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Abstract

Background: Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence
variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great
importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis
in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy
and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide
Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs.

Results: GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in
acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino
acids in orthologs and paralogs and supplementing this information with data from medical literature. The
development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally,
GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in
existing software. GESPA’s overall accuracy exceeds existing computational methods for predicting nsSNP
pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data.

Conclusions: GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We

anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The
program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at
http://sourceforge.net/projects/gespa.
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Next Generation Sequencing

Background

Non-synonymous single nucleotide polymorphisms
(nsSNPs) frequently show allele specific functional dif-
ferences and linkage to genetic disease because of the
change in primary protein sequence [1]. Unraveling
their clinical significance will lead to major strides
within the field of medical genetics. The potential of
next generation sequencing (NGS) in disease diagnosis
demands a process that will allow for more nsSNPs to
be identified as potential risk factors in genetic condi-
tions. NGS sequencing for personalized medicine is
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rapidly becoming routine [2, 3] and is expected to re-
place other methods for SNP analysis which are more
labor-intensive, such as PCR followed by allele specific
oligonucleotide hybridization [4], reverse dot-blot
hybridization [5] and fragment length polymorphism
analysis [6], which are slower and difficult to scale up
for whole genome analysis [7].

Determination of the pathogenicity of nsSNPs by func-
tional analysis or genetic association studies is time con-
suming and costly. Several computational strategies have
been developed to identify deleterious nsSNPs. PolyPhen
[1] and PolyPhen 2 [8] calculate a Position Specific Inde-
pendent Count (PSIC) score [9] and combine this value
with structural and biochemical considerations to pre-
dict pathogenicity. SIFT [10] uses homology compari-
sons through sequence alignments to reach a prediction
of pathogenicity. Additional methods relying on similar
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evolutionary variables and statistical techniques to pre-
dict nsSNP pathogenicity have been described [11-20].
However, they yield comparable or lower accuracies than
the aforementioned tools without predicting a distinct
phenotype. Several reviews of the current technology
and methods used to detect disease-linked nsSNPs such
as PolyPhen 2 and SIFT have found low accuracy rates
[21-24]. Furthermore, existing programs all lack a flexi-
bility of acceptable input formats, often requiring infor-
mation not immediately available to researchers such as
protein sequences [25] or multiple sequence alignments
[26] while not readily allowing input formats as common
as nucleotide locations or dbSNP [27] accession num-
bers. These programs are also limited significantly by
the scope of the information they access and make avail-
able to users.

We have developed a novel bioinformatics tool, GESPA
(GEnomic Single nucleotide Polymorphism Analyzer)
which addresses the drawbacks of previous software. Par-
ticularly, the software predicts the pathogenicity of a given
nsSNP by assessing the conservation of amino acids in ho-
mologs and paralogs and supplementing this information
with data from medical literature. In addition, GESPA is
the first program to predict nsSNP phenotype and does so
by assessing other nsSNPs in the potential genetic func-
tional hotspot in which a given nsSNP resides. GESPA’s
interface is intuitive, accepts nsSNPs to be entered in sev-
eral different formats and rapidly displays pathogenicity.
Moreover, GESPA produces detailed reports for further
studies. Thus, GESPA can be used to analyze NGS data
and design future studies.

Implementation

Input format

We have provided great versatility in user input by
accepting nsSNPs’s protein location in the NCBI RefSeq,
dbSNP accession number, nucleotide location in the
RefSeq, and flanking nucleotide sequence in the RefSeq
(starting with the nucleotide at which the mutation oc-
curs). Examples of these input types are available in the
user manual available at GESPA’s sourceforge website
(see Availability and Requirements). We have also pro-
vided the additional option of uploading a batch file
containing multiple genes and related nsSNPs. Sample
batch files and guidelines for formatting them are also
available in the user manual. GESPA does not focus on
non-coding variants because of lower resolution and as-
sociation with subclinical diseases [24].

Gene specific information retrieval

GESPA uses multiple sequence alignments of paralogous
and orthologous genes with the assumption that the mu-
tations in the conserved region will be more detrimental
than in the non-conserved region [1, 8]. Moreover,
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GESPA also uses medical literature in its assessment of
nsSNPs. The HUGO gene symbol of a protein coding
gene is first used to obtain the relevant information from
NCBI databases, namely Entrez Gene [28], ClinVar [29],
GenBank [30], and HomoloGene. Entrez Gene is then
used for collection of relevant information such as ac-
cession numbers and annotations. Next, GenBank is
used to retrieve sequences by accession numbers. The
HomoloGene database is used to obtain genome-wide
orthologous sequences based on pre-computed BLASTP
alignments [31] that have been found to be critical in
predicting nsSNP pathogenicity [32]. Data was retrieved
using the NCBI Eutils and HtmlUnit, a JavaScript en-
abled browser without a graphical user interface.

The incorporation of paralogs improved the ability to
detect detrimental mutations since they maintain a high
level of conservation within species [32]. The GenBank
accession numbers for all paralogs (including isoforms
and splice variants) with a low BLAT e-value score, i.e.,
highly conserved paralogs, are obtained from the UCSC
BLAT search tool [33]. The paralogous sequences them-
selves are subsequently obtained using GenBank. Para-
logs and orthologs are compiled into two separate
multiple sequence alignments for the user using the
Kyoto University Bioinformatics Center’s (KUBC) Clus-
talW tool [34]. Note that paralogs and orthologs are
used together in one alignment for pathogenicity predic-
tion algorithm. The retrieval of gene-specific informa-
tion is summarized in Fig. 1a.

Evaluation of conservation underlying DNA and protein
sequences

GESPA uses DNA and protein sequences to estimate
conservation and either one of them can be used as in-
puts. In order to find conservation of the DNA sequence
underlying a given protein, the amino acid sequence is
translated in four steps. (1) A sequence of ten amino
acids starting with the amino acid at the location of the
nsSNP is obtained using the RefSeq protein sequence. In
the event that the amino acid of the nsSNP is one of the
last ten amino acids, the algorithm is performed back-
wards. (2) For each amino acid, all of the combinations
of nucleotides (codons) are searched in the nucleotide
RefSeq until a matching position is found. The speed of
the process is increased by using known codon frequen-
cies in the human genome. (3) The first three nucleo-
tides from the matching position are compared. If an
amino acid has been changed then the location of the
mutated nucleotide is provided along with the nsSNP
DNA codon, and conservation in DNA alignments. (4)
Finally, conservation is calculated by using the location
of the nucleotide that caused the nsSNP using corre-
sponding DNA orthologous and paralogous multiple se-
quence alignments. The percent conservation is also



Khurana et al. BMC Bioinformatics (2015) 16:228

Page 3 of 10

Database Information Refrieval

NCBI: Entrez gene database search used
to validate gene(s)and obtain related
information

NCBI: Clinvardatabase used to obtain
clinically associated SNPs protein location

Output: Gene infonnation is
displayed. Additional
information can be obtained

UCSC: BLAT search used to obtain
paralogous genes GenBank accession
numbers and protein sequences (ifany)

NCBI: GenBank accession numbers used
to obtain paralogous DNA sequences

KUBC: ClustalW used foralignmentof
paralogous genes

Output: SNP informationis
displayed on table. Related
SNP information can be
obtained.

NCBI: HomoloGene database used to
obtain protein and DNA sequences for
homologous genes in species

KUBC: Clustal\W used foralignmentof
homologous genes

SQL-Cloud: Newdata saved to the doud
for fast global access

v

Locally Calculated

Protein sequences near ClinVarSNPs
obtained, DNA or protein sequences near
custom SNPs (including batch) obtained

Protein sequences
near SNP are
reverse transcribed

DNA sequences
near SNP are
transcribed to

to DNA

protein

Protein and DNA locaion o fSNPs
determined

Weighted Percentage Protein
Conservation (WPC) score is calculated

Ifenabled, PSIC score is calculated

Pathogenicity predicted using PSIC and
WPC scores and SNPsidentified by
literature to cause disease on same gene
as SNP.

User: enters gene

symbol or adds

batch fle cortaining = 4

multiple genes and

SNP locations. If

data forgene is 5

available on SQL-

hased doud server,

data is downloaded

immediately ingtead 3

of obtained from

databases.
4
5

A

6
7
8

User: Custom SNP

can be entered in

various formats at vy

any time
1
2
3

B

4
5
6
7

Phenotypes predicted using existing SNP
frequency in user-defined hotspot

h 4

Output: Familial alignments
can be viewed

Output: Homologous
alignments can be viewed

locations.

h 4

Output: SNP pathogenicity
and phenotype can be viewed
in table; conservation can be
viewed in detailed reports

Fig. 1 Flowchart overview of algorithm used in GESPA. a Input, output and retrieval of the data from available resources. Left cells show
acceptable inputs including a HUGO symbol or a batch file which contains multiple genes and nsSNPs of interest. The middle cells represent
resources used to obtain required information. Genes with data already saved on custom SQL-based server cloud are downloaded instantly, cir-
cumventing slower retrieval from databases. The right cells represent output obtained from each resource. b Steps involved in nsSNP pathogen-
icity and phenotype prediction algorithm. The steps described in the methods section are listed in the middle table which will determine the
pathogenicity and phenotype of the given nsSNP. The results are available in the table format
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provided to the user. In a few rare cases, more than one
possible nucleotide change in the original amino acid
codon could result in the changed amino acid, in which
case a definitive DNA location and conservation cannot
be determined.

If the nsSNP is entered with a DNA location, the
underlying protein conservation is determined. Particu-
larly, a sequence of 100 nucleotides (for unique identifi-
cation) from the start of the location specified or a user-
provided DNA flanking sequence is converted into
amino acids using the appropriate reading frame. The
protein RefSeq id of the correctly translated amino acid
sequence is used to obtain coordinates along with the
identity of the mutated amino acid (determined if user
enters mutated nucleotide). Next, PSIC score [9] and
Weighted Protein Conservation (WPC) score (as de-
scribed below) are calculated.

To calculate the Weighted Protein Conservation
(WPC) score, the location of the nsSNP of interest is
used to find the corresponding positions in orthologous
and paralogous amino acid alignments. At the corre-
sponding positions, the number of sequences with
amino acids matching the human variant in the align-
ments is determined. The WPC score given below is
subsequently calculated by dividing this number by the
total number of valid sequences.

WPC; = a;/ny (1)

Where, i is the position of the amino acid, a; is the
number of amino acids at position i in homologous (h)
alignments (both paralogous and orthologous) that
match the unmutated human amino acid at position i
and ny, is the number of homologous sequences (both
paralogous and orthologous) in the given alignment. It
should be noted that the WPC score does not measure
the overall conservation of a location in the alignments
but rather the conservation of the corresponding nsSNP
amino acid in the unchanged human gene of interest.

Determination of phenotype and pathogenicity
In order to determine phenotype, GESPA evaluates fre-
quencies of disease-associated nsSNPs in a user specified
physical distance from the nsSNP using the ClinVar
database. The regions with high frequencies of disease-
associated nsSNPs are known as functional hotspots
which have been linked to similar phenotypes and SNP
pathogenicity [35, 36]. GESPA uses potential functional
hotspots to determine the frequency of phenotypes in a
user specified range. The phenotype with the highest fre-
quency is predicted to be the phenotype of the nsSNP.
The pathogenicity of mutations is determined by
evaluating functional hotspots and then calculating the
PSIC score [9] and/or WPC score. Specifically, if the
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nsSNP of interest is determined to not be located in a
functional hotspot then it is predicted to be benign.
Note that functional hotspots are broadly defined so that
existence of any number of known disease-associated
nsSNPs is considered as a functional hotspot. This leads
to higher confidence in predicting benign nsSNPs not
located in potential functional hotspots. The functional
hotspot feature can be turned off if the user is interested
in de novo variants on genes previously largely ignored
by the literature or variants which are not observed in
the reference populations. Phenotype cannot be pre-
dicted for these variants. In such cases, evaluation is
based on PSIC score [9] and/or WPC score.

All nsSNPs with stop-gained mutations are predicted
to be pathogenic as long as they are further than 50 nu-
cleotides from the start of the final intron. Remaining
nsSNPs in potential functional hotspots which have a
PSIC Score below 1.03 or a WPC score below 40 are
classified as benign while SNPs with a WPC score = to
40 are classified pathogenic.

These thresholds were determined by training and
testing the pathogenicity prediction algorithm using
humsavar (test set), ClinVar (data source) and humvar
(training set) datasets. The entire process of local calcu-
lations performed by GESPA is summarized in Fig. 1b.
The assessment of pathogenicity prediction was per-
formed by using a cross-validation method on the hum-
savar dataset and through using the humvar dataset as a
training set and the humsavar as a test set. The feature
of assessing stop-gained mutations was disabled during
assessment.

GESPA’s performance was compared with some of the
most popular nsSNP pathogenicity classification tools
(Table 1). These tools had their algorithm cutpoints
tested and optimized in Choi et al. [37]. These optimal
cutpoints were used by Choi et al. to test the sensitivity,
specificity, and balanced accuracy of the programs on
the humsavar dataset. GESPA’s performance was
assessed by using the same procedure and data-sets pub-
lished in Choi et al.

SQL-based cloud server integration

In order to facilitate rapid global retrieval of all data
(sequences, alignments, and nsSNPs from medical lit-
erature) as well as to ensure that the data is consist-
ently updated, we use an SQL-based cloud server as a
framework for pre-computed data retrieval. Once all
data is collected for a particular gene, it is saved to the
cloud allowing for faster user accession. Moreover, the
data is time stamped and users have the option of select-
ing the data based on its time stamp. If data on the cloud
is found to be older than the user specified threshold, data
is retrieved from the most current version of the databases
and replaces the older version on the cloud.
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Table 1 GESPA pathogenicity classifier accuracy compared to other software using humsavar test set

Software Sensitivity (%)° Specificity (9%)° Balanced accuracy (%) ROC Curve AUC
GESPA (humsavar cross validation) 96.41 79.49 87.95 0.936
GESPA (humvar training set) 96.31 79.23 87.78 0.932
Polyphen 2 88.68 6245 75.56 0.847
SIFT 85.03 68.95 76.99 0.854
PROVEAN 78.39 79.11 78.75 0.848
Mutation Assessor 85.29 71.02 7815 0.848

Sensitivity = TP/(TP + FN)
PSpecificity = TN/(TN + FP)
“Balanced Accuracy = (Sensitivity + Specificity)/2

User interface

One of our primary goals is to construct a user friendly
interface for quick and efficient nsSNP analysis (Fig. 2).
The tabbed interface allows for easy access to all genes and
reports generated by GESPA. Parallel processing of differ-
ent genes and their associated nsSNPs is fully supported
and each batch and gene is processed on a separate tab. A
table displays the most important information related to
each nsSNP including protein location, predicted pheno-
type, number of related publications, and pathogenicity.
Pathogenicity is indicated in three distinct ways. Benign (h)

indicates that the nsSNP was found to be benign due to no
nearby pathogenic nsSNPs identified in the literature, ie.,
the nsSNP is likely not in a functional hotspot. Benign (a)
indicates that the nsSNP was found to be benign by a low
PSIC Score and/or WPC score, ie., low conservation in
alignment). Pathogenic indicates that the nsSNP is pre-
dicted to be pathogenic based on high WPC Score or a
stop-gained mutation.

We offer a comprehensive conservation report to fa-
cilitate analysis of the genomic context surrounding a
nsSNP of interest. Users can choose to add as many

staitPage [ BRCA1 I P53 @
Single Nucleotide Polymorphisms Summary
Add to Report | snP | Phenotype | Verified by Publication | Pathogenic | BRCA1
W W1837G Familial cancer of breast Single Publication Pathogenic A X
W W1837R Familial cancer of breast Single Publication Pathogenic Enmosoneal
] E1836* Familial cancer of breast Single Publication Pathogenic Starting BP; 41196312
[Zl E1836K Familial cancer of breast Single Publication Pathogenic
W R1835Q Familial cancer of breast Single Publication Pathogenic Ending BP: 41277500
] R1835* Familial cancer of breast single Publication Pathogenic GenBank Nucleotide: NV_007294.3
[ZJ V1833M Familial cancer of breast Single Publication Pathogenic
[} A1830T Familial cancer of breast Single Publication Pathogenic GenPept Protein: NP_009225.1
7] Q1826H Familial cancer of breast Single Publication Pathogenic
W A1823T Familial cancer of breast Single Publication Pathogenic Gene Info
] N1819S Familial cancer of breast Single Publication Pathogenic
W D1818G Familial cancer of breast Single Publication Pathogenic A
@ E1817* Familial cancer of breast Single Publication Pathogenic WJ
] W1815” Familial cancer of breast Single Publication Pathogenic
@ W1815* Familial cancer of breast Single Publication Pathogenic Protein Sequence
[Zl P1812A Familial cancer of breast Single Publication Pathogenic
] Q1811R Familial cancer of breast Single Publication Pathogenic T ———
W Q1811* Familial cancer of breast Single Publication Pathogenic MJ
W V1810G Familial cancer of breast Single Publication Pathogenic
W V1809A Familial cancer of breast Single Publication Pathogenic Paralog Protein
@ V1809F Familial cancer of breast Single Publication Pathogenic
] V1808A Familial cancer of breast Single Publication Pathogenic e —————
7] P1806A Familial cancer of breast single Publication Pathogenic | Homolog Nucteotide |
] H1805P Familial cancer of breast Single Publication Pathogenic
W V1804D Familial cancer of breast Single Publication Benign(a) - Homolog Protein
] G1803A Familial cancer of breast Single Publication Pathogenic L
| Addcustomswe | | viewFullReport | | Cons.Report | | SelectedSNPInfo | | ViewinUCSC | | AddAll | | RemoveAll |

Fig. 2 GESPA Main Interface. The gene summary interface allows access to important nsSNP and gene annotations. General information on the
gene of the selected nsSNP is provided in the top right corner. Access to other important information related to the gene including nucleotide
and protein sequences and alignments is located on the right side. Alignments and sequences open in separate closable tabs while gene info
opens the corresponding page for the gene on NCBI. Access to annotations related to SNPs is found in the lower portion of the interface.
Predictions of SNP phenotype and pathogenicity are displayed on the main summary table
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nsSNPs as they desire to a conservation report. This
conservation report gives specific detail regarding the
percentage of the sequence conserved in paralogous and
orthologous alignments of both nucleotides and amino
acids. Nucleotide and protein sequences for the gene in
question as well as alignments of these sequences with
paralogous and orthologous genes can be accessed in
new tabs. The summary tables and the conservation tables
provided by GESPA also include information on factors
that could be used to predict the pathogenicity. These in-
clude the WPC Score, the PSIC score, the BLOSUM 62
substitution score [38], and literature near the nsSNP of
interest.

For the collection of relevant data we provide external
links related to each individual nsSNP and the entire
gene. Gene information is accessed through its Entrez
gene entry which contains information such as publica-
tions and links to other relevant databases. Viewing se-
lected nsSNP information takes users to the associated
ClinVar page which includes direct links to prior publi-
cations associated with the nsSNP and other related in-
formation in databases such as dbSNP and OMIM.
Viewing the nsSNP results in a BLAT search opens the
UCSC genome browser [39] to the location identified by
the BLAT search. The UCSC interface allows users to
see the nsSNP in the context of its location in the hu-
man genome and view the multitude of annotations col-
lected by UCSC and others.

Results and discussion

Dataset summary

The humsavar, ClinVar and humvar datasets were used
for the purpose of testing and training the pathogenicity
and phenotype prediction algorithms of GESPA. The
humsavar set consists of 62277 nsSNPs classified as ei-
ther disease-associated (24399) or simple polymorphisms
(37878). Humsavar incorporates data from UniProt [40]
and contains likely phenotypes for all disease-associated
nsSNPs that are part of the dataset. Analysis of the hum-
savar dataset showed that 584 benign nsSNPs were con-
firmed pathogenic in literature elsewhere.

The ClinVar dataset contains 22733 nsSNPs with pre-
dictions for pathogenicity and phenotype. Out of 22733
nsSNPs, 800 matched with those on humsavar. Even
with this minimal overlap GESPA performed well when
tested on humsavar.

Finally, in order to further confirm the accuracy of
GESPA, the independent humvar [41] dataset was used as
a training set for pathogenicity. The optimal cutoff values
for GESPA’s pathogenicity prediction algorithm derived
from training on humvar were tested on the humsavar
dataset. The humvar dataset contains a total of 21185
nsSNPs, 8241 identified as polymorphisms and 12944
identified as pathogenic. Additionally, the humvar dataset
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shares 5333 nsSNPs with humsavar which were removed
while assessing accuracy of GESPA. The humvar dataset
also shares 1672 nsSNPs with ClinVar.

Determination of pathogenicity classifiers

The WPC score, PSIC score, and BLOSUM 62 substitu-
tion score were considered as sequence level pathogen-
icity classifiers. In order to find which combination of
the above classifiers would yield the greatest sensitivity
and specificity, a nominal receiver operating characteris-
tic (ROC) curve was created for each pathogenicity clas-
sifier using the humsavar dataset. Particularly, the
optimal binary prediction of each of the individual clas-
sifiers was assessed against humsavar pathogenicity pre-
dictions. We found that both WPC and PSIC scores but
not Blosum 62 score were good independent predictors of
pathogenicity (WPC and PSIC: p<.0001 by the chi
squared test, WPC AUC =0.75912, PSIC AUC = 0.70863,
Blosum 62: p =0.3122, AUC = 0.64912). WPC Score indi-
cates a greater conservation of the human allele in
both orthologs and paralogs and therefore protein
changes at the indicated location are more likely to
be pathogenic. Unlike WPC, the PSIC algorithm [9]
calculates the probability that an amino acid substitu-
tion will be tolerated at a specific position in an
alignment [42] and was previously shown to be a
good predictor of nsSNP pathogenicity [1, 8, 43]. In
these studies the PSIC score was either integrated
into a predictive algorithm for nsSNP pathogenicity
[1, 8] or independently assessed as a single attribute
[43]. The PSIC score differs from the WPC Score in
the scope of data used; rather than predicting the risk
of a detrimental amino acid change by assessing con-
servation in a single position in the alignment, the
PSIC score attempts to take into context conservation
throughout the alignment to make a prediction.

Next, the determination of whether a nsSNP could be
in a functional hotspot using ClinVar literature was
assessed as an independent boolean classifier and found
to be highly effective in predicting pathogenicity of
nsSNPs (p < 0.0001 by the chi-squared test).

Pathogenicity prediction pipeline

GESPA was used to predict pathogenicity of nsSNPs using
disease association information from ClinVar and thresh-
olds for the WPC and PSIC scores. GESPA’s pathogenicity
prediction algorithm is based on a step-wise decision mak-
ing pipeline. First, disease association information from
ClinVar is used so that nsSNPs not in functional hotspots
are classified as benign (99.4 % of nsSNPs from humsavar
were correctly predicted to be benign). To predict the
pathogenicity of the nsSNPs which are in potential func-
tional hotspots we used additional metrics. Particularly,
the previously published PSIC score and our newly
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developed WPC score were employed to evaluate the se-
quence similarity around the nsSNP of interest. The PSIC
score was found to be better than the WPC score in classi-
fying benign nsSNPs (at maximum balanced accuracy
when used alone on nsSNPs in potential functional hot-
spots, 91.6 % and 79.3 % of SNPs predicted benign by
PSIC and WPC respectively were actually benign). The
WPC score was still found to be a more accurate predictor
of pathogenic nsSNPs (at maximum balanced accuracy
when used alone on nsSNPs in potential hotspots, 61.4 %
and 52.4 % of SNPs predicted pathogenic by WPC and
PSIC respectively were actually pathogenic). Thus, litera-
ture from ClinVar is first used to classify nsSNPs not in
functional hotspots as benign, then the PSIC score (if
used, not included in default setting) is used to classify a
nsSNP as benign, and finally the WPC score classifies
remaining nsSNPs as either benign or pathogenic.

Pathogenicity prediction accuracy

The accuracy of GESPA’s pathogenicity prediction was cal-
culated using a 5-fold cross validation of the humsavar
dataset (Fig. 3). Additionally, the accuracy was tested on an
independent humsavar dataset by using the humvar data-
set [41] as a training set (Table 1). In both tests of GESPA’s
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pathogenicity prediction accuracy was similar (87.95 for
humsavar cross validation and 87.78 for humsavar test set).

The cross validation was carried out by creating 5 differ-
ent (approximately) equal sets of nsSNPs from humsavar
by randomizing gene name in order to ensure that each
set had no protein sequences in common (all the nsSNPs
for a given gene were within the same test fold) and there-
fore each test fold would be evaluated for the values of
cutpoints that had been optimized for a training set (com-
posed of the other four folds) that contained separate pro-
tein sequences and nsSNPs (Additional file 1: Table S1).
Furthermore, even nsSNPs with identical amino acid
changes on differing genes would not necessarily be simi-
lar due to GESPA’s approach of using conservation and
gene-specific literature. The accuracy of the cross valid-
ation and the values for the cutpoints were obtained by
averaging the respective values obtained in 5 iterations.
Moreover, new cutpoints from training on humvar were
used to estimate the accuracy of the pathogenicity predic-
tion pipeline on the humsavar dataset. Note that, the 5333
redundant nsSNPs between humsavar and humvar were
removed in order to prevent potential bias.

The overall WPC and PSIC cutpoints for the final
pathogenicity algorithm were obtained by averaging the

-
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Fig. 3 Multinomial ROC Curve for 5-fold cross validation on humsavar dataset. The multinomial ROC curve (black curve) is an average of 5 ROC
curves which each represent the pathogenicity prediction accuracy of GESPA after training on four folds of humsavar and testing on the
remaining fold. The WPC Score, PSIC Score, and nsSNPs for literature were used as predictors for pathogenicity. Using the point of maximum
balanced accuracy (intersection of yellow line and black curve) for each curve, the optimal cutoff points of the WPC and PSIC Score for each fold
could be determined and the AUC was found to be 0.936
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cutpoints obtained by both the procedures. The PSIC al-
gorithm yielded a cut point similar to those found by cross
validation procedures performed by Ramensky et al.,
Adzhubei et al. and Dobson et al. [1, 8, 43]. We found
that in the combined algorithm, the highest accuracy of
pathogenicity predictions is possible when nsSNPs with a
PSIC score of less than 1.03 or a WPC less than 40 are
predicted benign and nsSNPs with a WPC score of greater
than or equal to 40 are predicted pathogenic.

In GESPA’s default setting the use of PSIC Score is
turned off for computational simplicity. The cutpoints for
this case were determined separately using the similar
procedure described above with the exclusion of the PSIC
score. The optimal cutpoint for the WPC score alone was
found to be 49. In other words, the nsSNPs not classified
benign with functional hotspot/literature analysis that
have a WPC > 49 were predicted pathogenic in default set-
tings of GESPA. Note that the accuracy of the algorithm
when using WPC score in the absence of PSIC score was
lower (sensitivity = 94.83, specificity = 80.42, balanced ac-
curacy = 87.62) than the results on Table 1. The software
automatically applies the cutpoints for WPC when the
PSIC score option is not selected.

Phenotype prediction

The phenotype of a given nsSNP is predicted by GESPA
by using the literature containing nsSNPs in a search
and ranking type process. Particularly, GESPA deter-
mines the phenotype of the nsSNP by evaluating associ-
ation of nsSNPs identified within a user-specified range
of amino acids towards the 3" and 5" ends (100 is the
default). The phenotype frequently associated with the
nsSNPs in the given range is predicted to be the pheno-
type of the nsSNP. Combining the literature information
on multiple nsSNPs in a given range reduces the bias in-
duced by frequent and possibly contradictory annota-
tions of one nsSNP. If the relevant information is not
available the program is unable predict a phenotype.

To test the accuracy of the phenotype predictions, the
phenotype predictions of 1080 nsSNPs were manually
compared to the phenotype annotation on the humsavar
database which served as a ground truth. The nsSNPs in
question were obtained by randomizing the order of genes
in the humsavar dataset and choosing the first 1080
nsSNPs in these genes with a phenotype (Additional file 2:
Table S2). The correct phenotype was predicted with an
accuracy of 96 %. In 170 cases GESPA was unable to pre-
dict phenotypes due to a lack of data (Table 2). Within this
group of 170, 79 phenotypes were predicted to have high
functional significance, but a specific condition was not
predicted because nearby nsSNPs were only annotated as
functionally significant. Note that phenotype prediction
accuracy cannot be expressed in terms of sensitivity or
specificity.
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Table 2 GESPA phenotype prediction for randomized sample of
1080 nsSNPs

Data not available (15.7 %)

Data available (84.3 %)

Correct Phenotype, | 79 (46 %) Correct 870 (96 %)
ess accurate prediction Prediction

No SNPs on Gene in 73 (43 %) Incorrect 40 (4 %)
given range Prediction

No previous SNPs on Clinvar 18 (11 %)

Overall Accuracy: 80.56 %

Comparison with existing tools
GESPA combines four distinct algorithms into its step-
wise pathogenicity classification in the following order:
(1) Analysis of whether an nsSNP results in stop-gained
mutation, (2) Reports of pathogenicity of other nsSNPs
in the same gene as obtained from ClinVar, (3) PSIC
Score, and (4) WPC Score. Currently available programs
for predicting nsSNP pathogenicity are limited in clinical
application by a lower than acceptable sensitivity. GESPA
achieved a sensitivity of 96.3 % and specificity greater than
79.3 % which exceeds current standards based on existing
tools, making it feasible to use in direct clinical applica-
tions. Particularly, GESPA’s performance was assessed by
using the procedure and data-sets published in Choi et al.
[37] to compare existing programs (Table 1). Hence, we
could directly compare sensitivity, specificity, balanced ac-
curacy, and the AUC of the GESPA ROC curve with the
same parameters for existing programs published by Choi
et al. [37], to find that GESPA exceeds all of these values.
Furthermore, while GESPA has a balanced accuracy
greater than other programs by 9.20-12.39 %, the dra-
matic increase in sensitivity over these programs is even
more pronounced at 7.73-18.02 %. GESPA has a very
low percentage of false negatives (3.69 %) and a high bal-
anced accuracy (87.95 %, Table 1), leading us to believe
that it can be implemented in many clinical applications.
The determination of whether a nsSNP is not in a
functional hotspot using medical literature found in
ClinVar is one of the most important reasons the patho-
genicity prediction accuracy of GESPA exceeds existing
programs. To our knowledge, no other existing software
package has incorporated medical literature into an
nsSNP pathogenicity prediction algorithm. Particularly,
the nsSNP phenotype data from ClinVar is used in order
to correctly classify benign mutations not located in
functional hotspots before those that may be located in
the functional hotspots. Moreover, to deal with the lim-
ited availability of the data in ClinVar and to mitigate
potential bias of sampling arising only from the use of
medical literature information, GESPA extends the
phenotype data used from ClinVar by implementing the
WPC score, PSIC score and analysis of whether nsSNPs
results in nonsense mutations. The user may choose
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whether information from ClinVar or the PSIC algo-
rithm is used in the pathogenicity prediction algorithm,
but both provide an increase in the overall pathogenicity
prediction accuracy.

Humsavar discrepancies

Ideally the training sets should act as a perfect gold
standard, but our investigation of humsavar has shown
otherwise. Although the dataset was found to be one of
the most accurate datasets reflecting nsSNPs available by
cross validation and random sampling [44], it is based
on literature reports which would make classification of
benign mutations difficult due to a possible lack of lit-
erature. GESPA’s greatest potential for improvement is
in its pathogenicity classification specificity. In light of
this, it is possible that many more of the false positives
identified by GESPA could in fact be true positives (see
testing and training datasets). However, the idea of false
negatives actually being true negatives is not as likely.
The false negatives would have had to be misidentified
by literature, an unlikely possibility.

Future directions

Currently GESPA fully supports the latest version of the
human genome and will continue to update to the latest
version of the genome available. GESPA does not sup-
port animal genomes although information on animal
genes orthologous to human genes is available in the
program. Allowing analysis of animal nsSNPs has great
potential and will be the focus of future work. In
addition, while GESPA is currently available as a standa-
lone software, future editions will also allow limited
functionality within a webpage.

In future versions of GESPA we will integrate several
annotations that could not be added due to a lack of
available data. Information related to potential race and
ethnicity associated disease risk based on specific SNPs
is currently available on ClinVar for a very limited num-
ber of SNPs. However, as more information becomes
available, GESPA may be able to integrate this informa-
tion for improving its prediction. The same idea may
also be applied to disease penetrance and whether SNPs
are expressed in homozygous or heterozygous contexts.
Application of GESPA to specific case studies, often of
clinical origin, will also be the focus of future work.

Conclusions

GESPA is a unique software package for classifying
nsSNPs. GESPA exceeds the accuracy of other programs
in its class and has high sensitivity. The software is the
first to predict the phenotype of SNPs in addition to
pathogenicity. Furthermore, GESPA offers several add-
itional features such as a variety of annotations, parallel
processing, fast SQL cloud data retrieval, and a user
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friendly interface. We believe that GESPA provides
researchers and healthcare providers with great utility
for analyzing the disease association of nsSNPs
comprehensively.

Availability and requirements
Project Name: GESPA

Project home page: www.sourceforge.net/projects/
gespa

Operating system: Windows: XP SP3 or later, Win-
dows Vista SP2, Windows 7, Windows 8, Mac OS X
10.7.3 (Lion) or later

Programming language: Java

Other requirements: Java 1.7.0 or higher

License: GPL 3.0 License, Apache License 2.0, Micro-
soft Reciprocal License

Additional files

Additional file 1: Table S1. Cross Validation Folds: Spreadsheets
containing all 5 folds, for GESPA's cross validation process. Also includes
the numerical values of GESPA’s pathogenicity and phenotype classifiers
for every nsSNP within each test fold. For the cross validation the five
different combinations of four folds were used to train GESPA's
pathogenicity classifiers and the remaining fold in each case was used to
test the optimal parameters.

Additional file 2: Table S2. Phenotype Prediction Sample: Known
(from humsavar) and predicted (by GESPA) phenotypes of 1080 nsSNPs.
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nsSNPs: Non-synonymous single nucleotide polymorphisms;

GESPA: GEnomic Single nucleotide Polymorphism Analyzer; PSIC: Position
Specific Independent Counts; NGS: Next generation sequencing;
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