprotein classification
and to find discriminative motifs. The most obvious ex-
planation for this result is that when these methods find a
significant motif shared by some sequences, these are not
used again to find a new motif and therefore sequences
can be grouped to form the wrong motif and interesting
motifs are missed. An additional problem that these
methods are unable to deal with unbalanced datasets as in
these methods it is decided whether a motif is significant
when the motif is present in at least a pre-specified num-
ber of phosphopeptide sequences. To test this, we used
three individual phosphosite detection experiments in A.
thailiana [40, 41] and the number of different motifs in
each individual dataset were computed. Additionally mo-
tifs were computed by grouping the phosphosites from
the three experiments and we found 61 more motifs than
the number of motifs generated by summing the motifs
determined individually in each experiment (Table 2). In
summary, these results call for alternative methods to
compare phosphoproteomic datasets.
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Kingdom/phylum specific phosphorylation patterns
In order to identify kingdom/phylum specific phosphoryl-
ation patterns, n-grams of varying size (6 to 21 mer) were
extracted from serine centered phosphopeptide sequences
of 21-mer length in each dataset in the training and
testing sets (Table 1). N-grams that had a discriminative
ratio greater than 0.05 were considered as discriminative.
The characteristic frequency of amino acids (kingdom/
phylum specific discriminative n-grams) in the phospho-
peptide sequences of each kingdom/phylum is referred
as a phosphoproteome-signature. A phosphoproteome-
signature with 5540 kingdom/phylum specific discrimina-
tive n-grams was obtained by finding the discriminative
n-grams from each species in the training dataset that
also were present among the n-grams from a species
of the same kingdom/phylum in the testing dataset
(Additional file 3: Table S4). This method has also been
descried as suitable to compare unbalanced datasets [15].
The normalized frequencies of the discriminative

n-grams in this signature were able to classify each
of the species in the test set as belonging to the same
group as a species from the same kingdom/phylum in the
training set using a classifier for building support vector
classification models or using hierarchical clustering
(Table 3; Fig. 1). This way the kingdom/phylum-specific
phosphorylation patterns were defined by discriminative
n-gram analysis. These might reflect an evolutionary
divergence between kingdoms/phyla, and conservation
within kingdoms/phyla of the protein phosphorylation in
the studied species.
In comparative and integrative analysis of phosphopro-

teomes it can be difficult to know if phosphosites identi-
fied in only one sample are the result of species
specific phosphorylation, or reflect missing data and
biases that are introduced by different experimental
workflows [42]. To minimize these problems our method
identified phosphorylation motifs for each kingdom/
phylum that were more abundant in the two datasets from
an species in the training set, while these are also more
abundant in the dataset of the corresponding species in
the test set.

Analysis of orthologs among the proteins with
discriminative n-grams
Orthology analysis of the discriminative n-grams holding
proteins showed that on average 77 % of these n-grams
mapped to proteins having orthologs in different species
and while the 23 % mapped to proteins that existed in
the respective species only (Table 4 & Additional file 4:
Table S5). The n-grams from the species in the train-
ing set share a great degree of orthology with the
corresponding species in the testing set as they are con-
served within each kingdom/phylum. More importantly,
the proportion of discriminative proteins with n-grams
having orthologs in other kingdoms/phyla shows that
identity of the detected motifs is a property of phos-
phosites rather than a consequence of species-specific
or kingdom/phylum specific protein inventory.

Grouping motifs according to physico-chemical
properties
The n-grams of equal physico-chemical nature were
grouped into clusters. The distribution of these clusters
was almost the same between species in the same
kingdom/phylum, meaning that the motifs in the
clusters were similar (Additional file 1: Figure S1).
There were clear distributional differences of the clusters
between species of different kingdoms/phyla while the
distribution of the species belonging to the same
kingdom/phylums was similar (Fig. 2). Cluster four
dominating in plants and fungi, was abundant in polar
serines and acidic residues, while in the Animalia
kingdom dominates cluster six holding serines, acidic
and non-polar highly hydrophobic residues (Fig. 2 &
Additional file 1: Figure S1). Within each cluster the
species that belong to the same kingdom/phylum showed
more similar patterns than the ones belonging to different
kingdoms/phyla (Additional file 1: Figure S1).
The proportion of hydrophobic, negative and positive

amino acids as well as the proline content was analyzed
within each cluster (Additional file 1: Figure S2). Results
indicated that all clusters show a similar distribution of
hydrophobic residues among the clusters while there are

Table 2 Motif analysis of three individual phosphosite detection experiments in A. thailiana. The number of different motifs in each
of the three individual experiment was computed and the resulting three numbers of motifs were summed (Sum of number of
motifs from individual experiments). Additionally the motifs that are obtained by grouping the phosphosites from the three
experiments (Sum of experiments) were computed

Dataset: A. thaliana PhosPhAt 4.0 [40, 41] Number of motifs Number of phosphosites Minimum number of occurences

Experiment1 116 1733 5

Experiment2 3 178 5

Experiment3 99 6862 21

Sum of number of motifs from individual experiments 182 8773 5;5;21

Sum of experiments 243 8773 27
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clear distributional differences for negative, positive and
proline residues. This suggests that phosphorylation sites
and the surrounding sequences are constrained in terms
of hydrophobic patterns, probably due to the lack of
structural preferences. The proportion of hydrophobic,
negative and positive amino acids and the proline
content in each species was also analyzed (Fig. 3).
Again, the distribution of hydrophobic amino acids
along the residues between the different species is similar,
while for the rest of the studied physico-chemical proper-
ties there are greater differences in the distribution,
indicating that the constraints in the hydrophobicity of
phosphorylation sites and the surrounding sequences are
conserved during evolution.

Functional conservation among species of the same
kingdom/phylum
The discriminative n-grams in the signature were mapped
to their corresponding proteins (Additional file 3: Table S4),
generating lists of proteins containing discriminative
n-grams for each group of species. The functional
conservation of these proteins between each species

in the training set and their corresponding species of the
same kingdom/phylum in the test set was measured, as
well as whether they had a diverse function among
different kingdoms/phyla. The performed KEGG
enrichment analysis of the proteins with discrimi-
native n-grams showed that within each kingdom/
phylum similar functions were conserved (Fig. 4);
therefore the discriminative n-grams might be derived
from conserved orthologous proteins or proteins with
similar functions. We identified that within each king-
dom in many cases orthologous proteins were respon-
sible of enriching similar functions. Between kingdoms/
phyla the functions were very dissimilar (Fig. 4). These re-
sults corroborate the fact that these proteins are kingdom/
phylum specific and have the potential to discriminate the
different kingdoms/phyla.
Among the discriminative proteins for humans and

mice, there are many different signal transduction
pathways, such as insulin, MAP kinase and calcium
signaling pathways (Fig. 4). There are also a number
of cytoskeletal proteins and proteins involved in cellular
structure (Fig. 4). The insect discriminative proteins are

Table 3 Confusion matrix of the signature pairing equal kingdom/phylum species

A. thaliana H. sapiens D. melanogaster S. cerevisae P. falciparum classified as

1 0 0 0 0 O. sativa

0 1 0 0 0 M. musculus

0 0 1 0 0 C. elegans

0 0 0 1 0 S. pombe

0 0 0 0 1 T. gondii

Fig. 1 Hierarchical cluster analysis of the normalized frequencies of the discriminative n-grams present in each speciesThe dendogram shows that
different species having the same kingdom/phylum cluster together
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dominated by enzymes involved in DNA- and RNA pro-
cessing, and nucleotide metabolism (Fig. 4). The plant and
fungal proteins containing the discriminative n-grams are
more similar between them than to the Animalia kingdom
(Fig. 4). Both are dominated by metabolic proteins, but
there are also some other plant categories such as
plant-pathogen interactions. The proteins from the
plant discriminative n-grams exhibited a smaller number
of functions (mostly central metabolic pathways such as
glycolysis and the TCA cycle). On the other hand, the
proteins from the fungal discriminative n-grams have a
larger number of functions, including more specialized
metabolic pathways such as sphingolipid metabolism and
glycerophospholipid metabolism.

Characterization of the top N-gram logos
The logos of the phosphopeptides derived from mapping
back the top discriminative n-grams into the serine-
centered phosphopeptides were generated (Fig. 5). The
peptide sequences showed amino acid patterns that were
conserved between each species in the training set and
their corresponding species of same kingdom/phylum in
the test set. These amino acid patterns were diverse

among the different kingdom/phyla and they were able
to classify the phosphorylation patterns into different
kingdom/phyla.
Phosphorylation motifs and kinases can be classified

as basophilic, acidophilic or proline directed. The logos
from the top discriminative n-grams from the animal
species are distinctly basic, with arginine residues in a
number of positions on both the N- and C-terminal
sides of the phosphoserines. In contrast, the logos from
the plant species contain a number of acidic residues on
the C-terminal side.
There are a large number of basophilic kinases in

animals, belonging to several families. Interestingly, two
articles analyzing the kinomes of A. thaliana and rice did
not find any members of the basophilic kinases PKA and
PKB (from the AGC family) [1, 2]. It is therefore tempting
to speculate that the pattern of basic residues in the logos
from the animal species is created by basophilic kinases
that are specific to or overrepresented in animals, and that
PKA and PKB are among these kinases.
Correspondingly, it is likely that acidophilic kinases in

plants contribute to the pattern of C-terminal acidic
residues in the plant n-gram logos. The best characterized
acidophilic kinase is CK2 [6, 43], but that kinase is found
in both plants and animals [44, 45]. This makes it likely
that other kinases catalyze the serines in the characteristic
logos. Alternatively, CK2s may be more active in plants.
Another potential source of distinctive phosphorylations
in plants is the receptor like kinase (RLK) family. This
large family is unique to plants [46].
The amino acid patterns in the logos from the n-grams

specific for fungi are not as distinct as those from plant
and animal species. However, particularly in the logos
from S. pombe, a number of proline residues C-terminal
to the phosphoserines can be seen. Proline directed
kinases are ubiquitous and more than a quarter of all sites
identified in large-scale phosphoproteomics experi-
ments belong to this category [6]. A majority of the

Table 4 Each species proportion of proteins having discriminative n-grams with no orthologs in other species, proteins having
discriminative n-grams with orthologs only in a species of the same kingdom/phylum and proteins having discriminative n-grams
with orthologs in other species

Species Each species proportion of
discriminative n-grams with
no orthologs in other species

Each species proportion of discriminative
n-grams with orthologs only in species
of the same kingdom/phylum

Each species proportion of discriminative
n-grams with orthologs outside the
kingdom/phylum

Arabidopsis thaliana 24.4 % 63.1 % 12.5 %

Oryza sativa 0 58.2 % 41.8 %

Homo sapiens 3.6 % 87.1 % 9.3 %

Mus musculus 2.3 % 91.0 % 6.4 %

Drosophila melanogaster 40.0 % 5.4 % 54.6 %

Caenorhabditis elegans 22.5 % 11.7 % 65.8 %

Saccharomyces cerevisiae 62.3 % 15.9 % 21.7 %

Schizosaccharomyces pombe 33.3 % 21.2 % 45.4 %

Fig. 2 Distribution of clusters of discriminative motifs of similar
physico-chemical nature among species
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well-characterized proline directed kinases (for example
CDK1, GSK3 and MAPK3) have a requirement for a
proline immediately after the phosphoserines [43, 47].
The logo specific for S. pombe has proline residues at
position 3–7. A similar, but less pronounced pattern can
be seen in the logo for S. cerevisae. This opens the
possibility that hitherto uncharacterized proline-directed
kinases are responsible for the phosphorylation of the sites
making up the fungi-specific logos.
The differences between the logos from the different

groups of species indicate that there are distinct groups of
kinases with dominating activities in the different groups of
species. Identifying the kinases responsible for the phylum/
kingdom specific phosphorylation patterns, would both be

of theoretical interest and open possibilities for practical
applications. For example, inhibitors of these kinases could
potentially be used as candidates for novel fungicides.

Secondary structure prediction
Our results of prediction of secondary structure show that
for all the species considered here there is a greater propor-
tion of random coil among the serine centered phospho-
peptides holding the discriminative n-grams than in the
whole protein that they are derived from (Table 5). This
means that on average the 88 % of the sequence of the
discriminative n-grams holding serine centered 21 mer
phosphopeptides do not have a regular secondary structure.
Thus they are in disordered regions that can have a

Fig. 3 Proportion of hydrophobic (a), negative (b), positive (c) and proline (d) amino acids in the discriminative n-grams of each species
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Fig. 4 KEGG enrichment analysis of the phosphoproteins that match the discriminative n-grams. Functional conservation is found between the
phosphoproteins that match the discriminative n-grams in closely related species belonging to the same kingdom/phylum. The histograms shows
1-p.value from the KEGG enrichment analysis
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rapid evolution due to their lack of structural constraints
[4, 5, 48]. The 21-mer serine centered phosphopeptides
holding the discriminative n-grams have a lower propor-
tion of random coils than the 13 mer serine centered
phosphopeptides (Table 5). There were different pro-
portions of random coils among different species. This

lack of structural constraints among the phosphosites and
the surrounding residues might explain the hydro-
phobicity distributional preferences found (Fig. 3 &
Additional file 1: Figure S2). The placement of hydropho-
bic amino acids on the protein surface would form well
packed interfaces, in contrast phosphosites tend to have a

Fig. 5 Logos of the top discriminative n-grams matching phosphopeptides having the maximum discriminative ratios in each species

Table 5 Proportion of coils in the discriminative n-gram holding proteins and 21 and 13 mer serine centered phosphopeptides
among the different species in the training and testing set

Species Proportion of coils in the proteins Proportion of coils in the
21 mer phosphopeptides

Proportion of coils in the
13 mer phosphopeptides

Arabidopsis thaliana 62 % 85 % 88 %

Homo sapiens 67 % 90 % 92 %

Drosophila melanogaster 69 % 91 % 94 %

Saccharomyces cerevisiae 63 % 86 % 89 %

Plasmodium falciparum 71 % 89 % 89 %

Oryza sativa 64 % 87 % 92 %

Mus musculus 69 % 89 % 92 %

Caenorhabditis elegans 63 % 88 % 91 %

Schizosaccharomyces pombe 63 % 90 % 92 %

Toxoplasma gondii 64 % 80 % 86 %
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local decrease of hydrophobic residues and enrichment in
surface exposed residues in order to be highly accessible
for the kinases and phosphatases [5, 49].

Conclusions
Through the generation of classification models and evalu-
ation of discriminative n-grams the evolutionary divergence
of protein phosphorylation was studied. The normalized
frequencies of the n-grams discriminating the species in the
training set were able to classify correct kingdom/phylum
for the species in the test set. We also described their
properties and identified discriminative motifs that were
not selected because of being a consequence of species-
specific or kingdom/phylum specific protein inventory.
This analysis provides a framework for the gener-

ation of biological insights by comparative analysis of
high-throughput phosphoproteomics datasets. We expect
the rapidly growing data from high-throughput mass
spectrometry analysis will make comparative phospho-
proteomics a powerful tool for elucidating the evolution-
ary changes of reversible phosphorylation that contribute
to kingdom/phylum divergence to be applied in several
study areas.
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