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Abstract

Background: The cascade computer model (CCM) was designed as a machine-learning feature platform for
prediction of drug diffusivity from the mucoadhesive formulations. Three basic models (the statistical regression
model, the K nearest neighbor model and the modified version of the back propagation neural network) in CCM
operate sequentially in close collaboration with each other, employing the estimated value obtained from the
afore-positioned base model as an input value to the next-positioned base model in the cascade.
The effects of various parameters on the pharmacological efficacy of a female controlled drug delivery system
(FcDDS) intended for prevention of women from HIV-1 infection were evaluated using an in vitro apparatus
“Simulant Vaginal System” (SVS). We used computer simulations to explicitly examine the changes in drug diffusivity
from FcDDS and determine the prognostic potency of each variable for in vivo prediction of formulation efficacy.
The results obtained using the CCM approach were compared with those from individual multiple regression
model.

Results: CCM significantly lowered the percentage mean error (PME) and enhanced r2 values as compared with
those from the multiple regression models. It was noted that CCM generated the PME value of 21.82 at 48169
epoch iterations, which is significantly improved from the PME value of 29.91 % at 118344 epochs by the back
propagation network model. The results of this study indicated that the sequential ensemble of the classifiers
allowed for an accurate prediction of the domain with significantly lowered variance and considerably reduces the
time required for training phase.

Conclusion: CCM is accurate, easy to operate, time and cost-effective, and thus, can serve as a valuable tool for
prediction of drug diffusivity from mucoadhesive formulations. CCM may yield new insights into understanding
how drugs are diffused from the carrier systems and exert their efficacies under various clinical conditions.
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Background
A variety of model-dependent procedures including
Higuchi equation, a second order polynomial equation,
Korsmeyer-Peppas model, Hixson Crowell, Baker-Lonsdale
model, Weibull model, have been utilized for assessment of
drug diffusivity from various formulations [1, 2]. The
conventional model-dependent methods present acceptable
proof of the intrinsic relationship between dependent and
independent variables of drug diffusion and release data,
but they generally lack accuracy [3]. It is evident from the
previous reports that no single model is commonly

employable to determine the diffusion rates of more than
two drugs, if their dissolution profiles are similar to each
other. A more advanced regression model based on a series
of or a sequential approach is necessary to assess the associ-
ation of the dependent and independent variables involved
with drug diffusivity from mucoadhesive formulations.
Advances in computer technology associated with the

machine learning process have brought up the vital im-
provements in strategies for prevention and treatment of
various diseases [4, 5]. The computer based analysis tech-
niques including artificial neural networks (ANN) and K-
Nearest Neighbors Model (KNN) model made it possible
to assess and predict the pharmaceutical parameters
through the data mining methods [6–8]. ANN are consid-
ered as an advanced nonlinear regression tool to delineate
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the association of variables via iterative training of data
obtained from a designed experiment [9–11]. The K near-
est or K mean model is trained to find the K most similar
samples in the training dataset and generates the output
mean value (i.e., the most dominant output during classifi-
cation) for K samples [12, 13].
In this study, the cascade computer model (CCM) was

designed as a machine-learning feature platform for predic-
tion of drug diffusivity from the mucoadhesive formula-
tions. Three basic models (the statistical regression model,
the KNN model and the modified version of the back
propagation neural network) work sequentially in close col-
laboration with each other, employing the estimated value
obtained from the afore-positioned base model as an input
value to the next-positioned base model in the cascade. For
example, the obtained output value which satisfies the con-
dition that the predicted value is as close as the known out-
put value of the hold-out dataset from KNN model (as a
preliminary basic model) will be given as an initial input
value to the neural network (as a secondary model) during
the training process of the neural network. This approach
is expected to generate the highest prediction accuracy
within the least training time.
A female controlled drug delivery system (FcDDS) in

the form of mucoadhesive gel has been developed as an
intravaginal barrier device to prevent women from the
onset of sexually transmitted disease (STD) including
AIDS. Sodium dodecyl sulfate (SDS), which is a proven
microbicidal agent against HIV-1 and HPV, was chosen
as a model drug. The effects of various parameters on
the pharmacological efficacy of FcDDS were evaluated
using an in vitro apparatus “Simulant Vaginal System”
(SVS) [14, 15]. The variables categorized as formulation
variables (loading weight and SDS loading doses of
FcDDS), intrinsic variables (vaginal fluid pH, vaginal
fluid secretion rate, and rotation/vibration speed of
physical movement) and extrinsic variables (inserting
position), were evaluated for their prognostic potency in
defining diffusivity of loaded drugs under various condi-
tions [16, 17]. The changes in diffusivity of loaded drugs
from FcDDS were explicitly examined through the com-
puter simulation processes, and the prognostic potency
of each variable for in vivo prediction of pharmacological
efficacy was determined. The results obtained from
CCM approach were compared with those from individ-
ual multiple regression models (i.e., Higuchi equation
and a second order polynomial equation, KNN and
ANN models).
Numerous theoretical issues in the machine learning

analysis evolve around the tasks of finding relevant fea-
tures among involved parameters. The ensemble predict-
ive model (i.e., CCM) programmed in this study strives to
achieve the highest accuracy possible within the least
training time. A machine-learning feature model will yield

new insights into understanding how loaded drug is dif-
fused from the delivery systems and exerts their efficacies
under various clinical conditions. A data analysis based on
CCM allows each customer a self-controllable dosage
regimen, which may lead to patient-specific protocols for
prevention and treatment against various diseases includ-
ing AIDS.

Results
Drug diffusivities (D) from FCDDS under various condi-
tions were assessed using CCM and other conventional re-
gression models on randomly selected 48 records from the
training dataset (sampling without any replacements).

The regression model
The values of the PME for 10 different simulations gener-
ated by the regression models are shown in Table 1. Be-
cause the regression model tries to predict the output value
as a linear function of the input parameters, the high PME
value from the regression model indicates that the relation-
ship between the input and output parameters was nonlin-
ear. It also indicated that there were large differences
between the predicted and the known (experimentally ob-
tained) output values.

K Nearest Neighbor (KNN) Model
Because KNN model is highly reliable, all the training data-
set records rather than creating multiple sub-training data-
sets via random sampling of the training dataset were used
to find the best K value. The PME value achieved by KNN
model was about 34.76 % with the K and r2 values of 2 and
0.90, respectively. The prediction variance calculated by
KNN was similar to the experimental variance in the do-
main where the datasets are large and the random distribu-
tion of the records is relatively close to each other. The
results of this study supported that KNN model is moder-
ately accurate in determining D values in given data sets.

Table 1 The PME and r2 Values from the Conventional
Regression Models

Model Percentage mean error r2

1 197 % 0.93

2 193 % 0.93

3 192 % 0.93

4 179 % 0.93

5 181 % 0.93

6 187 % 0.93

7 189 % 0.93

8 194 % 0.93

9 198 % 0.93

10 200 % 0.93
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Back Propagation Artificial Neural Network (ANN)
The number of hidden units in ANN was determined by
the β value (i.e., over-determination factor) whose range
varied from 0.5 to 2.75, as shown in Table 2. As the value
of β increased, the value of PME generally decreased. Ten
different neural networks were generated (with different
values for each link weight) using the randomly sampled
training datasets. The network was allowed to train itself
for 2*105 epochs and the least PME reached by each net-
work was recorded. As shown in Table 3, the least PME
value obtained by this model was 29.91 % and the r2 value
was remained at 0.93. The closest relationship between
the input parameters and the D value was obtained at the
β value of 1.5 (27 hidden units).
The comparative prediction error of ANN model

versus KNN model for the first 20 records in the valid-
ation dataset were shown in Fig. 1. The KNN model
yielded lower generalization accuracy than ANN model
when the number of the records in the training dataset
is larger and the relationship between the input and
output parameters is not linear. Based on the results of
the r2 and PME values, it was concluded that ANN
model produces more accurate outcomes than KNN
model in this study.

The cascade computational model: a sequential ensemble
of classifiers
The PME and r2 values obtained by CCM were shown in
Table 4. The PME values were varied, ranging from 29.82 %
to 37.95 %, and the r2 value remained as the constant value
of 0.98. As shown in Table 5, both PME and r2 values
obtained by CCM are the lowest among those by all the
trained models. The β value (i.e., over-determination factor)
and r2 value from CCM are significantly improved as com-
pared with those generated by ANN only. The average pre-
diction errors for the first 20 predictions by either the
proposed model (red) or conventional regression approach
(black) for the training dataset were shown in Fig. 2. The
average prediction error and r2 value obtained by CCM
were 14.76 % and 0.90, respectively. The high coefficient
value with significantly lowered variance indicates that an
accurate prediction of the domain, where the distribution
profiles of the data set are similar to each other in the
multidimensional space, can be achievable by CCM.
It was also noted that the sequential ensemble of classi-

fiers reached the testing PME value of 21.82 at 48169
numbers of epochs as compared with the back propaga-
tion network model, which iterated for 118344 numbers
of epochs for reaching the testing PME of 29.91 %. The re-
sults of this study indicated that the sequential ensemble
of the classifiers considerably reduces the time required
for training phase.
The summary of the D values obtained from various

models was shown in Table 6, in which D value obtained

from CCM was in close correlation with experimentally
obtained output values. CCM produces better PME
values than ANN or KNN individually, and seems to be
a proper model for the accurate prediction of diffusivity
of loaded drugs from FcDDS.

The validation process of the cascade computational
model
The results of the validation process on the goodness of fit
and randomness of the regression residuals between the
predicted values of diffusivity coefficient (D: cm2 hr−1 ×
100) from various regression models vs. experimentally ob-
tained values are shown in Fig. 3. The residuals from a fit-
ted model are the differences between corresponding
prediction of the diffusivity computed by CCM and those
observed at each combined value of the involved variables.
The predicted value of diffusivity obtained by CCM is much
closer to the experimentally obtained value of the training
dataset than those by the conventional regression methods,
indicating that CCM is a suitable model for the accurate
prediction of diffusivity of SDS from FcDDS. The high coef-
ficient values of r2 (0.993) with even and random residual
distribution by CCM suggested that an accurate prediction

Table 2 The relationship between the PME values, β values and
Different Number of Hidden Units generated from Back
Propagation ANN

β Number of hidden units Percentage mean error

0.5 82 33.77 %

0.75 55 32.30 %

1.0 41 31.10 %

1.25 33 30.36 %

1.50 27 29.91 %

1.75 23 29.95 %

2.0 20 29.11 %

2.25 18 29.34 %

2.75 14 29.93 %

Table 3 The PME and r2 values from Back Propagation ANN

Model Percentage mean error r2 value

1 29.91 % 0.93

2 30.84 % 0.93

3 37.99 % 0.93

4 35.23 % 0.93

5 30.27 % 0.93

6 30.26 % 0.93

7 29.94 % 0.93

8 34.11 % 0.93

9 32.24 % 0.93

10 31.95 % 0.93
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of the domain with significant lower variances can be
achievable through application of CCM. The comparative
outcome of the validation process of the proposed model
attests to that the CCM produces an accurate prediction of
diffusivity of loaded drugs from FcDDS and that the model
can be applicable to the individual subjects for prescribing
patient-specific drug regimen.

Discussion
It is generally known that the nature of the polymer host,
especially the solubility ratio (R = Cs/Co), significantly af-
fects drug release profiles, and the magnitude of the effect
is largely dependent on the drugs used in each study. The
deviation from exact values for those compounds having
the big solubility ratio have posed as the major constraint
of the conventional model-dependent methods including
an approximated Higuchi equation as compared to more
advanced equations. It was found that even though the
conventional model-dependent methods were effective in
initial interpretation of the experimental data, to explore
the advanced computational method seems to be

necessary to characterize and efficiently optimize the poly-
mer systems including a FCDDS for the controlled deliv-
ery of various microbicides.
Various computer based analysis techniques enabled

us to assess and predict the pharmaceutical parameters
through the machine learning process [18]. KNN model
did not need parameter based simulation and was aimed
to find the best feasible K value which satisfied the con-
dition that the predicted value is as close as the known
output value of the hold-out dataset [19]. ANN are net-
works of adaptable nodes that store experimental know-
ledge through the machine-based learning process from
the given samples. Thus, a combination of ANN and
KNN has been applicable to the establishment of a non-
linear relationship between the causal factors and the
pharmacological efficacy [10].
In this study, it was hypothesized that CCM which

was sequentially incorporated with KNN and ANN can
be used as an advanced machine-based learning tool to
predict the diffusivity of drugs from FcDDS. The classi-
fier ensemble in a combined model improves the pre-
dictable accuracy through voting or variations thereof to
reconcile models interactions. The collaborative data
mining model consisted of the base models generates
the predictions through a sequential input transfer ac-
tion from the afore-positioned base model to the next
positioned base model in the cascade. CCM first trains
the statistical regression and KNN model, and selects
the model with the higher prediction accuracy. During
the training phase of ANN, the observed output values
were also given as an input value to the network. During
the prediction phase, an output value of the previously
selected models (between statistical regression and k
nearest model) was given to trained neural network for
the final prediction.
The trial-test data set previously reported was examined

with the proposed CCM. Because CCM is highly stable, all
the training dataset records (instead of generating multiple

Fig. 1 The mean errors in prediction from either Back Propagation ANN or K-Nearest Models. The solid rectangles represent the errors in
prediction from back propagation ANN, whereas solid circles represent those from the K nearest neighbor model. The scale on x axis is
0.02 = 1 pixel and on y axis is 0.01 = 1 pixel

Table 4 The PME and r2 values from Sequential Ensemble of
Classifiers (i.e., CCM)

Model Percentage mean error r2 Values

1 29.82 % 0.98

2 30.81 % 0.98

3 37.95 % 0.98

4 35.24 % 0.98

5 30.29 % 0.98

6 30.26 % 0.98

7 29.63 % 0.98

8 34.08 % 0.98

9 32.24 % 0.98

10 31.92 % 0.98
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sub-training dataset through the random sampling process)
were used to find diffusivity of loaded microbicides in
FcDDS. As ARE in percentage estimate the random errors
that make the relationship between the involved variables
and the outcome values (i.e., diffusivity D values), a statis-
tical relationship will be established once the model cor-
rectly fit the data. If the residuals appear to behave
randomly, it can be concluded that the model suitably fits
the data, whereas if non-random structure is evident in the
residuals, the model fits the data poorly. The validation of
CCM assessed by comparing ARE in percentage also sup-
ported the superiority of CCM in prediction of diffusivity of
loaded drugs from mucoadhesive formulations.
Because there is a unique set of variables that can be used

to generate the experimental data and model simulation,
the proposed computational model is somewhat con-
strained. This presumption is expected of the models ap-
plied to physiologically complex organs, in particular when
all data were gathered under the similar conditions, which
had limitation in incorporating inter-patient variance. Even
though the sequential ensemble of classifiers may not be
able to improve the prediction accuracy of some specific
problem domains by a very large margin, CCM consider-
ably reduces the time required for the training phase. In
addition, CCM interpreted microbicidal efficacy of FcDDS

from a component-oriented framework by imposing criteria
determined from the EC50 values.
The results showed that the machine-learning feature

model is a valuable tool for predicting drug diffusivity
from mucoadhesive formulations. The proposed computer
model can be expanded to include new variables as they
become available and other factors as they become of
interest. An addition of new components will be deter-
mined based on their capability to simulate and contribute
the physiological and physicodynamic patterns from
experimental or clinical data.

Conclusion
An advanced computer-learning feature model (i.e., CCM)
was designed for establishment of the general relationships
between drug diffusivity from FcDDS and the formulation/
physiological conditions at the implant site. A machine-
learning feature model prospectively assessed the implica-
tion of intrinsic and extrinsic variables of FcDDS and deter-
mined the contribution capacity of each prognostic variable
in predictive outcomes. A sequential ensemble of classifiers
can generate continuous prediction domains with higher
accuracy and spend less training time than other individual
regression models. A machine-learning feature model will
yield new insights into understanding how a drug diffused
from the carrier systems and exert their efficacies under
various clinical conditions. A data analysis based on the
machine-learning CCM may allow each customer a self-
controllable dosage regimen.

Method
Data source
The datasets were obtained through in vitro experiments
on the release profiles of the model drug (i.e., SDS) from

Fig. 2 The plots of PME values from the regression model (Black) vs. the CCM model (Red)

Table 5 Comparison of Prediction accuracy in PME and R2

values obtained by CCM and other regression models

Model PME value r2

Regression Model 179 % 0.90

K Nearest Model 34.76 % 0.90

Back Propagation Model 29.91 % 0.93

Sequential Ensemble of Classifiers 21.82 % 0.98
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FcDDS for 6 hr using an in vitro apparatus named as
“simulant vaginal system” [17]. Because SDS is intended
for topical protection for women against HIV-1 during
the intercourse, a period of 6 hr was selected. The data
generated for this study consisted of a total of 96 data-
sets, out of which a half of the records (48 records) were
randomly selected for the training dataset, which was
used for the accurate determination of Diffusivity (D) of
loaded drugs via varying trained models. The rest of the
records (48 records) were used for accuracy validation.
The drug release profiles expressed as a function of tested

variables were shown in Table 7, in which 15 representative
results out of 96 cases were included. Because each dataset

contained multiple records consisted of various combina-
tions of input parameters, it was analyzed to extract unique
patterns out of all possible outputs. In this context, a more
precise measurement and new information on the detailed
characteristics of such formulations can be obtained by
analyzing all or a sufficient number of the individual sub-
units through various techniques. In addition, the gener-
ation of such multiple subunits can be properly optimized
to obtain the best outputs.
CCM incorporated with a series of KNN and the back

propagation ANN model was connected for the
optimization process of algorithms as shown in Fig. 4. The
basic diffusion formulary (i.e., Higuchi equation and a sec-
ond order polynomial equation) were also performed for
comparison purpose. The data were also analyzed using
such individual models as the multiple regression models
(MRM) [20], KNN [12, 13] and back propagation ANN
model [21]. The results were recorded as an index of the
drug release profiles and used for delineating the diffusivity
coefficient (D) of each training data set. The equations and
detailed steps taken for ANN, KNN and CCM are de-
scribed in the chapter of Availability of supporting data.

Procedure
Higuchi equation
The modified Higuchi equation was used to estimate the
parameters of the release profiles of SDS from FcDDS.
The modified Higuchi equation has frequently served as a
simple regression method to obtain approximate values of
parameters involved with the drug release profiles from
mucoadhesive gel-or matrix-type formulations. The re-
lease profile of the drug was examined using the Higuchi
equation (1);

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � A � Cs � D � t

p
ð1Þ

Higuchi vs D Known 
output

MRI vs D Known 
output

K- vs D Known 
output

ANN vs D Known 
output

CCM vs D Known 
output

X axis: Sample number
Y axis: Std residuals

X axis: Sample number
Y axis: Std residuals

X axis: Sample number
Y axis: Std residuals

X axis: Sample number
Y axis: Std residuals

X axis: Sample number
Y axis: Std residuals

p 0.075 0.406 0.636 0.00 0.504

R2 0.734 0.295 0.954 0.982 0.993

Adj R2 0.713 0.241 0.95 0.981 0.992

Fig. 3 The results of the validation process on the goodness of fit and randomness of the regression residuals assessed by plotting differences
between the predicted values of diffusivity coefficient (D: cm2 hr−1 × 100) from various regression models vs. experimentally obtained values

Table 6 Summary of diffusivity coefficient (D: cm2 hr−1 × 100)
values obtained by various regression models

No Higuchi MR I K- Propagation CCM D: known output

1 4 4.5 5.3 5.56 5.26 5.00

2 3 3.5 4.3 4.55 4.35 4.30

3 3 3.5 3.4 3.59 3.40 3.50

5 4 3.5 6.3 7.69 6.59 6.50

8 3 3.5 2.6 2.58 2.50 2.50

11 3 4.5 4.0 4.08 4.00 4.00

14 2 1.5 1.0 0.20 1.20 1.40

20 3 4.0 3.1 2.43 2.51 2.50

23 4 3.0 5.4 5.90 5.55 5.50

26 3 3.0 3.2 3.45 3.50 3.50

29 3 3.0 3.4 3.42 3.50 3.50

38 3 2.5 3.0 2.64 3.20 3.00

44 2 1.5 2.1 1.66 2.25 2.00

47 3 2.5 3.5 3.12 3.00 3.00

64 2 3.0 2.6 2.57 3.15 3.00
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in which Q is the percentage of drug released from the
FcDDS at time t (in hours), A is the total concentration
of drug, D is the diffusion coefficient of the drug, and Cs

is the solubility of drug in formulations [22, 23]. The
experiments were conducted under the varying condi-
tions of the input parameters, such as dose (A), weight
(w), flow rate of the physiological fluid (f rate), pH value
of the physiological fluid (pH) and insertion position of
the drug (iPos). The release amount (Q) of SDS was
measured at predetermined interval for 6 hrs. As previ-
ously described, the D values in the equation were calcu-
lated using other available parameters whose values are
already known or experimentally obtained.

Multiple Regression Model (MRM)
The statistical regression model is a component regression
tool bundled inside the collaborative regression model.
This model finds a best-fit equation out of the sample
data, which satisfy the condition that the summation of
the square root of the error between the predicted and

Table 7 Variables for Diffusion Coefficient of Microbicides from
Mucoadhesive formulations [17]

No Loading dose
(g/100 ml)

Gel
weight (g)

pH of
VFS

Flow rate
(ml/hr)

Insertion
Position (cm)

Q
(%)

1 3 1.5 4.0 3 5 58.6

2 3 1.5 4.0 3 15 45.5

3 3 1.5 4.0 3 5 35.9

5 3 1.5 4.0 5 15 76.9

8 3 1.5 5.5 3 15 25.8

11 3 1.5 5.5 5 15 40.8

14 3 1.5 7.4 3 15 2.0

20 3 3.0 4.0 3 15 24.3

23 3 3.0 4.0 5 15 59.0

26 3 3.0 5.5 3 15 34.5

29 3 3.0 5.5 5 15 34.2

38 5 1.5 4.0 3 15 26.4

44 5 1.5 5.5 3 15 16.6

47 5 1.5 5.5 5 15 31.2

64 5 3.0 5.5 5 15 25.7

Controller

Controller

Predicted 
Output

Input Feeder

Regression
Model

KNN
Model

Feeder Selector

Modified Back Propagation
Neural Network

Model

Dataset

Controller

Fig. 4 The Cascade Computer Model
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actual output for the known samples is minimized (the
least square method) [20]. While performing the predic-
tion, the model uses the derived equation, feeds the un-
known samples and predicts the target values based on
the output equation.
Assuming that the dimensionality of input samples is

N (a vector of 1 × N dimension), the output equation
can be generalized as (2):

y ¼ b þ
X

ai � xið Þ ð2Þ

where b = y intercept or bias; x = input or independent
variable; a = weight of independent variable; i = ranges
from 1 to N; y = predicted output.
A regression model can be developed to predict the out-

put as a function of the input variables in a given sample
data set. The notable fact about the regression model is
that it needs several assumptions about the data structure.
If the dataset doesn’t possess any close relationships be-
tween the independent and dependent attributes, the pre-
dicted outcome from the regression model may not be
accurate. Besides, because the training of the model is
memory resident (i.e. all the input sample records needs
to be in the memory in a matrix form for assessment of
the optimal weight), the model may not possess high scal-
ability for a huge sample data set.
The advantages of the regression model are it’s simpli-

city to interpret the results and convenience as a prelim-
inary tool. Once the model is trained, only the weight
matrix needs to be in the memory to predict the output.
Besides, during the training phase the model needs to it-
erate over the entire training data only once, which
makes it a very fast learner as compared with other
models in analyzing large-size datasets. Nonetheless, the
operating time and space complexity of the prediction
phase of the regression model need to be improved.

K Nearest Neighbor Model (KNN)
As previously described, the K nearest model found the K
most similar samples (the most dominant output during
the classification process) in the training dataset. For com-
puting the similarity between unknown and known sample
records, the Euclidean distance metric is widely used [13].
The Euclidean distance (d) between 2 points x and y may
be calculated as follows (3):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x‐yð Þ2

q
ð3Þ

The model training efforts are aimed at finding the
optimal value for K, which mostly satisfied the condition
that the root mean square (RMS) error for the testing or
hold out sample is minimized. For this purpose, the K
value increased from 1 to a preset maximum value and
at each K value the RMS error for the holdout sample

was calculated. The K value with the least RMS is
considered the best possible K value. In mathematical
terms, the K nearest model could be specified as (4);

Y ¼ 1=k �
X

yi ð4Þ

where i ranges from 1 to K and yi is the output column
of the K most similar samples in the training dataset.
The K nearest model doesn’t need to make any presump-

tions about the structural distribution of the data, thus it’s
more accurate than the statistical regression model when
the distribution of the sample is random. Because it re-
quires the estimation of the distance between every testing
and known input of the K values, the model has high com-
putational capabilities during the training and prediction
processes.

Back propagation artificial neural network
The network topology used in this study consisted of 3
layers; the input layer, the hidden layer and the output layer.
The input layer consisted of 5 nodes (i.e., five input param-
eters) and one extra node for the bias estimation. The out-
put layer is made of one output node, estimating the D
value as shown in Fig. 5. For the hidden layer, it consisted
of one bias node and up to 27 nodes for data interaction.
The number of hidden nodes in the network was deter-
mined by applying the β values from 0.5 to 2.75 in the
equation (as shown in the chapter of Availability of sup-
porting data). The β value (i.e., over determination factor),
which portrays the most close relationship between the in-
put parameters and D value, was determined and the Per-
centage Mean Error (PME) for the training and validation
data sets, respectively, was calculated.
The activation function applied to the input layer was

‘the identity function’ that was described as follows (5),

f xð Þ ¼ x ð5Þ
whereas the activation function applied to the hidden
and output layer was ‘the sigmoid function’ that was
described as follows (6),

f xð Þ ¼ 1 = 1 þ e‐xð Þ ð6Þ
The detailed procedure for this model is described in the
chapter of Availability of supporting data.

The Cascade Computer Model (CCM)
Execution of CCM CCM consists of the three compo-
nent models, namely the statistical regression model,
the KNN model and the modified version of the back
propagation ANN. These classifiers were combined
into a unified model, whose sequential ensemble al-
lows the model to train itself faster and more accur-
ately, if it started with an input value close to the
output value. Because the models are cascaded
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sequentially (i.e., the estimated value obtained from
the afore-positioned base model to the later-
positioned base model) rather than in parallel, no rec-
onciliation or voting of estimations was necessary for
the final prediction, eliminating the need of the out-
put domain discretion. Thus, the training time period
was shorter than those individually performed with
the conventional back propagation ANN or KNN.

CCM was trained with the known parameters for
maximizing its performance on determining the D
value that was assigned as a dependent parameter
(Table 8). The record with a higher frequency mode
was selected as the D values for each dataset. For ex-
ample, among three records with the same input par-
ameter values, if 2 records had D1 value as the D
value and one had D2 value as the D value, the rec-
ord with the D1 was selected for the extracted data-
set. Subsequently, the released amount of a model
drug can be predicted by feeding the D value and
other parameters in the equation.

The errors between the predicted output and the ac-
tual output (i.e., experimental values) were calculated
based on the following equation (7):

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
predictedoutput‐actualoutput

� �r 2

actualoutput
ð7Þ

The square root of the difference was taken to negate
the effects of the different sign between the actual
and predicted outputs. After calculating the error for
each test dataset, the overall error of the model (the
percentage mean error (PME)) was calculated using
the following equation (8):

ModelError ¼
X

errorið Þ
n

� 100 ð8Þ

Where n is the total number of records and i iterate over
all the records in the dataset. The network topology was
changed such that the input layer had one additional node
to which the actual D value was fed during the training
phase of the network. This node was fed with the predicted
D value from the KNN model due to its low statistical
generalization accuracy as compared with the regression
model during the prediction phase of the network. The rest
of the network topology remained same as the original back
propagation ANN.

The Validation Process of the Cascade Computer
model (CCM) The rest of data (i.e., 48 studies) obtained
from the previous study but not used in the computa-
tional modeling process were tested for the validation
process of the proposed model. The validation proced-
ure of CCM was executed by comparing Absolute Rela-
tive Error in percentage (ARE) obtained using the
absolute value of [(Actual Output-Predicted Output)/Ac-
tual Output].
The validation process provides a proof of evidence

whether the outcome is affected by a particular individual
variable or an individual group of variables in the model.
CCM was further modified in response to the outcomes
of the validation process, if necessary, which adds the ro-
bustness of the tool in predicting the outcomes from the
medical database by avoiding a spurious association within
a set of variables.

Availability of supporting data
Model 1: Multivariate regression model
This model tries to obtain approximate values of D, dif-
fusivity, as a function of the other independent variables,

Fig. 5 The Back Propagation Artificial Neural Network Topology
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such as dose, weight, flow rate, pH and insertion
position.
Steps:

1: Read all the experimental records and generate 2
matrices of those records (total of 48 records
currently)

Matrix X 48 � 5ð Þ ¼ stores the value of independent

variables for all the records:
Matrix Y 48 � 1ð Þ ¼ stores the values of all the d values for

the respective records in Matrix X:

2: Iterate over all the records stored in the matrices
and express the value of D as a function of the
independent variables:

Dvaluenew ¼ beta0 þ dose � beta1 þ weight
� beta2 þ f rate � beta3 þ ph
� beta4 þ ipos � beta5

3: Find the values of all the beta variables, which satisfy
that the summation (d_value-dvalue_new) **2 taken
over all the records is minimized.
The equation generated was:

D value ¼ 2640:1023 ‐ 186:17258 � dose ‐ 202:39005
� weight þ 250:95155
� flowrate ‐ 275:11685 � phvalue ‐ 48:67687
� insertpos

Model 2: K-Nearest Neighbors (KNN) Model
KNN model computes the probability of the test vari-
ables belonging to a given category, which is defined
based on the average value of K number of variables.
Subsequently, KNN uses a category specific value for the

threshold to convert the probability of the test variable
belonging to a given category into a Boolean assignment.
This model reads all the experimental records from the
files, and waits for the user input of the independent
variable values. Based on the training data readings from
the files, KNN predicts the value of D in terms of the
average of D values.

Steps:

1: Read all the training data from the files into the
memory.

2: Accept the values of multiple independent variables
from the user, at which the value of D needs to be
predicted.

3: Find the multi-planar Euclidean distance between
the point at which the D value needs to be predicted
and the other training points at which the D value is
already known.

4: Take the point at which the Euclidean distance is
smallest. If there are multiple points in space with
the same smallest distance, then take all of those
points.

5: Find the average of D values of all the points found
at step 3. This will be the final predicted D value.

It predicts the D value per entered value of independ-
ent variables.

Model 3: Back propagation artificial network model
The number of hidden nodes in the network was deter-
mined by varying values of β in the equation (discussed
in the previous case) ranging from 0.5 to 2.75. The β
value most closely representing the unknown relation-
ship between the input parameters and D value was
determined.
The working of the back propagation network can be

summarized as follow:

1. The signal to the input units are the input training
sample fed to the network.

2. Each unit applies an activation function to its net
input to calculate its output. The activation function
of the input units is the identity function, i.e. y = x;

3. Each hidden layer unit calculates its net input as the
weighted sum of its input from all the units in the
previous layer.

4. To calculate its output the hidden unit applies the
sigmoid function to it’s net input

y ¼ 1
1þ e‐xð Þ

where x is the total input to the unit and y is the output.

Table 8 The equations in various regression models used for
the assessment of diffusion coefficient

Methods D N

Higuchi Equation (2*A*Cs*D*t)**1/2 7

D = 2.32 ± 0.80

Multivariate Regression I D value = 2640.1023-186.17258*
dose-202.39005*
weight + 250.95155*
flow_rate-275.11685*
ph_value-48.67687*
insert_pos

6

K-Nearest Neighbors It predicts the D value as per
the entered values of
independent variables

Back Propagation Model The network was trained for
each number of hidden units
for a given sample and the D
value with the minimal PME
was calculated.

* Statistically significant (P < 0.05)
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5. The output unit calculates its net input as the
weighted sum of the inputs from all the units in the
previous hidden layer and applies the same sigmoid
function to calculate the final predicted output.
For training the network, the model iterates over all
the records in the input training sample one by one
(called one epoch), calculates the prediction error
for each and every unit in the network till the first
hidden layer, and updates the weight of the links as
follows:

� For the output unit the error is calculated as:

Err ¼ T � 1 – Tð Þ � Y – Tð Þ

Where T is the predicted output and Y is the actual
output of the known sample.

� For the hidden layer units, the error is calculated as:

Err ¼ yj � 1 – yj
� �

�
X

errk � wjk
� �

Where errk is the error of the unit k in the next
layer, wjk is the weight of the link connecting unit j
in the current layer and the unit k in the next layer
and yj is the output of the given hidden unit j.

Once all the errors are calculated, the weight wjk of
the link connecting the unit j and k is updates as:

Wjk ¼ LearningRate � errk � oj

Where ‘LearningRate’ is the learning rate, which deter-
mines how fast the network learns. The learning rate
must be chosen wisely, because low learning rates may
make the training very slow, thus very time consuming
and high value of the learning rate may make the net-
work oscillate around the optimal value of the weight.
The training of the network stops when either the

error between the predicted output and actual output
has reached to a predefined minimum or the model has
gone through all the training records a predefined num-
ber of times called the number of epochs.The number of
hidden units in the network was determined based on
the equation below.

Nhidden ¼ Nsample=β – Noutput
� �

=

Ninput þ Noutput þ 1
� �

where:

Nhidden ¼ number of hidden units
Nsample ¼ total number of training samples 154ð Þ
Noutput ¼ number of output units 1ð Þ
Ninput ¼ number of input units 14ð Þ
β ¼ overdetermination factor

β was varied from 0:5 to 2:75 at the interval of 0:25ð Þ:

The network was trained for each number of hidden
units for a given sample and the training and testing
PME were calculated.

Model 4: The cascade computer model

� The cascade-computer model (CCM) can predict the
drug diffusivity from FcDDS and its efficacy as a func-
tion of the external and internal physiological variables,
leading to reorganization of underlying rules which
govern the SDS release profiles and duration of the ef-
fective concentration. The computer based framework
will provide detailed information about the involved
factors, identify the efficient range of variables, and pre-
dict the microbicidal efficacy of FcDDS. A large num-
ber of release profiles of SDS (96 cases = 25 × 3)
obtained using SVS under various conditions along
with data from animal/human studies made it possible
to perform an analysis based on parameter fitting and
computer networking approach. In this context, a more
precise measure and new information on the detailed
characteristics of such formulations can be obtained by
analyzing all, or a sufficient number of the individual
subunits through proposed computer-based tech-
niques. In addition, the manufacturing of such multiple
subunits can be optimized in detail to obtain the best
quality product achievable.

� During the prediction phase, the collaborative model
is loaded with the test samples. The input feeder of
the statistical regression and k nearest model (as
preliminary basic models) receives the test samples
and analyzes them. The controller of that
preliminary model gives its predicted output to the
feeder selector, which passes it to the neural
network (as a major model) controller. The network,
upon being provided with the test sample input
parameters as well as the predicted output
(previously selected by the preliminary model)
through the neural network controller (as a major
model), predicts the final output for the test
samples. If the required accuracy (i.e., root mean
square (RMS)) hasn’t been reached, the controller
again feeds the training dataset to the model and the
process continues, till either the required accuracy
has been reached or the maximum number of
epochs allowed is elapsed.
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� Pattern analysis and pattern reasoning, which are
based on supervised and unsupervised learning
capability from discovered patterns, will be followed
to find out the correlation between variables. CCM
allows integration of new and additional
components into a user-friendly computing environ-
ment. Decision rules established on the ontology
guides the pattern integration, which is housed in
the pattern repository reserved in CCM.
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